International Telecommunication Union

ITU-T X.691

TELECOMMUNICATION (11/2008)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

OSI networking and system aspects — Abstract Syntax
Notation One (ASN.1)

Information technology — ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)

ITU-T Recommendation X.691

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quiality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OS| APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399

For further details, please refer to thelist of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 8825-2
ITU-T RECOMMENDATION X.691

Information technology —
ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)

Summary

This Recommendation | International Standard describes a set of encoding rules that can be applied to values of al
ASN.1 types to achieve a much more compact representation than that achieved by the Basic Encoding Rules and its

derivatives (described in ITU-T Rec. X.690 | ISO/IEC 8825-1).

Sour ce

ITU-T Recommendation X.691 was prepared by ITU-T Study Group 17 (2009-2012) and approved on 13 November
2008. Anidentical text is also published as | SO/IEC 8825-2.

ITU-T Rec. X.691 (11/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommuni cation administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express regquirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/I TU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii Rec. ITU-T X.691 (11/2008)

CONTENTS

(gL goe (0t] o I SRS Vi
1 o0} oSO U TR PR PSPPSR 1
2 N o0 Y Y = 1= £ 1= USRS 1
2.1 Identical Recommendations | International Standards............cccoeveerireeneneeneneeeseseeese e 1
2.2 AAditiONal FEFEIENCES ...ttt st b et e e b e be b et e bt eae e e abeseesbennas 1
3 D T T (0] SRS 2
1T RS ' o = o ol = =T VLo = 4 o] i I 2
3.2 Information OBbject SPECITICAIION........ccuiirieiiriieere e 2
3.3 CONStraint SPECITICALIONccuiieiie ettt b ettt b e bbb e et e see b b 2
34 Parameterization of ASN.L SPECITICALIONccevuieuecieeeie et sre e e 2
35 BaSiCENCOAING RUIES ...ttt ettt e e e et sneneenne e 2
3.6 PERENCOOING INSIIUCLIONSc.eitiieiiitiieicstereet sttt n e 2
3.7 Additional dEfINITIONScc.oiiiiieie ettt se e et b e s b e bt ae et et e e e e e 2
4 F N o] o] (= Y= 1o SO 5
5 (N0 = o o ST 5
6 @001V o1 1 o] o 1SS 5
7 Encoding rules defined in this Recommendation | International Standard..............coceovirinieneienenenenne 5
8 L@Ca] g1 {0 47= 0o USSP 6
9 PER €nCOiNG INSLIUCLIONSc.veiiiieieesticeeeeeees ettt ee e aesee e seestesseeseeseese e sesaesbesaesneeseeneensessensessessens 6
10 Theapproach to encoding USEd fOr PER ..o e 7
10.1 USE Of the tYPE NOLALION ..ottt et b et e e et se e b b s aeeae e e e neeseenbeseesneas 7
10.2 Useof tagsto provide acanoniCal OFAENccceeieieeiereiisiese et e e eeesees e see e te e s e esaesaeseeseesneas 7
10.3 PER-VISIDIE CONSIIAINES......c.coviiieieieieee ettt st 7
10.4 Type and value model used fOr ENCOTINGcorveeririeirireere s ene 9
10.5 Structure Of @n €NCOINGciueevereeieieiee ettt et b e sb et e e e e seesbesbesaesae e e esseseenbesaesneas 9
O ST Y/ o= (0] o T= Y= 100 o /<! S 10
11 [Tero o [F o N 0010 1 1= 10
11.1 Production of the complete eNCOdING...........coeiririiirier e 10
A @ o= g I 1Y o1 1= o SRR 11
11.3 Encoding as anon-negative-binary-integEr ... ceeiecie e st 11
11.4 Encoding as a 2's-complement-biNary-iNtEQEYcccveerieereriererie e seseeeeeeseesee e see e eeeneeneens 12
115 Encoding of aconstrained Whole NUMDES ..o 12
11.6 Encoding of anormally small non-negative whole NUMDEY ..o 13
11.7 Encoding of a semi-constrained Whole NUMDET ... 13
11.8 Encoding of an unconstrained Whol€ NUMDEScocviiiiriieecreses e 14
119 Generd rulesfor encoding alength determinantcocooeoiiriiiinnner e 14
12 ENcoding the DOOIEEN LYP ..ottt ettt sb e s b bt e ae e e e e e e et sae e 16
13 ENCOAING the INTEOEN TYPE....cei ettt se et s e e st esbeeaeere e e et ese e e entesrentenne e 17
14 Encoding the eNUMErBEEA tYPccuveeeeereie sttt st r e sae s e e e e aeseeneeseenrenne e 17
15 ENCOTING tNE I LY.ttt bbbt bt bbbt b bbb 18
16 ENCOding the DItSIING Ty, e ettt s b e bt b et ae e e e e b e e b e 18
17 ENCOdiNg the OCELSIIING LY PE....ecuieeeieie ettt s st e e s te st e s besaeeteeaeeneeae e enteseenrenreens 19
18 [Tro o [FaTo g S LU Y o= 20
19 ENCOTIiNG the SEQUENCE LYecverieeeiirtee ettt bbbt s b et s b bbb 20
20 ENcoding the SEOUENCE-0OF TYPB.....c.eiirieee ettt et bbbt bt e e e e e b et nae e 21
21 ENCOOING thE SEL LY ... e st e et e e st e beseeebesaeeneenee s enteseentenreens 21

ITU-T Rec. X.691 (11/2008)

Page

22 ENCOAING the SEt-0f tYPB...ceeieieecice ettt saeere e e eneene e e eneeseesrenne e 22

23 ENCOdiNg the ChOICE LY ...t 22
24 Encoding the 0bjeCt IdeNtifier TYPEcooieieeeeeee et e 23
25 Encoding the relative 0] eCt identifier TYPE......c.iiiiiciieee e 23
26 Encoding the internationalized resource referenCe LY PE.......ccoiv v virereeeererere s 23
27 Encoding the relative internationalized resource referenCe tyPe... ..o e seneese e 23
28 Encoding the embedded-PaV tYPE........ce e et se e e 23
29 Encoding of avalue of the eXtErNal TYPe.........ccvii e 24
30 Encoding the restricted charaCter StriNg tYPES......vevererrrie i erereeseerese e eee e s sre e sre e 25
31 Encoding the unrestricted charaCter StrNg tYPEoovcivirieriere e 26
32 Encoding the time type, the useful time types, the defined time types and the additional time types........ 27
N R € 1= 0T - PR PTSTTRSPN 27
32.2 Encoding subtypes with the " Basi c=Dat €" property Settingccccoeevevrierererieereereereeseseesenns 31
32.3 Encoding subtypes with the "Basi c=Ti me" property Setting.........cooveerereierennieneieseseeesieneas 33
32.4 Encoding subtypes with the " Basi c=Dat e- Ti me" property Setting.........cccceeereerererenereseennes 36
32.5 Encoding subtypeswith the" Basi c=I nt erval | nterval -t ype=SE" property setting...... 36
32.6 Encoding subtypes with the" Basi c=I nt erval | nterval -type=D" property setting........ 37

32.7 Encoding subtypes with the "Basic=Interval I nterval -type=SD' or
"Basi c=I nterval I nterval -type=DE" property Setting........ccccoeeererierierinneie e 38

32.8 Encoding subtypeswith the " Basi c=Rec- | nterval I nterval -type=SE" property setting39
32.9 Encoding subtypeswith the" Basi c=Rec- | nt erval | nterval -type=D" property setting39
32.10 Encoding subtypes with the "Basic=Rec-Interval Interval -type=SD' or

"Basi c=Rec-Interval Interval-type=DE" property Setting........cccccerererereserennens 40

32.11 Encoding subtypes with mixed settings of the Basi C property.......ccccccevevvevienesiesvecveeseesese e 41

33 Objectidentifiersfor transfer SYNTAXEScccviiiereie e sreens 43
ANNEX A EXaMPIE Of ENCOUINGS.veiveierierieieitereee ettt st bbbt et b e bbb bt 44
A.1 Record that does not use SUBLYPE CONSITAINES.........cceiiriereririe et e 44

A.11 ASN.1ldescription of the record StTUCLUIE...........cccveverieie v 44

A.12 ASN.ldescription of @reCord VAlUE........cooveeieieereeiere e 44

A.1.3 ALIGNED PER representation of thisrecord Value...........c.cccvereerennienenneneenienens 44

A.14 UNALIGNED PER representation of thisrecord value...........ccccoeiiiiiinenicncienene 45

A.2 Record that USeS SUDLYPE CONSLFAINES.........cceeieiieriesese e e stee e e saesre e sre e resre e e e e aeseeseesresreenas 47

A.21 ASN.1description of the record StrUCLUIE..........cceeeerere e 47

A.22 ASN.1description Of @reCord VAUE.ooeiiiricinieee e 47

A.23 ALIGNED PER representation of thisrecord value...........cocoeoerereeniieneiene e 47

A.24 UNALIGNED PER representation of thisrecord value..........cccccvcvvevecenencecieseennn, 48

A.3 Record that UseS eXtENSION MATKEN'S........ccciiiiiririire e enes 49

A.31 ASN.1description of the record StTUCLUIE...........ooeeiiirieiriereeeee s 49

A.3.2 ASN.1ldescription of @record ValUE..........ocooeiiiiriiiiieie et e 50

A.3.3 ALIGNED PER representation of thisrecord value..........cccceveeeceecievesienie e 50

A.34 UNALIGNED PER representation of thisrecord value..........cccccevvvvveivvcncecieneene, 52

A.4 Record that uses extension addition groUPS..........ccurierererinirieee st 53

A.41 ASN.1description of the record SITUCLUE...........coeiiiiiiie e 53

A.42 ASN.1ldescription of arecord VAlUE........ccceceieieeecieie et 54

A.4.3 ALIGNED PER representation of thisrecord value..........cccceevveeeecievenennvesese e 54

A.44 UNALIGNED PER representation of thisrecord value............cccoevenenncnenncnicenne 54

Annex B Combining PER-visible and non-PER-ViSible CONSIFaiNtS...........ccooeiiiiiiieieeieeee e 56
2 T R €1 1 1< SRRSO 56

B.2 Extensibility and visibility of constraintSin PERcccccooeveiiieienerese e 56

B.2. 1 GENEIEl ...ttt ettt ettt bbb nanan 56

B.2.2 PER-visibility Of CONSITAINES.......cceiiiiiieiee e e 57

B.2.3 EffECliVE CONSLIAINES.....c.ciiieeiiiiieiriisie sttt seenes 58

2 TG T v 1 0= TS 59
Annex C Support for the PER @l gOrthMS ..ot e 61

iv ITU-T Rec. X.691 (11/2008)

Annex D Support for the ASN.1 rules of extensibility...........
Annex E Tutorial annex on concatenation of PER encodings
Annex F ldentification of Encoding RUles..........ccccoceiiieanne

ITU-T Rec. X.691 (11/2008)

I ntroduction

The publications ITU-T Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 |
ISO/IEC 8824-3, ITU-T Rec. X.683 | ISO/IEC 8824-4 together describe Abstract Syntax Notation One (ASN.1), a
notation for the definition of messages to be exchanged between peer applications.

This Recommendation | International Standard defines encoding rules that may be applied to values of types defined
using the notation specified in ITU-T Rec. X.680 | ISO/IEC 8824-1. Application of these encoding rules produces a
transfer syntax for such values. It isimplicit in the specification of these encoding rules that they are also to be used for
decoding.

There are more than one set of encoding rules that can be applied to values of ASN.1 types. This Recommendation |
International Standard defines a set of Packed Encoding Rules (PER), so called because they achieve a much more
compact representation than that achieved by the Basic Encoding Rules (BER) and its derivatives described in ITU-T
Rec. X.690| ISO/IEC 8825-1 which is referenced for some parts of the specification of these Packed Encoding Rules.

Vi ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology —
ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)

1 Scope

This Recommendation | International Standard specifies a set of Packed Encoding Rules that may be used to derive a
transfer syntax for values of types defined in ITU-T Rec. X.680 | ISO/IEC 8824-1. These Packed Encoding Rules are
also to be applied for decoding such atransfer syntax in order to identify the data values being transferred.
The encoding rules specified in this Recommendation | International Standard:

— areused at the time of communication;

— areintended for use in circumstances where minimizing the size of the representation of values is the
major concern in the choice of encoding rules;

— dlow the extension of an abstract syntax by addition of extra values, preserving the encodings
of the existing values, for al forms of extension described in ITU-T Rec. X.680 | ISO/IEC 8824-1,

— can be modified in accordance with the provisions of ITU-T Rec. X.695 | ISO/IEC 8825-6.

2 Nor mative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and 1SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | I nternational Sandards

— ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

— ITU-T Recommendation X.690 (2008) | ISO/IEC 8825-1:2008, Information technology — ASN.1
encoding rules. Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER).

— ITU-T Recommendation X.695 (2008) | ISO/IEC 8825-6:2008, Information technology — ASN.1
encoding rules: Registration and application of PER encoding instructions.

2.2 Additional references
— ISO/EC 646:1991, Information technology — 1SO 7-bit coded character set for information interchange.
— ISO/IEC 2022:1994, Information technology — Character code structure and extension techniques.

— ISO/IEC 2375:2003, Information technology — Procedure for registration of escape sequences and
coded character sets.

ITU-T Rec. X.691 (11/2008) 1

| SO/IEC 8825-2:2008 (E)

— 1S0 6093:1985, Information processing — Representation of numerical values in character strings for
information interchange.

— IO International Register of Coded Character Setsto be Used with Escape Sequences.
— ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS).

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Specification of Basic Notation

For the purposes of this Recommendation | International Standard, all the definitions in ITU-T Rec. X.680 |
ISO/IEC 8824-1 apply.

3.2 Information Object Specification

For the purposes of this Recommendation | International Standard, al the definitions in ITU-T Rec. X.681 |
I SO/IEC 8824-2 apply.

33 Constraint Specification

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.682 |
| SO/IEC 8824-3:

a) component relation constraint;
b) table constraint.

34 Parameterization of ASN.1 Specification

This Recommendation | International Standard makes use of the following term defined in ITU-T Rec. X.683 |
| SO/IEC 8824-4:

— variable constraint.

35 Basic Encoding Rules

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.690 |
ISO/IEC 8825-1:

a) dynamic conformance;

b) static conformance;

c) datavalue;

d) encoding (of adatavalue);
€) sender;

f) receiver.

3.6 PER Encoding I nstructions

This Recommendation | International Standard makes use of the following term defined in ITU-T Rec. X.695 |
| SO/IEC 8825-6:

— identifying keyword.

3.7 Additional definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

371 2's-complement-binary-integer encoding: The encoding of a whole number into a bit-field (octet-aligned in
the ALIGNED variant) of a specified length, or into the minimum number of octets that will accommodate that whole
number encoded as a 2's-complement-integer, which provides representations for whole numbers that are equal to,
greater than, or less than zero, as specified in 11.4.

2 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

NOTE 1 — The value of atwo's complement binary number is derived by numbering the bits in the contents octets, starting with
bit 1 of the last octet as bit zero and ending the numbering with bit 8 of the first octet. Each bit is assigned a numerical value of
2V, where N is its position in the above numbering sequence. The value of the two's complement binary number is obtained by
summing the numerical values assigned to each bit for those bits which are set to one, excluding bit 8 of the first octet, and then
reducing this value by the numerical value assigned to bit 8 of the first octet if that bit is set to one.

NOTE 2 — Whole number is a synonym for the mathematical term integer. It is used here to avoid confusion with the ASN.1 type
integer.

3.7.2 abstract syntax value: A value of an abstract syntax (defined as the set of values of a single ASN.1 type),
which isto be encoded by PER, or which isto be generated by PER decoding.

NOTE-The single ASN.1 type associated with an abstract syntax is formally identified by an object of class
ABSTRACT- SYNTAX.

3.7.3 bit-field: The product of some part of the encoding mechanism that consists of an ordered set of hits that are
not necessarily a multiple of eight.

NOTE - If the use of thisterm is followed by "octet-aligned in the ALIGNED variant”, this means that the bit-field is required to
begin on an octet boundary in the complete encoding for the aligned variant of PER.

374 canonical encoding: A complete encoding of an abstract syntax value obtained by the application of
encoding rules that have no implementation-dependent options; such rules result in the definition of a 1-1 mapping
between unambiguous and unique bitstrings in the transfer syntax and values in the abstract syntax.

3.75 composite type: A set, sequence, set-of, sequence-of, choice, embedded-pdv, external or unrestricted
character string type.

3.7.6 composite value: The value of a composite type.

3.7.7 constrained whole number: A whole number which is constrained by PER-visible constraints to lie within a
range from "Ib" to "ub" with the value "Ib" less than or equal to "ub", and the values of "Ib" and "ub" as permitted
values.
NOTE — Constrained whole numbers occur in the encoding which identifies the chosen alternative of a choice type, the length of
character, octet and bit string types whose length has been restricted by PER-visible constraints to a maximum length, the count
of the number of components in a sequence-of or set-of type that has been restricted by PER-visible constraints to a maximum
number of components, the value of an integer type that has been constrained by PER-visible constraints to lie within finite
minimum and maximum values, and the value that denotes an enumeration in an enumerated type.

3.7.8 effective size constraint (for a constrained string type): A single finite size constraint that could be applied
to a built-in string type and whose effect would be to permit all and only those lengths that can be present in the
constrained string type.

NOTE 1 - For example, the following has an effective size constraint:

A::= I A5String (SIZE(1..4) | SIZE(10..15))
sinceit can be rewritten with a single size constraint that appliesto all values:
A::= IA5String (SIZE(1..4 | 10..15))

whereas the following has no effective size constraint since the string can be arbitrarily long if it does not contain any characters
other than 'a, 'b" and 'c":

B::=1A5String (SIZE(1..4) | FROM"abc"))
NOTE 2 — The effective size constraint is used only to determine the encoding of lengths.

3.7.9 effective permitted-alphabet constraint (for a constrained restricted character string type): A single
permitted-al phabet constraint that could be applied to a built-in known-multiplier character string type and whose effect
would be to permit all and only those characters that can be present in at least one character position of any one of the
valuesin the constrained restricted character string type.
NOTE 1 — For example, in:
Ax ::= | A5String (FROM"AB') | FROM"CD'))
Bx ::= IASString (SIZE(1..4) | FROM"abc"))

Ax has an effective permitted-alphabet constraint of "ABCD'. Bx has an effective permitted-alphabet constraint that
consists of the entire | A5St ri ng alphabet since there is no smaller permitted-alphabet constraint that applies to all values
of Bx.

NOTE 2 — The effective permitted-al phabet constraint is used only to determine the encoding of characters.

3.7.10 enumeration index: The non-negative whole number associated with an "Enumerationltem” in an
enumerated type. The enumeration indices are determined by sorting the "Enumerationltem"s into ascending order by
their enumeration value, then by assigning an enumeration index starting with zero for the first "Enumerationltem", one
for the second, and so on up to the last "Enumerationitem” in the sorted list.

NOTE - "Enumerationltem"s in the "RootEnumeration” are sorted separately from those in the "Additiona Enumeration”.

ITU-T Rec. X.691 (11/2008) 3

| SO/IEC 8825-2:2008 (E)

3.7.11 extensiblefor PER encoding: A property of atype which requires that PER identifies an encoding of avalue
asthat of aroot value or as that of an extension addition.

NOTE — Root values are normally encoded more efficiently than extension additions.

3.7.12 field-list: An ordered set of hit-fields that is produced as a result of applying these encoding rules to
components of an abstract value.

3.7.13 indefinite-length: An encoding whose length is greater than 64K-1 or whose maximum length cannot be
determined from the ASN.1 notation.

3.7.14 fixed-length type: A type such that the value of the outermost length determinant in an encoding of this type
can be determined (using the mechanisms specified in this Recommendation | International Standard) from the type
notation (after the application of PER-visible constraints only) and is the same for all possible values of the type.

3.7.15 fixed value: A value such that it can be determined (using the mechanisms specified in this Recommendation
| International Standard) that this is the only permitted value (after the application of PER-visible constraints only) of
the type governing it.

3.7.16 known-multiplier character string type: A restricted character string type where the number of octetsin the
encoding is a known fixed multiple of the number of characters in the character string for all permitted character string
values. The known-multiplier character string types are 1A5String, PrintableString, VisibleString,
Numeri cString, Uni versal String and BMPSt ri ng.

3.7.17 length determinant: A count (of bits, octets, characters, or components) determining the length of part or all
of aPER encoding.

3.7.18 normally small non-negative whole number: A part of an encoding which represents values of an
unbounded non-negative integer, but where small values are more likely to occur than large ones.

3.719 normally small length: A length encoding which represents values of an unbounded length, but where small
lengths are more likely to occur than large ones.

3.720 non-negative-binary-integer encoding: The encoding of a constrained or semi-constrained whole number

into either a bit-field of a specified length, or into a bit-field (octet-aligned in the ALIGNED variant) of a specified

length, or into the minimum number of octets that will accommodate that whole number encoded as a non-negative-

binary-integer which provides representations for whole numbers greater than or equal to zero, as specified in 11.3.
NOTE — The value of atwo's complement binary number is derived by numbering the bits in the contents octets, starting with
bit 1 of the last octet as bit zero and ending the numbering with bit 8 of the first octet. Each bit is assigned a numerical value of
2N, where N is its position in the above numbering sequence. The value of the two's complement binary number is obtained by
summing the numerical values assigned to each bit for those bits which are set to one.

3.7.21 outermost type: An ASN.1 type whose encoding is included in a non-ASN.1 carrier or as the value of other
ASN.1 constructs (see 11.1.1).

NOTE — PER encodings of an outermost type are always an integral multiple of eight bits.

3.7.22 PER-visible constraint: Aninstance of use of the ASN.1 constraint notation which affects the PER encoding
of avalue.

3.7.23 relay-safe encoding: A complete encoding of an abstract syntax value which can be decoded (including any
embedded encodings) without knowledge of the environment in which the encoding was performed.

3.7.24 semi-constrained whole number: A whole number which is constrained by PER-visible constraints to

exceed or equal some value "Ib" with the value "Ib" as a permitted value, and which is not a constrained whole number.
NOTE — Semi-constrained whole numbers occur in the encoding of the length of unconstrained (and in some cases constrained)
character, octet and bit string types, the count of the number of components in unconstrained (and in some cases constrained)
sequence-of and set-of types, and the value of an integer type that has been constrained to exceed some minimum value.

3.7.25 simpletype: A typethat isnot a composite type.

3.7.26 textually dependent: A term used to identify the case where if some reference name is used in evaluating an
element set, the value of the element set is considered to be dependent on that reference name, regardless of whether the
actual set arithmetic being performed is such that the final value of the element set is independent of the actual element
set value assigned to the reference name.

NOTE — For example, the following definition of Foo is textually dependent on Bar even though Bar has no effect on Foos set
of values (thus, according to 10.3.6 the constraint on Foo is not PER-visible since Bar is constrained by a table constraint and
Foo istextually dependent on Bar).

MY-CLASS ::= CLASS { &nane PrintableString, &ge |INTEGER } W TH SYNTAX{ &ane , &age}
M/ Cbj ect Set MY-CLASS ::= { {"Jack", 7} | {"Jill", 5} }

4 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

MY- CLASS. &ge ({M/Ohj ect Set})
I NTEGER (Bar | 1..100)

Bar ::

Foo ::

3.7.27 unconstrained whole number: A whole number which is not constrained by PER-visible constraints.
NOTE — Unconstrained whole numbers occur only in the encoding of a value of the integer type.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules of ASN.1
CER Canonica Encoding Rules of ASN.1
DER Distinguished Encoding Rules of ASN.1
PER Packed Encoding Rules of ASN.1

16K 16384

32K 32768

48K 49152

64K 65536
5 Notation

This Recommendation | International Standard references the notation defined by ITU-T Rec. X.680 | ISO/IEC 8824-1.

6 Convention

6.1 This Recommendation | International Standard defines the value of each octet in an encoding by use of the
terms "most significant bit" and "least significant bit".
NOTE - Lower layer specifications use the same notation to define the order of bit transmission on a seria line, or the
assignment of bitsto parallel channels.

6.2 For the purposes of this Recommendation | International Standard, the bits of an octet are numbered from 8
to 1, where bit 8 is the "most significant bit" and bit 1 the "least significant bit".

6.3 The term "octet" is frequently used in this Recommendation | International Standard to stand for "eight bits".
The use of thisterm in place of "eight bits" does not carry any implications of alignment. Where alignment is intended,
itisexplicitly stated in this Recommendation | International Standard.

7 Encoding rules defined in this Recommendation | I nter national Standard

7.1 This Recommendation | International Standard specifies four encoding rules (together with their associated
object identifiers) which can be used to encode and decode the values of an abstract syntax defined as the values of a
single (known) ASN.1 type. This clause describes their applicability and properties.

7.2 Without knowledge of the type of the value encoded, it is not possible to determine the structure of the
encoding (under any of the PER encoding rule algorithms). In particular, the end of the encoding cannot be determined
from the encoding itself without knowledge of the type being encoded.

7.3 PER encodings are always relay-safe provided the abstract values of the types EXTERNAL, EMBEDDED PDV
and CHARACTER STRI NGare constrained to prevent the carriage of OS| presentation context identifiers.

7.4 The most general encoding rule algorithm specified in this Recommendation | International Standard is
BASIC-PER, which does not in general produce a canonical encoding.

75 A second encoding rule agorithm specified in this Recommendation | International Standard is
CANONICAL-PER, which produces encodings that are canonical. This is defined as a restriction of implementation-
dependent choices in the BASIC-PER encoding.

NOTE 1 — CANONICAL-PER produces canonical encodings that have applications when authenticators need to be applied to
abstract values.

ITU-T Rec. X.691 (11/2008) 5

| SO/IEC 8825-2:2008 (E)

NOTE 2 — Any implementation conforming to CANONICAL-PER for encoding is conformant to BASIC-PER for encoding.
Any implementation conforming to BASIC-PER for decoding is conformant to CANONICAL-PER for decoding. Thus,
encodings made according to CANONICAL-PER are encodings that are permitted by BASIC-PER.

7.6 If atype encoded with BASIC-PER or CANONICAL-PER contains EMBEDDED PDV, CHARACTER STRI NGor
EXTERNAL types, then the outer encoding ceases to be relay-safe unless the transfer syntax used for all the EMBEDDED
PDV, CHARACTER STRI NG and EXTERNAL types is relay safe. If a type encoded with CANONICAL-PER contains
EVMBEDDED PDV, EXTERNAL or CHARACTER STRI NG types, then the outer encoding ceases to be canonical unless the
transfer syntax used for all the EMBEDDED PDV, EXTERNAL and CHARACTER STRI NGtypesis canonical.

NOTE — The character transfer syntaxes supporting all character abstract syntaxes of the form {i so standard 10646

level -1(1)} are canonical. Those supporting {i so standard 10646 level-2(2)} and {iso
standard 10646 |evel -3(3)} arenotawayscanonical. All the above character transfer syntaxes are relay-safe.

7.7 Both BASIC-PER and CANONICAL-PER come in two variants, the ALIGNED variant, and the
UNALIGNED variant. In the ALIGNED variant, padding bits are inserted from time to time to restore octet alignment.
Inthe UNALIGNED variant, no padding bits are ever inserted.

7.8 There are no interworking possibilities between the ALIGNED variant and the UNALIGNED variant.

7.9 PER encodings are self-delimiting only with knowledge of the type of the encoded value. Encodings are
always a multiple of eight bits. When carried in an EXTERNAL type they shall be carried in the OCTET STRI NG choice
aternative, unless the EXTERNAL type itself is encoded in PER, in which case the value may be encoded as a single
ASN.1 type (i.e., an open type). When carried in OS| presentation protocol, the "full encoding” (as defined in ITU-T
Rec. X.226 | ISO/IEC 8823-1) with the OCTET STRI NG choice alternative shall be used.

7.10 The rules of this Recommendation | International Standard apply to both algorithms and to both variants
unless otherwise stated (but see 9.2 and 9.3).

711 Annex C isinformative, and gives recommendations on which combinations of PER to implement in order to
maximize the chances of interworking.

8 Conformance
8.1 Dynamic conformance is specified by clause 9 onwards.

8.2 Static conformance is specified by those standards which specify the application of these Packed Encoding
Rules.
NOTE — Annex C provides guidance on static conformance in relation to support for the two variants of the two encoding rule

algorithms. This guidance is designed to ensure interworking, while recognizing the benefits to some applications of encodings
that are neither relay-safe nor canonical.

8.3 The rules in this Recommendation | International Standard are specified in terms of an encoding procedure.
Implementations are not required to mirror the procedure specified, provided the bit string produced as the complete
encoding of an abstract syntax value is identical to one of those specified in this Recommendation | International
Standard for the applicable transfer syntax.

84 Implementations performing decoding are required to produce the abstract syntax value corresponding to any
received bit string which could be produced by a sender conforming to the encoding rules identified in the transfer
syntax associated with the material being decoded.
NOTE 1 — In general there are no aternative encodings defined for the BASIC-PER explicitly stated in this Recommendation |
International Standard. The BASIC-PER becomes canonical by specifying relay-safe operation and by restricting some of the
encoding options of other ISO/IEC Standards that are referenced. CANONICAL-PER provides an dternative to both the

Distinguished Encoding Rules and Canonical Encoding Rules (see ITU-T Rec. X.690 | ISO/IEC 8825-1) where a canonical and
relay-safe encoding is required.

NOTE 2 — When CANONICAL-PER is used to provide a canonical encoding, it is recommended that any resulting encrypted
hash value that is derived from it should have associated with it an algorithm identifier that identifies CANONICAL-PER as the
transformation from the abstract syntax value to an initia bitstring (which is then hashed).

9 PER encoding instructions

9.1 PER encoding instructions can be associated with a type in accordance with the provisions of ITU-T
Rec. X.680 | ISO/IEC 8824-1 and ITU-T Rec. X.695 | ISO/IEC 8825-6.

NOTE 1 — The application of some PER encoding instructions can make it impossible to encode al the abstract values of the
type. Where this can arise, the specific PER encoding instruction identifies the problem. It is a designers decision, based on the
possible need to use multiple encoding rules, whether to add an explicit constraint on the type in order to restrict the range of

6 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

abstract values to those that can be handled by the encoding using the PER encoding instruction. This can make the specification
less readable, but ensures that all encoding rules can encode all alowed abstract values, making relaying possible without errors.

NOTE 2 — Each PER encoding instruction starts with an identifying keyword that unambiguously identifies that encoding

instruction.
9.2 If the ALIGNED version of either BASIC-PER or CANONICAL-PER is in use, then all PER encoding
instructions shall be silently ignored and have no affect on the encoding.
9.3 If the UNALIGNED version of either BASIC-PER or CANONICAL-PER is in usg, then if a type has an

associated encoding instruction, the following subclauses shall apply.
931 If the identifying keyword is not known, then a " not supported” error message shall be issued.

9.3.2 If the identifying keyword is known, the procedures of this Recommendation | International Standard shall be
modified by the amendments to those procedures that are specified by the PER encoding instruction (see ITU-T
Rec. X.695 | ISO/IEC 8825-6).

NOTE 1 - If multiple PER encoding instructions are associated with a type, then the amendments specified for all of them shall
be applied.

NOTE 2 -1t is an error in the register of PER encoding instructions if amendments produced by two or more separate encoding
instructions conflict and it is not stated that they are mutually exclusive.

10 The approach to encoding used for PER

10.1 Use of the type notation

10.1.1 These encoding rules make specific use of the ASN.1 type notation as specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, and can only be applied to encode the values of asingle ASN.1 type specified using that notation.

10.1.2 In particular, but not exclusively, they are dependent on the following information being retained in the
ASN.1 type and value model underlying the use of the notation:

a) thenesting of choice types within choice types;

b) the tags placed on the components in a set type, and on the alternatives in a choice type, and the values
given to an enumeration;

c) whether aset or sequence type component is optional or not;
d) whether aset or sequence type component has a DEFAULT value or not;

e) the restricted range of values of a type which arise through the application of PER-visible constraints
(only);

f) whether acomponent is an open type;

g) whether atypeisextensible for PER encoding.

10.2 Use of tagsto provide a canonical order

This Recommendation | International Standard requires components of a set type and a choice type to be canonically
ordered independent of the textual ordering of the components. The canonical order is determined by sorting the
outermost tag of each component, as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 8.6.

10.3 PER-visible constraints
NOTE — The fact that some ASN.1 constraints may not be PER-visible for the purposes of encoding and decoding does not in

any way affect the use of such constraints in the handling of errors detected during decoding, nor does it imply that values
violating such constraints are allowed to be transmitted by a conforming sender. However, this Recommendation | International
Standard makes no use of such constraints in the specification of encodings.

10.3.1 Constraints that are expressed in human-readable text or in ASN.1 comment are not PER-visible.

10.3.2 Variable constraints are not PER-visible (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 10.3 and 10.4).

10.3.3 User-defined constraints (see ITU-T Rec. X.682 | ISO/IEC 8824-3, 9.1) are not PER visible.

10.34 Table congtraints are not PER-visible (see ITU-T Rec. X.682 | |SO/IEC 8824-3).

10.3.5 Component relation constraints (see ITU-T Rec. X.682 | ISO/IEC 8824-3, 10.7) are not PER-visible.

10.3.6 Constraints whose evaluation is textually dependent on a table constraint or a component relation constraint
are not PER-visible (see ITU-T Rec. X.682 | ISO/IEC 8824-3).

ITU-T Rec. X.691 (11/2008) 7

| SO/IEC 8825-2:2008 (E)

10.3.7 Constraints on restricted character string types which are not (see ITU-T Rec. X.680 | ISO/IEC 8824-1, clause
41) known-multiplier character string types are not PER-visible (see 3.7.16).

10.3.8 Pattern constraints are not PER-visible.
10.3.9 Subject to the above, al size constraints are PER-visible.

10.3.10 The effective size constraint for a constrained type is a single size constraint such that a size is permitted if
and only if there is some value of the constrained type that has that (permitted) size.

10.3.11 Permitted-alphabet constraints on known-multiplier character string types which are not extensible after
application of ITU-T Rec. X.680 | ISO/IEC 8824-1, 52.3 to 52.5, are PER-visible. Permitted-alphabet constraints
which are extensible are not PER-visible.

10.3.12 The effective permitted-alphabet constraint for a constrained type is a single permitted-alphabet constraint
which allows a character if and only if there is some value of the constrained type that contains that character. If all
characters of the type being constrained can be present in some value of the constrained type, then the effective
permitted-al phabet constraint isthe set of characters defined for the unconstrained type.

10.3.13 Property setting constraints on the time type (or on the useful and defined time types) which are not
extensible after the application of ITU-T Rec. X.680 | ISO/IEC 8824-1, 52.3 to 52.5, are PER-visible. Property setting
constraints which are extensible are not PER-visible.

10.3.14 Constraints applied to real types are not PER-visible.

10.3.15 An inner type constraint applied to an unrestricted character string or embbeded-pdv type is PER-visible only
when it is used to restrict the value of the synt axes component to a single value, or when it is used to restrict
i dentificationtothefixed aternative (see clauses 28 and 31).

10.3.16 Constraints on the useful types are not PER-visible.
10.3.17 Single value subtype constraints applied to a character string type are not PER-visible.

10.3.18 Subject to the above, all other constraints are PER-visible if and only if they are applied to an integer type or
to aknown-multiplier character string type.

10.3.19 In genera the constraint on a type will consist of individual constraints combined using some or al of set
arithmetic, contained subtype constraints, and seria application of constraints. The following clauses specify the effect
if some of the component parts of the total constraint are PER-visible and some are not.

NOTE - See Annex B for further discussion on the effect of combining constraints that individually are PER-visible or not
PER-visible.

10.3.20 If aconstraint consists of a seria application of constraints, the constraints which are not PER-visible, if any,
do not affect PER encodings, but cause the extensibility (and extension additions) present in any earlier constraints to
be removed as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 50.8.

NOTE 1 - If the final constraint in a serial application is not PER-visible, then the type is not extensible for PER-encodings, and
is encoded without an extension bit.

NOTE 2 — For example:
A = I A5String(SlZE(1..4))(FROM"ABCD',...))

has an effective permitted-alphabet constraint that consists of the entire |1 A5String aphabet since the extensible
permitted-al phabet constraint is not PER-visible. It has nevertheless an effective size constraint which is"Sl zg(1. . 4) ".

Similarly,
B ::= I A5String(A)
has the same effective size constraint and the same effective permitted-alphabet constraint.

10.3.21 If a constraint that is PER-visible is part of an | NTERSECTI ON construction, then the resulting constraint is
PER-visible, and consists of the | NTERSECTI ON of all PER-visible parts (with the non-PER-visible partsignored). If a
constraint which is not PER-visible is part of a UNI ON construction, then the resulting constraint is not PER-visible. If a
constraint has an EXCEPT clause, the EXCEPT and the following value set is completely ignored, whether the value set
following the EXCEPT is PER-visible or not.

NOTE - For example:

A ::= IA5String (SIZE(1..4) |NTERSECTI ON FROM "ABCD',...))
has an effective size constraint of 1..4 but the alphabet constraint is not visible because it is extensible.

10.3.22 A typeisaso extensible for PER encodings (whether subsequently constrained or not) if any of the following
OCCUrs:

8 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

a) it is derived from an ENUVERATED type (by subtyping, type referencing, or tagging) and there is an
extension marker in the "Enumerations" production; or

b) itisderived from a SEQUENCE type (by subtyping, type referencing, or tagging) and there is an extension
marker in the "ComponentTypeLists' or in the "SequenceType" productions; or

c) it is derived from a SET type (by subtyping, type referencing, or tagging) and there is an extension
marker in the "ComponentTypeLists' or in the "SetType" productions; or

d) itisderived from a CHO CE type (by subtyping, type referencing, or tagging) and there is an extension
marker in the "AlternativeTypeLists' production.

104 Typeand value model used for encoding

1041 AnASN.1ltypeiseither asimpletype or isatype built using other types. The notation permits the use of type
references and tagging of types. For the purpose of these encoding rules, the use of type references and tagging have no
effect on the encoding and are invisible in the model, except as stated in 10.2. The notation also permits the application
of constraints and of error specifications. PER-visible constraints are present in the model as a restriction of the values
of atype. Other constraints and error specifications do not affect encoding and are invisible in the PER type and value
model.

10.4.2 A vaue to be encoded can be considered as either a simple value or as a composite value built using the
structuring mechanisms from components which are either simple or composite values, paralleling the structure of the
ASN.1 type definition.

10.4.3 When a constraint includes a value as an extension addition that is present in the root, that value is always
encoded as avalue in the root, not as a value which is an extension addition.

EXAMPLE

I NTEGER (0..10, ..., 5)
-- The value 5 encodes as a root value, not as an extension addition.

105 Structure of an encoding

10.5.1 These encoding rules specify:
a) theencoding of asimplevalueinto afield-list; and

b) the encoding of a composite value into afield-list, using the field-lists generated by application of these
encoding rules to the components of the composite value; and

c) the transformation of the field-list of the outermost value into the complete encoding of the abstract
syntax value (see 11.1).

10.5.2 Theencoding of a component of a data value either:
a) consistsof three parts, as shown in Figure 1, which appear in the following order:
1) apreamble (seeclauses 19, 21 and 23);
2) alength determinant (see 11.9);
3) contents; or

Preamble Length Preamble Length Contents Preamble Length Contents

Contents

NOTE — The preamble, length, and contents are all "fields* which, concatenated together, form a "field-list". The field-list of a
composite type other than the choice type may consist of the fields of several values concatenated together. Either the preamble,
length and/or contents of any value may be missing.

Figure 1 — Encoding of a composite valueinto a field-list

ITU-T Rec. X.691 (11/2008) 9

| SO/IEC 8825-2:2008 (E)

b) (where the contents are large) consists of an arbitrary number of parts, as shown in Figure 2, of which
the first is a preamble (see clauses 19, 21 and 23) and the following parts are pairs of bit-fields (octet-
aligned in the ALIGNED variant), the first being alength determinant for a fragment of the contents, and
the second that fragment of the contents; the last pair of fields is identified by the length determinant
part, as specified in 11.9.

Contents
Preamble Length Contents Length Contents e Length (may be
missing)

Figure 2 — Encoding of a long data value

10.5.3 Each of the parts mentioned in 10.5.2 generates either:
a) anull field (nothing); or
b) abit-field (unaligned); or
c¢) abit-field (octet-aligned in the ALIGNED variant); or

d) afield-list which may contain either bit-fields (unaligned), bit-fields (octet-aligned in the ALIGNED
variant), or both.

10.6 Typesto be encoded

10.6.1 The following clauses specify the encoding of the following types into a field-list: boolean, integer,
enumerated, real, bitstring, octetstring, null, sequence, sequence-of, set, set-of, choice, open, object identifier, relative
object identifier, embedded-pdv, external, restricted character string and unrestricted character string types.

10.6.2 The selection type shall be encoded as an encoding of the selected type.

10.6.3 Encoding of tagged typesis not included in this Recommendation | International Standard as, except as stated
in 10.2, tagging is not visible in the type and value model used for these encoding rules. Tagged types are thus encoded
according to the encoding of the type which has been tagged.

10.6.4 Anencoding prefixed typeis encoded according to the type which has been prefixed.

10.6.5 Thefollowing "useful types' shall be encoded as if they had been replaced by their definitions givenin ITU-
T Rec. X.680 | ISO/IEC 8824-1, clause 45:

— generdized time;
— universal time;

— object descriptor.

Constraints on the useful types are not PER-visible. The restrictions imposed on the encoding of the generalized time
and universal timetypes by ITU-T Rec. X.690 | ISO/IEC 8825-1, 11.7 and 11.8, shall apply here.

10.6.6 A type defined using a value set assignment shall be encoded as if the type had been defined using the
production specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 16.8.

1 Encoding procedures

1.1 Production of the complete encoding

11.1.1 If an ASN.1 type is encoded using any of the encoding rules identified by the object identifiers listed in
subclause 33.2 (or by direct textual reference to this Recommendation | International Standard), and the encoding is
included in:

a) an ASN.1 hitstring or an ASN.1 octetstring (with or without a contents constraint); or
b) an ASN.1 open type; or

c) any part of an ASN.1 external or embedded pdv type; or

d) any carrier protocol that is not defined using ASN.1

10 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

then that ASN.1 type is defined as an outermost type for this application, and subclause 11.1.2 shall apply to al
encodings of its values.
NOTE 1 - This means that all complete PER encodings (for all variants) that are used in this way are always an integral
multiple of eight bits.

NOTE 2 — It is possible using the Encoding Control Notation (see ITU-T Recommendation X.692 | ISO/IEC 8825-3) to specify
avariant of PER encodings in which the encoding is not padded to an octet boundary as specified in 11.1.2. Many tools support
this option.

NOTE 3 — It is recognized that a carrier protocol not defined using ASN.1 need not explicitly carry the additional zero bits for
padding (specified in 11.1.2), but can imply their presence.

11.1.2 The field-list produced as a result of applying this Recommendation | International Standard to an abstract
value of an outermost type shall be used to produce the complete encoding of that abstract syntax value as follows: each
field in the field-list shall be taken in turn and concatenated to the end of the bit string which is to form the complete
encoding of the abstract syntax value preceded by additional zero bits for padding as specified below.

11.1.3 Inthe UNALIGNED variant of these encoding rules, all fields shall be concatenated without padding. If the
result of encoding the outermost value is an empty hit string, the bit string shall be replaced with a single octet with all
bits set to 0. If it is a non-empty bit string and it is not a multiple of eight bits, (zero to seven) zero bits shall be
appended to it to produce amultiple of eight bits.

11.1.4 Inthe ALIGNED variant of these encoding rules, any bit-fields in the field-list shall be concatenated without
padding, and any octet-aligned bit-fields shall be concatenated after (zero to seven) zero bits have been concatenated to
make the length of the encoding produced so far a multiple of eight bits. If the result of encoding the outermost valueis
an empty bit string, the bit string shall be replaced with a single octet with all bits set to 0. If it is a non-empty bit string
and it isnot amultiple of eight bits, (zero to seven) zero bits shall be appended to it to produce a multiple of eight bits.
NOTE 1 — The encoding of the outermost value is the empty bit string if, for example, the abstract syntax value is of the null
type or of an integer type constrained to asingle value.
NOTE 2 — Zero-length octet-aligned bit-fields can never be present in the field-list (see 11.9.3.3).

11.1.5 Theresulting bit string is the compl ete encoding of the abstract syntax value of an outermost type.

11.2 Open typefields

11.21 In order to encode an open type field, the value of the actual type occupying the field shall be encoded to a
field-list which shall then be converted to a complete encoding of an abstract syntax value as specified in 11.1 to
produce an octet string of length "n" (say).

11.2.2 Thefield-list for the value in which the open type is to be embedded shall then have added to it (as specified
in 11.9) an unconstrained length of "n" (in units of octets) and an associated bit-field (octet-aligned in the ALIGNED
variant) containing the bits produced in 11.2.1.

NOTE — Where the number of octets in the open type encoding is large, the fragmentation procedures of 11.9 will be used, and

the encoding of the open type will be broken without regard to the position of the fragment boundary in the encoding of the type
occupying the open type field.

11.3 Encoding as a hon-negative-binary-integer

NOTE — (Tutorial) This subclause gives precision to the term "non-negative-binary-integer encoding”, putting the integer into a
field which is a fixed number of bits, a field which is a fixed number of octets, or afield that is the minimum number of octets
needed to hold it.

11.3.1 Subsequent subclauses refer to the generation of a non-negative-binary-integer encoding of a non-negative
whole number into afield which is either a bit-field of specified length, a single octet, a double octet, or the minimum
number of octets for the value. This subclause (11.3) specifies the precise encoding to be applied when such references
are made.

11.3.2 The leading bit of the field is defined as the leading bit of the bit-field, or as the most significant bit of the
first octet in the field, and the trailing bit of the field is defined as the trailing bit of the bit-field or as the least
significant bit of the last octet in the field.

11.3.3 For the following definition only, the bits shall be numbered zero for the trailing bit of the field, one for the
next bit, and so on up to the leading bit of the field.

11.34 In a non-negative-binary-integer encoding, the value of the whole number represented by the encoding shall
be the sum of the values specified by each bit. A bit which is set to "0" has zero value. A bit with number "n" which is
set to "1" hasthe value 2".

11.3.5 The encoding which sums (as defined above) to the value being encoded is an encoding of that value.

ITU-T Rec. X.691 (11/2008) 11

| SO/IEC 8825-2:2008 (E)

NOTE — Where the size of the encoded field is fixed (a bit-field of specified length, a single octet, or a double octet), then there
is aunigue encoding which sums to the value being encoded.

11.3.6 A minimum octet non-negative-binary-integer encoding of the whole number (which does not predetermine
the number of octets to be used for the encoding) has a field which is a multiple of eight bits and aso satisfies the
condition that the leading eight bits of the field shall not all be zero unlessthefield is precisely eight bits long.

NOTE - Thisisanecessary and sufficient condition to produce a unique encoding.

11.4 Encoding as a 2's-complement-binary-integer

NOTE — (Tutorial) This subclause gives precision to the term "2's-complement-binary-integer encoding”, putting a signed integer
into a field that is the minimum number of octets needed to hold it. These procedures are referenced in later encoding
specifications.

11.41 Subsequent subclauses refer to the generation of a 2's-complement-binary-integer encoding of a whole
number (which may be negative, zero, or positive) into the minimum number of octets for the value. This subclause
(11.4) specifies the precise encoding to be applied when such references are made.

11.4.2 The leading bit of the field is defined as the most significant bit of the first octet, and the trailing bit of the
field is defined as the least significant hit of the last octet.

11.4.3 For the following definition only, the bits shall be numbered zero for the trailing bit of the field, one for the
next bit, and so on up to the leading bit of the field.

1144 In a 2's-complement-binary-integer encoding, the value of the whole number represented by the encoding
shall be the sum of the values specified by each bit. A bit which is set to "0" has zero value. A bit with number "n"
whichissetto "1" hasthe value 2" unlessit isthe leading bit, in which case it has the (negative) value —2".

11.45 Any encoding which sums (as defined above) to the value being encoded is an encoding of that value.

11.4.6 A minimum octet 2's-complement-binary-integer encoding of the whole number has a field-width that is a
multiple of eight bits and also satisfies the condition that the leading nine bits of the field shall not all be zero and shall
not all be ones.

NOTE - Thisis anecessary and sufficient condition to produce a unique encoding.

15 Encoding of a constrained whole number

NOTE — (Tutorial) This subclause is referenced by other clauses, and itself references earlier clauses for the production of a non-
negative-binary-integer or a 2's-complement-binary-integer encoding. For the UNALIGNED variant the value is always encoded
in the minimum number of bits necessary to represent the range (defined in 11.5.3). The rest of this Note addresses the
ALIGNED variant. Where the range is less than or egual to 255, the value encodes into a bit-field of the minimum size for the
range. Where the range is exactly 256, the value encodes into a single octet octet-aligned bit-field. Where the range is 257 to
64K, the value encodes into a two octet octet-aligned bit-field. Where the range is greater than 64K, the range is ignored and the
value encodes into an octet-aligned bit-field which is the minimum number of octets for the value. In this latter case, later
procedures (see 11.9) also encode a length field (usually a single octet) to indicate the length of the encoding. For the other
cases, the length of the encoding isindependent of the value being encoded, and is not explicitly encoded.

11.5.1 Thissubclause (11.5) specifies a mapping from a constrained whole number into either a bit-field (unaligned)
or a bit-field (octet-aligned in the ALIGNED variant), and is invoked by later clauses in this Recommendation |
International Standard.

11.5.2 The procedures of this subclause are invoked only if a constrained whole number to be encoded is available,
and the values of the lower bound, "Ib", and the upper bound, "ub", have been determined from the type notation (after
the application of PER-visible constraints).

NOTE — A lower bound cannot be determined if M N evaluates to an infinite number, nor can an upper bound be determined if
MAX evaluates to an infinite number. For example, no upper or lower bound can be determined for | NTEGER(M N. . MAX) .

11.5.3 Let"range" be defined as the integer value ("ub" —"Ib" + 1), and let the value to be encoded be "n".
11.54 If "range" has the value 1, then the result of the encoding shall be an empty bit-field (no bits).

1155 There are five other cases (leading to different encodings) to consider, where one applies to the
UNALIGNED variant and four to the ALIGNED variant.

11.5.6 In the case of the UNALIGNED variant the vaue ("n" —"Ib") shal be encoded as a non-negative-
binary-integer in a bit-field as specified in 11.3 with the minimum number of bits necessary to represent the range.

NOTE — If "range" satisfies the inequality 2™ < "range" < 2™+ 1, then the number of bits=m + 1.

12 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

11.5.7 Inthe case of the ALIGNED variant the encoding depends on whether:
a) "range" islessthan or equal to 255 (the bit-field case);
b) "range' isexactly 256 (the one-octet case);
c) '"range" isgreater than 256 and less than or equal to 64K (the two-octet case);
d) "range" isgreater than 64K (the indefinite length case).
11.5.7.1 (The bit-field case.) If "range" is less than or equal to 255, then invocation of this subclause requires the

generation of a bit-field with a number of bits as specified in the table below, and containing the value ("n" —"Ib") as a
non-negative-binary-integer encoding in a bit-field as specified in 11.3.

"range" Bit-field size (in bits)
2

3,4
5,6,7,8
9to 16
171032
33to 64
65to 128
129 to 255

O N[O |~ WIN

11.5.7.2 (The one-octet case.) If the range has a value of 256, then the value ("n" —"Ib") shall be encoded in a one-
octet bit-field (octet-aligned in the ALIGNED variant) as a non-negative-binary-integer as specified in 11.3.

11.5.7.3 (The two-octet case)) If the "range" has a value greater than or equal to 257 and less than or equa to 64K,
then the value ("n" — "Ib") shall be encoded in a two-octet bit-field (octet-aligned in the ALIGNED variant) as a hon-
negative-binary-integer encoding as specified in 11.3.

11.5.7.4 (The indefinite length case.) Otherwise, the value ("n" — "Ib") shall be encoded as a non-negative-binary-
integer in a bit-field (octet-aligned in the ALIGNED variant) with the minimum number of octets as specified in 11.3,
and the number of octets "len" used in the encoding is used by other clauses that reference this subclause to specify an
encoding of the length.

11.6 Encoding of a normally small non-negative whole number

NOTE — (Tutorial) This procedure is used when encoding a non-negative whole number that is expected to be small, but whose
sizeis potentialy unlimited due to the presence of an extension marker. An exampleis a choice index.

11.6.1 If the non-negative whole number, "n", isless than or equal to 63, then a single-bit bit-field shall be appended
to the field-list with the hit set to 0, and "n" shall be encoded as a non-negative-binary-integer into a 6-bit bit-field.

11.6.2 If "n" is greater than or equal to 64, a single-bit bit-field with the bit set to 1 shall be appended to the field-
list. The value "n" shall then be encoded as a semi-constrained whole number with "1b" equal to 0 and the procedures of
11.9 shall be invoked to add it to the field-list preceded by alength determinant.

11.7 Encoding of a semi-constrained whole number

NOTE — (Tutoria) This procedure is used when a lower bound can be identified but not an upper bound. The encoding
procedure places the offset from the lower bound into the minimum number of octets as a non-negative-binary-integer, and
requires an explicit length encoding (typically asingle octet) as specified in later procedures.

11.7.1 This subclause specifies a mapping from a semi-constrained whole number into a bit-field (octet-aligned in
the ALIGNED variant), and isinvoked by later clauses in this Recommendation | International Standard.

11.7.2 The procedures of this subclause (11.7) are invoked only if a semi-constrained whole number ("n" say) to be
encoded is available, and the value of "Ib" has been determined from the type notation (after the application of
PER-visible constraints).

NOTE — A lower bound cannot be determined if M N evaluates to an infinite number. For example, no lower bound can be
determined for | NTEGER(M N. . MAX) .

11.7.3 The procedures of this subclause always produce the indefinite length case.

11.7.4 (Theindefinite length case.) The value ("n" —"1b") shall be encoded as a non-negative-binary-integer in a bit-
field (octet-aligned in the ALIGNED variant) with the minimum number of octets as specified in 11.3, and the number

ITU-T Rec. X.691 (11/2008) 13

| SO/IEC 8825-2:2008 (E)

of octets "len" used in the encoding is used by other clauses that reference this subclause to specify an encoding of the
length.

11.8 Encoding of an unconstrained whole number

NOTE — (Tutorial) This case only arises in the encoding of the value of an integer type with no lower bound. The procedure
encodes the value as a 2's-complement-binary-integer into the minimum number of octets required to accommodate the
encoding, and requires an explicit length encoding (typically asingle octet) as specified in later procedures.

11.8.1 This subclause (11.8) specifies a mapping from an unconstrained whole number ("n" say) into a bit-field
(octet-aligned in the ALIGNED variant), and is invoked by later clauses in this Recommendation | International
Standard.

11.8.2 The procedures of this subclause always produce the indefinite length case.

11.8.3 (Theindefinite length case.) The value "n" shall be encoded as a 2's-complement-binary-integer in a bit-field
(octet-aligned in the ALIGNED variant) with the minimum number of octets as specified in 11.4, and the number of
octets "len" used in the encoding is used by other clauses that reference this subclause to specify an encoding of the
length.

11.9 General rulesfor encoding a length deter minant

NOTE 1 — (Tutorial) The procedures of this subclause are invoked when an explicit length field is needed for some part of the
encoding regardless of whether the length count is bounded above (by PER-visible constraints) or not. The part of the encoding
to which the length applies may be a hit string (with the length count in bits), an octet string (with the length count in octets), a
known-multiplier character string (with the length count in characters), or alist of fields (with the length count in components of
a sequence-of or set-of).

NOTE 2 — (Tutorid) In the case of the ALIGNED variant if the length count is bounded above by an upper bound that is less
than 64K, then the constrained whole number encoding is used for the length. For sufficiently small ranges the result is a bit-
field, otherwise the unconstrained length ("n" say) is encoded into an octet-aligned bit-field in one of three ways (in order of
increasing size):

a) ("n"lessthan 128) asingle octet containing "n" with bit 8 set to zero;

b) ("n" lessthan 16K) two octets containing "n" with bit 8 of thefirst octet set to 1 and bit 7 set to zero;

c) (large"n") asingle octet containing a count "m" with bit 8 set to 1 and bit 7 set to 1. The count "m" is one to four,
and the length indicates that a fragment of the material follows (a multiple "m" of 16K items). For al values of "m",
the fragment is then followed by another length encoding for the remainder of the material.

NOTE 3 — (Tutorid) In the UNALIGNED variant, if the length count is bounded above by an upper bound that is less than 64K,
then the constrained whole number encoding is used to encode the length in the minimum number of bits necessary to represent
the range. Otherwise, the unconstrained length ("n" say) is encoded into a bit-field in the manner described above in Note 2.

11.9.1 This subclause is not invoked if, in accordance with the specification of later clauses, the value of the length
determinant, "n", is fixed by the type definition (constrained by PER-visible constraints) to a value less than 64K.

11.9.2 This subclause is invoked for addition to the field-list of a field, or list of fields, preceded by a length
determinant "n" which determines either:

a) thelengthin octets of an associated field (units are octets); or
b) thelength in bits of an associated field (units are bits); or

c) the number of component encodings in an associated list of fields (units are components of a set-of or
sequence-of); or

d) the number of charactersin the value of an associated known-multiplier character string type (units are
characters).

11.9.3 (ALIGNED variant) The procedures for the ALIGNED variant are specified in 11.9.3.1 to 11.9.3.8.4. (The
procedures for the UNALIGNED variant are specified in 11.9.4.)

11.9.3.1 Asaresult of the analysis of the type definition (specified in later clauses) the length determinant (a whole
number "n") will have been determined to be either:

a) anormally small length with alower bound "Ib" equal to one; or

b) aconstrained whole number with alower bound "Ib" (greater than or equal to zero), and an upper bound
"ub" less than 64K; or

c) a semi-constrained whole number with a lower bound "Ib" (greater than or equal to zero), or a
constrained whole number with a lower bound "Ib" (greater than or equal to zero) and an upper bound
"ub" greater than or equal to 64K.

14 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

11.9.3.2 The subclauses invoking the procedures of this subclause will have determined a value for "Ib", the lower
bound of the length (this is zero if the length is unconstrained), and for "ub", the upper bound of the length. "ub” is
unset if there is no upper bound determinable from PER-visible constraints.

11.9.3.3 Where the length determinant is a constrained whole number with "ub" less than 64K, then the field-list shall
have appended to it the encoding of the constrained whole number for the length determinant as specified in 11.5. If "n"
is non-zero, this shall be followed by the associated field or list of fields, completing these procedures. If "n" is zero
there shall be no further addition to the field-list, completing these procedures.

NOTE 1 — For example:

A ::=1A5String (SIZE (3..6)) -- Length is encoded in a 2-bit bit-field.
B ::= 1A5String (SIZE (40000..40254)) -- Length is encoded in an 8-bit bit-field.
C::=1A5String (SIZE (0..32000)) -- Length is encoded in a 2-octet

-- bit-field (octet-aligned in the ALI GNED variant).
D::=1A5String (SIZE (64000)) -- Length is not encoded.

NOTE 2 — The effect of making no addition in the case of "n" equals zero is that padding to an octet boundary does not occur
when these procedures are invoked to add an octet-aligned-bit-field of zero length, unless required by 11.5.

11.9.3.4 Where the length determinant is a normally small length and "n" is less than or equal to 64, a single-bit bit-
field shall be appended to the field-list with the bit set to 0, and the value "n—1" shall be encoded as a non-negative-
binary-integer into a 6-bit bit-field. This shall be followed by the associated field, completing these procedures. If "n" is
greater than 64, a single-bit bit-field shall be appended to the field-list with the bit set to 1, followed by the encoding of
"n" as an unconstrained length determinant followed by the associated field, according to the procedures of 11.9.3.5 to
11.9.3.8.4.

NOTE — Normally small lengths are only used to indicate the length of the bitmap that prefixes the extension addition values of a
Set or segquence type.

11.9.3.5 Otherwise (unconstrained length, or large "ub”), "n" is encoded and appended to the field-list followed by the
associated fields as specified below.

NOTE — The lower bound, "Ib", does not affect the length encodings specified in 11.9.3.6 to0 11.9.3.8.4.

11.9.3.6 If "n" is less than or equal to 127, then "n" shall be encoded as a non-negative-binary-integer (using the
procedures of 11.3) into bits 7 (most significant) to 1 (least significant) of a single octet and bit 8 shall be set to zero.
This shall be appended to the field-list as a bit-field (octet-aligned in the ALIGNED variant) followed by the associated
field or list of fields, completing these procedures.
NOTE - For example, if in the following avalue of A is 4 characterslong, and that of Bis4 itemslong:
A ::=1A5String
B ::= SEQUENCE (SIZE (4..123456)) OF | NTEGER

both values are encoded with the length octet occupying one octet, and with the most significant set to 0 to indicate that the
length isless than or equal to 127:

0 0000100 4 characterglitems

Length Value

11.9.3.7 If "n" isgreater than 127 and less than 16K, then "n" shall be encoded as a non-negative-binary-integer (using
the procedures of 11.3) into hit 6 of octet one (most significant) to bit 1 of octet two (least significant) of a two-octet
bit-field (octet-aligned in the ALIGNED variant) with bit 8 of the first octet set to 1 and bit 7 of the first octet set to
zero. This shall be appended to the field-list followed by the associated field or list of fields, completing these
procedures.

NOTE - If in the example of 11.9.3.6 a value of A is 130 characters long, and a value of B is 130 items long, both values are

encoded with the length component occupying 2 octets, and with the two most significant bits (bits 8 and 7) of the octet set to 10
to indicate that the length is greater than 127 but less than 16K.

10 000000 10000010 130 characters/items

Length Value

ITU-T Rec. X.691 (11/2008) 15

| SO/IEC 8825-2:2008 (E)

11.9.3.8 If "n" is greater than or equal to 16K, then there shall be appended to the field-list a single octet in a bit-field
(octet-aligned in the ALIGNED variant) with bit 8 set to 1 and bit 7 set to 1, and bits 6 to 1 encoding the value 1, 2, 3
or 4 as a non-negative-binary-integer (using the procedures of 11.8). This single octet shall be followed by part of the
associated field or list of fields, as specified below.

NOTE — The value of bits 6 to 1 is restricted to 1-4 (instead of the theoretical limits of 0-63) so as to limit the number of items
that an implementation has to have knowledge of to a more manageable number (64K instead of 1024K).

11.9.3.8.1 The value of bits 6 to 1 (1 to 4) shall be multiplied by 16K giving a count ("m" say). The choice of the
integer in bits 6 to 1 shall be the maximum allowed value such that the associated field or list of fields contains more
than or exactly "m" octets, bits, components or characters, as appropriate.
NOTE 1 — The unfragmented form handles lengths up to 16K. The fragmentation therefore provides for lengths up to 64K with a
granularity of 16K.

NOTE 2 — If in the example of 11.9.3.6 a value of "B" is 144K + 1 (i.e, 64K + 64K + 16K + 1) items long, the value is
fragmented, with the two most significant bits (bits 8 and 7) of the first three fragments set to 11 to indicate that one to four
blocks each of 16K itemsfollow, and that another length component will follow the last block of each fragment:

11 000100 | 64Kitems | 11 000100 | 64Kitems | 11 000001 | 16Kitems | O 0000001 Litem
| | | |

Length Value Length Value Length Value Length Value

11.9.3.8.2 That part of the contents specified by "m" shall then be appended to the field-list as either:

a) asingle bit-field (octet-aligned in the ALIGNED variant) of "m" octets containing the first "m" octets of
the associated field, for units which are octets; or

b) asingle bit-field (octet-aligned in the ALIGNED variant) of "m" bits containing the first "m" bits of the
associated field, for units which are bits; or

c) thelist of fields encoding the first "m" components in the associated list of fields, for units which are
components of a set-of or sequence-of types; or

d) asingle bit-field (octet-aligned in the ALIGNED variant) of "m" characters containing the first "m"
characters of the associated field, for units which are characters.

11.9.3.8.3 The procedures of 11.9 shall then be reapplied to add the remaining part of the associated field or list of
fields to the field-list with a length which is a semi-constrained whole number equal to ("n" —"m") with alower bound
of zero.
NOTE — If the last fragment that contains part of the encoded value has a length that is an exact multiple of 16K, it is followed
by afinal fragment that consists only of asingle octet length component set to O.

11.9.3.84 The addition of only a part of the associated field(s) to the field-list with reapplication of these
procedures is called the fragmentation procedure.

11.9.4 (UNALIGNED variant) The procedures for the UNALIGNED variant are specified in 11.9.4.1 to 11.9.4.2
(the procedures for the ALIGNED variant are specified in 11.9.3).

11.9.4.1 If the length determinant "n" to be encoded is a constrained whole number with "ub" less than 64K, then
("n"-"1b") shall be encoded as a non-negative-binary-integer (as specified in 11.3) using the minimum number of bits
necessary to encode the "range” ("ub" —"Ib" + 1), unless "range" is 1, in which case there shall be no length encoding.
If "n" is non-zero this shall be followed by an associated field or list of fields, completing these procedures. If "n" is
zero there shall be no further addition to the field-list, compl eting these procedures.

NOTE —If "range" satisfies the inequality 2™ < "range" < 2™+ 1, then the number of bitsin the length determinant is m + 1.

11.9.4.2 If the length determinant "n" to be encoded is a normally small length, or a constrained whole number with
"ub" greater than or equal to 64K, or is a semi-constrained whole number, then "n" shall be encoded as specified in
11.9.3.4t011.9.3.8.4.

NOTE — Thus, if "ub" is greater than or equal to 64K, the encoding of the length determinant is the same as it would be if the
length were unconstrained.

12 Encoding the boolean type

12.1 A value of the boolean type shall be encoded as a bit-field consisting of asingle bit.
12.2 The bit shall be set to 1 for TRUE and O for FALSE.

16 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

12.3 The bit-field shall be appended to the field-list with no length determinant.

13 Encoding theinteger type

NOTE 1 — (Tutorial ALIGNED variant) Ranges which allow the encoding of all values into one octet or less go into a minimum-
sized hit-field with no length count. Ranges which allow encoding of al values into two octets go into two octets in an
octet-aligned bit-field with no length count. Otherwise, the value is encoded into the minimum number of octets (using non-
negative-hinary-integer or 2's-complement-binary-integer encoding as appropriate) and a length determinant is added. In this
case, if the integer value can be encoded in less than 127 octets (as an offset from any lower bound that might be determined),
and there is no finite upper and lower bound, there is a one-octet length determinant, else the length is encoded in the fewest
number of bits needed. Other cases are not of any practical interest, but are specified for completeness.

NOTE 2 — (Tutorial UNALIGNED variant) Constrained integers are encoded in the fewest number of bits necessary to represent
the range regardless of its size. Unconstrained integers are encoded asin Note 1.

131 If an extension marker is present in the constraint specification of the integer type, then a single bit shall be
added to the field-list in a bit-field of length one. The bit shall be set to 1 if the value to be encoded is not within the
range of the extension root, and zero otherwise. In the former case, the value shall be added to the field-list as an
unconstrained integer value, as specified in 13.2.4 to 13.2.6, completing this procedure. In the latter case, the value
shall be encoded asiif the extension marker is not present.

13.2 If an extension marker is not present in the constraint specification of the integer type, then the following
applies.

13.21 If PER-visible constraints restrict the integer value to a single value, then there shall be no addition to the
field-list, completing these procedures.

13.2.2 If PER-visible constraints restrict the integer value to be a constrained whole number, then it shall be
converted to afield according to the procedures of 11.5 (encoding of a constrained whole number), and the procedures
of 13.2.5t0 13.2.6 shall then be applied.

13.2.3 If PER-visible constraints restrict the integer value to be a semi-constrained whole number, then it shall be
converted to a field according to the procedures of 11.7 (encoding of a semi-constrained whole number), and the
procedures of 13.2.6 shall then be applied.

13.24 If PER-visible constraints do not restrict the integer to be either a constrained or a semi-constrained whole
number, then it shall be converted to afield according to the procedures of 11.8 (encoding of an unconstrained whole
number), and the procedures of 13.2.6 shall then be applied.

13.25 If the procedures invoked to encode the integer value into a field did not produce the indefinite length case
(see 11.5.7.4 and 11.8.2), then that field shall be appended to the field-list completing these procedures.

13.2.6 Otherwise, (the indefinite length case) the procedures of 11.9 shall be invoked to append the field to the field-
list preceded by one of the following:

a) A constrained length determinant "len" (as determined by 11.5.7.4) if PER-visible constraints restrict the
type with finite upper and lower bounds and, if the type is extensible, the value lies within the range of
the extension root. The lower bound "Ib" used in the length determinant shall be 1, and the upper bound
"ub" shall be the count of the number of octets required to hold the range of the integer value.

NOTE — The encoding of the value "foo | NTEGER (256..1234567) ::= 256" would thus be encoded
as 00xxxxxx00000000, where each 'x' represents a zero pad bit that may or may not be present depending on
where within the octet the length occurs (e.g., the encoding is 00 xxxxxx 00000000 if the length starts on an
octet boundary, and 00 00000000 if it starts with the two least signigicant bits (bits 2 and 1) of an octet).

b) An unconstrained length determinant equal to "len" (as determined by 11.7 and 11.8) if PER-visible

constraints do not restrict the type with finite upper and lower bounds, or if the type is extensible and the
value does not lie within the range of the extension root.

14 Encoding the enumerated type

NOTE — (Tutorial) An enumerated type without an extension marker is encoded asif it were a constrained integer whose subtype
constraint does not contain an extension marker. This means that an enumerated type will almost always in practice be encoded
as a hit-field in the smallest number of bits needed to express every enumeration. In the presence of an extension marker, it is
encoded as a normally small non-negative whole number if the value is not in the extension root.

14.1 The enumerations in the enumeration root shall be sorted into ascending order by their enumeration value,
and shall then be assigned an enumeration index starting with zero for the first enumeration, one for the second, and so
on up to the last enumeration in the sorted list. The extension additions (which are aways defined in ascending order)

ITU-T Rec. X.691 (11/2008) 17

| SO/IEC 8825-2:2008 (E)

shall be assigned an enumeration index starting with zero for the first enumeration, one for the second, and so on up to
the last enumeration in the extension additions.

NOTE — ITU-T Rec. X.680 | ISO/IEC 8824-1 requires that each successive extension addition shall have a greater enumeration
value than the last.

14.2 If the extension marker is absent in the definition of the enumerated type, then the enumeration index shall be
encoded. Its encoding shall be as though it were a value of a constrained integer type for which there is no extension
marker present, where the lower bound is 0 and the upper bound is the largest enumeration index associated with the
type, completing this procedure.

14.3 If the extension marker is present, then a single bit shall be added to the field-list in a bit-field of length one.
The bit shall be set to 1 if the value to be encoded is not within the extension root, and zero otherwise. In the former
case, the enumeration additions shall be sorted according to 14.1 and the value shall be added to the field-list as a
normally small non-negative whole number whose value is the enumeration index of the additional enumeration and
with "Ib" set to 0, completing this procedure. In the latter case, the value shall be encoded as if the extension marker is
not present, as specified in 14.2.

NOTE - There are no PER-visible constraints that can be applied to an enumerated type that are visible to these encoding rules.

15 Encoding thereal type

NOTE — (Tutorial) A real uses the contents octets of CER/DER preceded by alength determinant that will in practice be asingle
octet.

15.1 If the base of the abstract value is 10, then the base of the encoded value shall be 10, and if the base of the
abstract valueis 2 the base of the encoded value shall be 2.

15.2 The encoding of REAL specified for CER and DER in ITU-T Rec. X.690 | ISO/IEC 8825-1, 11.3 shall be
applied to give a bit-field (octet-aligned in the ALIGNED variant) which is the contents octets of the CER/DER
encoding. The contents octets of this encoding consists of "n" (say) octets and is placed in a bit-field (octet-aligned in
the ALIGNED variant) of "n" octets. The procedures of 11.9 shall be invoked to append this bit-field (octet-aligned in
the ALIGNED variant) of "n" octets to the field-list, preceded by an unconstrained length determinant equal to "n".

16 Encoding the bitstring type

NOTE — (Tutorial) Bitstrings constrained to a fixed length less than or equal to 16 bits do not cause octet alignment. Larger
bitstrings are octet-aligned in the ALIGNED variant. If the length is fixed by constraints and the upper bound is less than 64K,
there is no explicit length encoding, otherwise alength encoding is included which can take any of the forms specified earlier for
length encodings, including fragmentation for large bit strings.

16.1 PER-visible constraints can only constrain the length of the bitstring.

16.2 Where there are no PER-visible constraints and ITU-T Rec. X.680 | ISO/IEC 8824-1, 22.7, applies the value
shall be encoded with no trailing O bits (note that this means that a value with no 1 bits is always encoded as an empty
bit string).

16.3 Where there is a PER-visible constraint and ITU-T Rec. X.680 | ISO/IEC 8824-1, 22.7, applies (i.e. the
bitstring type is defined with a "NamedBitList"), the value shall be encoded with trailing O bits added or removed as
necessary to ensure that the size of the transmitted value is the smallest size capable of carrying this value and satisfies
the effective size constraint.

164 Let the maximum number of bits in the bitstring (as determined by PER-visible constraints on the length) be
"ub" and the minimum number of bits be "Ib". If there is no finite maximum we say that "ub" is unset. If there is no
constraint on the minimum, then "Ib" has the value zero. Let the length of the actual bit string value to be encoded be
"n" bits.

16.5 When ahitstring value is placed in a bit-field as specified in 16.6 to 16.11, the leading bit of the bitstring value
shall be placed in the leading bit of the bit-field, and the trailing bit of the bitstring value shall be placed in the trailing
bit of the bit-field.

16.6 If the type is extensible for PER encodings (see 10.3.9), then a hit-field consisting of a single bit shall be
added to the field-list. The bit shall be set to 1 if the length of this encoding is not within the range of the extension
root, and zero otherwise. In the former case, 16.11 shal be invoked to add the length as a semi-constrained whole
number to the field-list, followed by the bitstring value. In the latter case the length and value shall be encoded asif no
extension is present in the constraint.

18 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

16.7 If an extension marker is not present in the constraint specification of the bitstring type, then 16.8 to 16.11
apply.

16.8 If the bitstring is constrained to be of zero length ("ub" equals zero), then it shall not be encoded (no additions
to the field-list), completing the procedures of this clause.

16.9 If al values of the bitstring are constrained to be of the same length ("ub" equals "Ib") and that length is less
than or equal to sixteen bits, then the bitstring shall be placed in a bit-field of the constrained length "ub" which shall be
appended to the field-list with no length determinant, completing the procedures of this clause.

16.10 If al values of the bitstring are constrained to be of the same length ("ub" equals "Ib") and that length is
greater than sixteen bits but less than 64K bits, then the bitstring shall be placed in a bit-field (octet-aligned in the
ALIGNED variant) of length "ub" (which is not necessarily a multiple of eight bits) and shall be appended to the field-
list with no length determinant, completing the procedures of this clause.

16.11 If 16.8-16.10 do not apply, the bitstring shall be placed in a hit-field (octet-aligned in the ALIGNED variant)

of length "n" bits and the procedures of 11.9 shall be invoked to add this bit-field (octet-aligned in the ALIGNED

variant) of "n" bitsto the field-list, preceded by a length determinant equal to "n" bits as a constrained whole number if

"ub" is set and isless than 64K or as a semi-constrained whole number if "ub” is unset. "Ib" is as determined above.
NOTE - Fragmentation applies for unconstrained or large "ub" after 16K, 32K, 48K or 64K bits.

17 Encoding the octetstring type

NOTE — Octet strings of fixed length less than or equal to two octets are not octet-aligned. All other octet strings are octet-
aligned in the ALIGNED variant. Fixed length octet strings encode with no length octets if they are shorter than 64K. For
unconstrained octet strings the length is explicitly encoded (with fragmentation if necessary).

171 PER-visible constraints can only constrain the length of the octetstring.

17.2 L et the maximum number of octets in the octetstring (as determined by PER-visible constraints on the length)
be "ub" and the minimum number of octets be "Ib". If there is no finite maximum we say that "ub" is unset. If there is
no constraint on the minimum then "Ib" has the value zero. Let the length of the actual octetstring value to be encoded
be"n" octets.

17.3 If the type is extensible for PER encodings (see 10.3.9), then a bit-field consisting of a single bit shall be
added to the field-list. The hit shall be set to 1 if the length of this encoding is not within the range of the extension
root, and zero otherwise. In the former case 17.8 shall be invoked to add the length as a semi-constrained whole
number to the field-list, followed by the octetstring value. In the latter case the length and value shall be encoded as if
no extension is present in the constraint.

174 If an extension marker is not present in the constraint specification of the octetstring type, then 17.5to 17.8
apply.

175 If the octetstring is constrained to be of zero length ("ub" equals zero), then it shall not be encoded (no
additions to the field-list), completing the procedures of this clause.

17.6 If al values of the octetstring are constrained to be of the same length ("ub" equals "Ib") and that length is
less than or equal to two octets, the octetstring shall be placed in a bit-field with a number of bits equal to the
constrained length "ub" multiplied by eight which shall be appended to the field-list with no length determinant,
completing the procedures of this clause.

17.7 If al values of the octetstring are constrained to be of the same length ("ub" equals "Ib") and that length is
greater than two octets but less than 64K, then the octetstring shall be placed in a bit-field (octet-aligned in the
ALIGNED variant) with the constrained length "ub" octets which shall be appended to the field-list with no length
determinant, completing the procedures of this clause.

17.8 If 17.5 to 17.7 do not apply, the octetstring shall be placed in a bit-field (octet-aligned in the ALIGNED
variant) of length "n" octets and the procedures of 11.9 shall be invoked to add this bit-field (octet-aligned in the
ALIGNED variant) of "n" octets to the field-list, preceded by a length determinant equal to "n" octets as a constrained
whole number if "ub" is set, and as a semi-constrained whole number if "ub" isunset. "Ib" is as determined above.

NOTE - The fragmentation procedures may apply after 16K, 32K, 48K, or 64K octets.

ITU-T Rec. X.691 (11/2008) 19

| SO/IEC 8825-2:2008 (E)

18 Encoding the null type

NOTE — (Tutorial) The null type is essentially a place holder, with practical meaning only in the case of a choice or an optional
set or sequence component. Identification of the null in a choice, or its presence as an optional element, is performed in these
encoding rules without the need to have octets representing the null. Null values therefore never contribute to the octets of an
encoding.

There shall be no addition to the field-list for anull value.

19 Encoding the sequence type

NOTE — (Tutorial) A sequence type begins with a preamble which is a bit-map. If the sequence type has no extension marker,
then the bit-map merely records the presence or absence of default and optional components in the type, encoded as a fixed
length bit-field. If the sequence type does have an extension marker, then the hit-map is preceded by a single bit that says
whether values of extension additions are actually present in the encoding. The preamble is encoded without any length
determinant provided it is less than 64K bits long, otherwise a length determinant is encoded to obtain fragmentation. The
preamble is followed by the fields that encode each of the components, taken in turn. If there are extension additions, then
immediately before the first one is encoded there is the encoding (as a normally small length) of a count of the number of
extension additions in the type being encoded, followed by a bit-map equal in length to this count which records the presence or
absence of values of each extension addition. Thisis followed by the encodings of the extension additions asif each one was the
value of an open type field.

19.1 If the sequence type has an extension marker, then a single bit shall first be added to the field-list in a bit-field
of length one. The bit shall be one if values of extension additions are present in this encoding, and zero otherwise.
(This bit is called the "extension bit" in the following text.) If there is no extension marker, there shall be no extension
bit added.

19.2 If the sequence type has "n" components in the extension root that are marked OPTI ONAL or DEFAULT, then a
single bit-field with "n" bits shall be produced for addition to the field-list. The bits of the bit-field shall, taken in order,
encode the presence or absence of an encoding of each optional or default component in the sequence type. A bit value
of 1 shall encode the presence of the encoding of the component, and a bit value of 0 shall encode the absence of the
encoding of the component. The leading bit in the preamble shall encode the presence or absence of the first optional or
default component, and the trailing bit shall encode the presence or absence of the last optional or default component.

19.3 If "n" is less than 64K, the bit-field shall be appended to the field-list. If "n" is greater than or equal to 64K,
then the procedures of 11.9 shall be invoked to add this bit-field of "n" bits to the field-list, preceded by a length
determinant equal to "n" bits as a constrained whole number with "ub" and "Ib" both set to "n".

NOTE - In this case, "ub" and "Ib" will be ignored by the length procedures. These procedures are invoked here in order to
provide fragmentation of alarge preamble. The situation is expected to arise only rarely.

194 The preamble shall be followed by the field-lists of each of the components of the sequence value which are
present, taken in turn.

195 For CANONICAL-PER, encodings of components marked DEFAULT shall always be absent if the value to be
encoded is the default value. For BASIC-PER, encodings of components marked DEFAULT shall always be absent if the
value to be encoded is the default value of a simple type (see 3.7.25), otherwise it is a sender's option whether or not to
encodeit.

19.6 This completes the encoding if the extension bit is absent or is zero. If the extension hit is present and set to
one, then the following procedures apply.

19.7 Let the number of extension additions in the type being encoded be "n", then a bit-field with "n" bits shall be
produced for addition to the field-list. The bits of the bit-field shall, taken in order, encode the presence or absence of
an encoding of each extension addition in the type being encoded. A bit value of 1 shall encode the presence of the
encoding of the extension addition, and a bit value of 0 shall encode the absence of the encoding of the extension
addition. The leading bit in the bit-field shall encode the presence or absence of the first extension addition, and the
trailing bit shall encode the presence or absence of the last extension addition.

NOTE - If conformance is claimed to a particular version of a specification, then the value "n" is always equal to the number of
extension additionsin that version.

19.8 The procedures of 11.9 shall be invoked to add this bit-field of "n" bits to the field-list, preceded by a length
determinant equal to "n" asanormally small length.
NOTE —"n" cannot be zero, asthis procedure is only invoked if there is at least one extension addition being encoded.

20 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

19.9 This shall be followed by field-lists containing the encodings of each extension addition that is present, taken
in turn. Each extension addition that isa"ComponentType" (i.e., not an "ExtensionAdditionGroup") shall be encoded asif it
were the value of an open type field as specified in 11.2.1. Each extension addition that is an "ExtensionAdditionGroup”
shall be encoded as a sequence type as specified in 19.2 to 19.6, which is then encoded as if it were the value of an open
type fiedd as gspecified in 11.2.1. If &l components values of the "ExtensonAdditionGroup” are missing then, the
"ExtensionAdditionGroup" shall be encoded as a missing extension addition (i.e., the corresponding bit in the bit-field
described in 19.7 shall be set to 0).

NOTE 1 - If an "ExtensionAdditionGroup" contains components marked OPTIONAL or DEFAULT, then the
"ExtensionAdditionGroup” is prefixed with a bit-map that indicates the presence/absence of values for each component marked
OPTI ONAL or DEFAULT.

NOTE 2 — "RootComponentTypeList" components that are defined after the extension marker pair are encoded as if they were
defined immediately before the extension marker pair.

20 Encoding the sequence-of type
20.1 PER-visible constraints can constrain the number of components of the sequence-of type.

20.2 Let the maximum number of components in the sequence-of (as determined by PER-visible constraints) be
"ub" components and the minimum number of components be "Ib". If there is no finite maximum or "ub" is greater than
or equal to 64K we say that "ub" is unset. If there is no constraint on the minimum, then "1b" has the value zero. Let the

number of components in the actual sequence-of value to be encoded be "n" components.

20.3 The encoding of each component of the sequence-of will generate a number of fields to be appended to the
field-list for the sequence-of type.

20.4 If there is a PER-visible constraint and an extension marker is present in it, a single bit shall be added to the
field-list in a bit-field of length one. The bit shall be set to 1 if the number of components in this encoding is not within
the range of the extension root, and zero otherwise. In the former case 11.9 shall be invoked to add the length
determinant as a semi-constrained whole number to the field-list, followed by the component values. In the latter case
the length and value shall be encoded as if the extension marker is not present.

20.5 If the number of components is fixed ("ub" equals "Ib") and "ub" is less than 64K, then there shall be no
length determinant for the sequence-of, and the fields of each component shall be appended in turn to the field-list of
the sequence-of.

20.6 Otherwise, the procedures of 11.9 shall be invoked to add the list of fields generated by the "n" components
to the field-list, preceded by alength determinant equal to "n" components as a constrained whole number if "ub" is set,
and as a semi-constrained whole number if "ub" isunset. "Ib" is as determined above.

NOTE 1 — The fragmentation procedures may apply after 16K, 32K, 48K, or 64K components.

NOTE 2 — The break-points for fragmentation are between fields. The number of bits prior to a break-point are not necessarily a
multiple of eight.

21 Encoding the set type

The set type shall have the elements in its "RootComponentTypeList" sorted into the canonical order specified in ITU-
T Rec. X.680 | ISO/IEC 8824-1, 8.6, and additionally for the purposes of determining the order in which components
are encoded when one or more component is an untagged choice type, each untagged choice type is ordered as though
it has atag equal to that of the smallest tag in the "RootAlternativeTypelist" of that choice type or any untagged choice
types nested within. The set elements that occur in the "RootComponentTypeList" shall then be encoded as if it had
been declared a sequence type. The set elements that occur in the "ExtensionAdditionList" shal be encoded as though they
were components of a sequence type as specified in 19.9 (i.e., they are encoded in the order in which they are defined).

EXAMPLE - In the following which assumes atagging environment of | MPLI CI T TAGS:
A .= SET
{
a [3] | NTEGER,
b [1] cHOCE

c [2] I NTEGER
d [4] | NTEGER

ITU-T Rec. X.691 (11/2008) 21

| SO/IEC 8825-2:2008 (E)

e CHO CE
{ f CHO CE
{ g [5] | NTEGER
h [6] | NTEGER
i}' CHO CE
i j [0] | NTEGER
}

}

the order in which the components of the set are encoded will always be e, b, a, since the tag [0] sorts
lowest, then[1], then[3] .

22 Encoding the set-of type

22.1 For CANONICAL-PER the encoding of the component values of the set-of type shall appear in ascending
order, the component encodings being compared as bit strings padded at their trailing ends with as many as seven 0 bits
to an octet boundary, and with 0-octets added to the shorter one if necessary to make the length equal to that of the
longer one.

NOTE — Any pad bits or pad octets added for the sort do not appear in the actual encoding.

22.2 For BASIC-PER the set-of shall be encoded asif it had been declared a sequence-of type.

23 Encoding the choice type

NOTE — (Tutorial) A choice type is encoded by encoding an index specifying the chosen aternative. This is encoded as for a
constrained integer (unless the extension marker is present in the choice type, in which case it is a normally small non-negative
whole number) and would therefore typically occupy a fixed length bit-field of the minimum number of bits needed to encode
the index. (Although it could in principle be arbitrarily large.) This is followed by the encoding of the chosen aternative, with
aternatives that are extension additions encoded as if they were the value of an open type field. Where the choice has only one
aternative, thereis no encoding for the index.

231 Encoding of choice types are not affected by PER-visible constraints.

232 Each component of a choice has an index associated with it which has the value zero for the first alternative
in the root of the choice (taking the aternatives in the canonical order specified in ITU-T Rec. X.680 | ISO/IEC 8824-1,
8.6), one for the second, and so on up to the last component in the extension root of the choice. An index value is
similarly assigned to each "NamedType" within the "ExtensionAdditionAlternativesList”, starting with O just as with
the components of the extension root. Let "n" be the value of the largest index in the root.

NOTE — ITU-T Rec. X.680 | ISO/IEC 8824-1, 29.7, requires that each successive extension addition shall have a greater tag
value than the last added to the "ExtensionAdditionAlternativesList".

233 For the purposes of canonical ordering of choice alternatives that contain an untagged choice, each untagged
choice type shall be ordered as though it has a tag equal to that of the smallest tag in the extension root of either that
choice type or any untagged choice types nested within.

234 If the choice has only one aternative in the extension root, there shall be no encoding for the index if that
aternative is chosen.

235 If the choice type has an extension marker, then a single bit shall first be added to the field-list in a bit-field of
length one. The bit shall be 1 if avalue of an extension addition is present in the encoding, and zero otherwise. (This bit
is caled the "extension bit" in the following text.) If thereis no extension marker, there shall be no extension bit added.

23.6 If the extension bit is absent, then the choice index of the chosen aternative shall be encoded into a field
according to the procedures of clause 13 asif it were avalue of an integer type (with no extension marker in its subtype
constraint) constrained to the range 0 to "n", and that field shall be appended to the field-list. This shall then be
followed by the fields of the chosen alternative, completing the procedures of this clause.

23.7 If the extension bit is present and the chosen alternative lies within the extension root, the choice index of the
chosen aternative shall be encoded as if the extension marker is absent, according to the procedure of clause 13,
completing the procedures of this clause.

22 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

238 If the extension bit is present and the chosen alternative does not lie within the extension root, the choice
index of the chosen alternative shall be encoded as a normally small non-negative whole number with "1b" set to 0 and
that field shall be appended to the field-list. This shall then be followed by a field-list containing the encoding of the
chosen alternative encoded as if it were the value of an open type field as specified in 11.2, completing the procedures
of this clause.

NOTE - Version brackets in the definition of choice extension additions have no effect on how
"ExtensionAdditionAlternatives' are encoded.

24 Encoding the object identifier type

NOTE — (Tutorial) An object identifier type encoding uses the contents octets of BER preceded by alength determinant that will
in practice be asingle octet.

The encoding specified for BER shall be applied to give a bit-field (octet-aligned in the ALIGNED variant) which is
the contents octets of the BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is
placed in a bit-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 11.9 shall be invoked to
append this bit-field (octet-aligned in the ALIGNED variant) to the field-list, preceded by alength determinant equal to
"n" as a semi-constrained whole number octet count.

25 Encoding therelative object identifier type

NOTE — (Tutoria) A relative object identifier type encoding uses the contents octets of BER preceded by alength determinant
that will in practice be a single octet. The following text isidentical to that of clause 24.

The encoding specified for BER shall be applied to give a bit-field (octet-aligned in the ALIGNED variant) which is
the contents octets of the BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is
placed in a bit-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 11.9 shall be invoked to
append this bit-field (octet-aligned in the ALIGNED variant) to the field-list, preceded by alength determinant equal to
"n" as a semi-constrained whole number octet count.

26 Encoding the internationalized resour ce reference type

NOTE — (Tutorial) An internationalized resource reference type encoding uses the contents octets of BER preceded by a length
determinant that will in practice be asingle octet. The following text isidentical to that of clause 24.

The encoding specified for BER shall be applied to give a bit-field (octet-aligned in the ALIGNED variant) which is
the contents octets of the BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is
placed in a bit-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 11.9 shall be invoked to
append this bit-field (octet-aligned in the ALIGNED variant) to the field-list, preceded by alength determinant equal to
"n" as a semi-constrained whole number octet count.

27 Encoding therelative inter nationalized resour ce reference type

NOTE — (Tutorial) A relative internationalized resource reference type encoding uses the contents octets of BER preceded by a
length determinant that will in practice be a single octet. The following text isidentical to that of clause 24.

The encoding specified for BER shall be applied to give a bit-field (octet-aligned in the ALIGNED variant) which is
the contents octets of the BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is
placed in a bit-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 11.9 shall be invoked to
append this bit-field (octet-aligned in the ALIGNED variant) to the field-list, preceded by alength determinant equal to
"n" as a semi-constrained whole number octet count.

28 Encoding the embedded-pdv type

28.1 There are two ways in which an embedded-pdv type can be encoded:

a) the syntaxes dternative of the embedded-pdv type is constrained with a PER-visible inner type
constraint to asingle value or i denti fi cati on is constrained with a PER-visible inner type constraint
to the fi xed aternative, in which case only the dat a- val ue shall be encoded; this is called the
"predefined” case;

ITU-T Rec. X.691 (11/2008) 23

| SO/IEC 8825-2:2008 (E)

b) aninner type constraint is not employed to constrain the synt axes aternative to a single value, nor to
constrain i denti fication to the fi xed alternative, in which case both the i dentifi cati on and
dat a- val ue shall be encoded; thisis called the "genera" case.

28.2 In the "predefined” case, the encoding of the value of the embedded-pdv type shall be the PER-encoding of a
value of the OCTET STRI NG type. The value of the OCTET STRI NG shall be the octets which form the complete
encoding of the single data value referenced in ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.3).

28.3 In the "general" case, the encoding of a value of the embedded-pdv type shall be the PER encoding of the
type defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.5, with the dat a- val ue- descri pt or element removed (that
is, there shall be no OPTI ONAL bit-map at the head of the encoding of the SEQUENCE). The value of the dat a- val ue
component of type OCTET STRI NG shall be the octets which form the complete encoding of the single data value
referenced in ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.3 a).

29 Encoding of a value of the external type

29.1 The encoding of a value of the external type shall be the PER encoding of the following sequence type,
assumed to be defined in an environment of EXPLI CI T TAGS, with avalue as specified in the subclauses below:

[UNI VERSAL 8] | MPLICIT SEQUENCE {

direct-reference OBJECT | DENTI FI ER OPTI ONAL,

i ndirect-reference | NTEGER OPTI ONAL,

dat a- val ue-descri pt or Obj ect Descri pt or OPTI ONAL,

encodi ng CHO CE {
si ngl e- ASNL-t ype [0] ABSTRACT- SYNTAX. &Type,
octet-aligned [1] IMPLICI T CCTET STRI NG
arbitrary [2] IMPLICIT BIT STRRNG } }

NOTE — This sequence type differs from that in ITU-T Rec. X.680 | ISO/IEC 8824-1 for historical reasons.

29.2 The value of the components depends on the abstract value being transmitted, which is a value of the type
specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.5.

29.3 The dat a- val ue- descri ptor above shall be present if and only if the dat a- val ue-descri ptor is
present in the abstract value, and shall have the same value.

29.4 Vaues of direct-reference and i ndirect-reference above shal be present or absent in accordance
with Table 1. Table 1 maps the external type alternatives of i denti fi cati on defined in ITU-T Rec. X.680 | ISO/IEC
8824-1, 36.5, to the external type componentsdi r ect - r ef erence andi ndi r ect - r ef er ence defined in 29.1.

Table 1 — Alternative encodings for " identification"

identification direct-reference indirect-reference
synt axes *** CANNOT OCCUR *** *** CANNOT OCCUR ***
synt ax Syntax ABSENT
presentation-context-id ABSENT presentation-context-id

cont ext - negoti ati on

transfer-syntax

presentation-context-id

transf er-synt ax

*** CANNOT OCCUR ***

*** CANNOT OCCUR ***

fixed

*** CANNOT OCCUR ***

*** CANNOT OCCUR ***

29.5 The data value shall be encoded according to the transfer syntax identified by the encoding, and shall be
placed in an aternative of the encodi ng choice as specified below.

29.6 If the data value is the value of a single ASN.1 data type (see the Note in 29.7), and if the encoding rules for
this data value are those specified in this Recommendation | International Standard, then the sending implementation
shall usethesi ngl e- ASN1-t ype alternative.

29.7 Otherwise, if the encoding of the data value, using the agreed or negotiated encoding, is an integral number of

octets, then the sending implementation shall encode asoct et - al i gned.

NOTE — A data value which is a series of ASN.1 types, and for which the transfer syntax specifies simple concatenation of the
octet strings produced by applying the ASN.1 Basic Encoding Rules to each ASN.1 type, fallsinto this category, not that of 29.6.

24 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

29.8 Otherwise, if the encoding of the data value, using the agreed or negotiated encoding, is not an integral
number of octets, the encodi ng choice shall bearbitrary.

29.9 If the encodi ng choice is chosen as si ngl e- ASNL- t ype, then the ASN.1 type shall be encoded as specified
in 11.2 with avalue equal to the data value to be encoded.

NOTE — The range of values which might occur in the open type is determined by the registration of the object identifier value
associated with thedi r ect - r ef er ence, and/or the integer value associated with thei ndi r ect - r ef er ence.

29.10 If theencodi ng choiceisoct et - al i gned, then the data value shall be encoded according to the agreed or
negotiated transfer syntax, and the resulting octets shall form the value of the octetstring.

29.11 If the encodi ng choice is arbitrary, then the data value shall be encoded according to the agreed or
negotiated transfer syntax, and the result shall form the value of the bitstring.

30 Encoding therestricted character string types

NOTE 1 — (Tutorial ALIGNED variant) Character strings of fixed length less than or equal to two octets are not octet-aligned.
Character strings of variable length that are constrained to have a maximum length of less than two octets are not octet-aligned.
All other character strings are octet-aligned in the ALIGNED variant. Fixed length character strings encode with no length octets
if they are shorter than 64K characters. For unconstrained character strings or constrained character strings longer than 64K—1,
the length is explicitly encoded (with fragmentation if necessary). Each Nuneri cString, Printabl eString, Vi si bl eString
(I Sos46String), | A5String, BMPString and Uni versal String character is encoded into the number of bits that is the
smallest power of two that can accommodate all characters allowed by the effective permitted-al phabet constraint.

NOTE 2 — (Tutoriadl UNALIGNED variant) Character strings are not octet-aligned. If there is only one possible length value
there is no length encoding if they are shorter than 64K characters. For unconstrained character strings or constrained character
strings longer than 64K-1, the length is explicitly encoded (with fragmentation if necessary). Each NumericString,
Printabl eString, VisibleString (I S0646String), | A5String, BWPString and Uni versal String character is encoded
into the number of bits that is the smallest that can accommodate all characters alowed by the effective permitted-alphabet
constraint.

NOTE 3 — (Tutorial on size of each encoded character) Encoding of each character depends on the effective permitted-al phabet
congtraint (see 10.3.12), which defines the alphabet in use for the type. Suppose this alphabet consists of a set of characters
ALPHA (say). For each of the known-multiplier character string types (see 3.7.16), there is an integer value associated with each
character, obtained by reference to some code table associated with the restricted character string type. The set of values BETA
(say) corresponding to the set of characters ALPHA is used to determine the encoding to be used, as follows: the number of bits
for the encoding of each character is determined solely by the number of elements, N, in the set BETA (or ALPHA). For the
UNALIGNED variant is the smallest number of bits that can encode the value N — 1 as a non-negative binary integer. For the
ALIGNED variant this is the smallest number of bits that is a power of two and that can encode the value N — 1. Suppose the
selected number of bitsis B. Then if every value in the set BETA can be encoded (with no transformation) in B bits, then the
value in set BETA is used to represent the corresponding characters in the set ALPHA. Otherwise, the values in set BETA are
taken in ascending order and replaced by values 0, 1, 2, and so on up to N — 1, and it is these values that are used to represent the
corresponding character. In summary: minimum bits (taken to the next power of two for the ALIGNED variant) are always used.
Preference is then given to using the value normally associated with the character, but if any of these values cannot be encoded
in the minimum number of bits a compaction is applied.

30.1 The following restricted character string types are known-multiplier character string types: Nuneri cStri ng,
Printabl eString, VisibleString (I S0646String), | A5String, BMPSt ri ng, and Uni ver sal Stri ng. Effective
permitted-al phabet constraints are PER-visible only for these types.

30.2 The effective size constraint notation may determine an upper bound "aub" for the length of the abstract
character string. Otherwise, "aub" is unset.

30.3 The effective size constraint notation may determine a non-zero lower bound "ab" for the length of the
abstract character string. Otherwise, "alb" is zero.

NOTE - PER-visible constraints only apply to known-multiplier character string types. For other restricted character string types
"aub" will be unset and "alb" will be zero.

304 If the type is extensible for PER encodings (see 10.3.18), then a bit-field consisting of a single bit shall be
added to the field-list. The single bit shall be set to zero if the value is within the range of the extension root, and to one
otherwise. If the value is outside the range of the extension root, then the following encoding shall be asif there was no
effective size constraint, and shall have the effective permitted-al phabet constraint specified in 10.3.12.
NOTE 1 — Only the known-multiplier character string types can be extensible for PER encodings. Extensibility markers on other
character string types do not affect the PER encoding.

NOTE 2 — Effective permitted-alphabet constraints can never be extensible, as extensible permitted-alphabet constraints are not
PER-visible (see 10.3.11).

30.5 This subclause applies to known-multiplier character strings. Encoding of the other restricted character string
typesis specified in 30.6.

ITU-T Rec. X.691 (11/2008) 25

| SO/IEC 8825-2:2008 (E)

30.5.1 The effective permitted aphabet is defined to be that alphabet permitted by the permitted-al phabet constraint,
or the entire alphabet of the built-in type if there is no PermittedAlphabet constraint.

30.5.2 Let N be the number of characters in the effective permitted alphabet. Let B be the smallest integer such that
2 to the power B is greater than or equal to N. Let B2 be the smallest power of 2 that is greater than or equal to B. Then
in the ALIGNED variant, each character shall encode into B2 bits, and in the UNALIGNED variant into B bits. Let the
number of bitsidentified by thisrule be"b".

30.5.3 A numerical value "v" is associated with each character by reference to ITU-T Rec. X.680 | ISO/IEC 8824-1,
clause 43 as follows. For Uni ver sal String, the value is that used to determine the canonical order in ITU-T Rec.
X.680 | ISO/IEC 8824-1, 43.3 (the vaue is in the range 0 to 232 — 1). For BWPSt ri ng, the value is that used to
determine the canonical order in ITU-T Rec. X.680 | ISO/IEC 8824-1, 43.3 (the value isin the range 0 to 216 — 1), For
NunericString and PrintableString and VisibleString and | A5String the value is that defined for the
I SO/IEC 646 encoding of the corresponding character. (For 1 A5St ri ng therangeis0to 127, for Vi si bl eStringitis
32 to 126, for NumericString it is 32 to 57, and for Printabl eString it is 32 to 122. For | A5String and
Vi si bl eString al values in the range are present, but for Numeri cString and Pri nt abl eStri ng not all valuesin
therange arein use.)

30.5.4 Let the smalest value in the range for the set of characters in the permitted aphabet be "1b" and the largest
value be "ub". Then the encoding of a character into "b" bits is the non-negative-binary-integer encoding of the value
"v" identified as follows:

a) if "ub" islessthan or equal to 2° — 1, then "v" is the value specified in above; otherwise

b) the characters are placed in the canonical order defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause
43. The first is assigned the value zero and the next in canonical order is assigned a value that is one
greater than the value assigned to the previous character in the canonical order. These are the values "v".

NOTE — Item &) above can never apply to a constrained or unconstrained Nuner i ¢St ri ng character, which always
encodes into four bits or less using b).

30.5.5 Theencoding of the entire character string shall be obtained by encoding each character (using an appropriate
value "v") as a non-negative-binary-integer into "b" bits which shall be concatenated to form a bit-field that is a
multiple of "b" bits.

30.5.6 If "aub" equals "ab" and is less than 64K, then the hit-field shall be added to the field-list as a field (octet-
aligned in the ALIGNED variant) if "aub" times"b" is greater than 16, but shall otherwise be added as a bit-field that is
not octet-aligned. This completes the procedures of this subclause.

30.5.7 If "aub" does not equal "ab" or is greater than or equal to 64K, then 11.9 shall be invoked to add the bit-field
preceded by alength determinant with "n" as a count of the characters in the character string with alower bound for the
length determinant of "alb" and an upper bound of "aub". The bit-field shall be added as a field (octet-aligned in the
ALIGNED variant) if "aub" times "b" is greater than or equal to 16, but shall otherwise be added as a bit-field that is
not octet-aligned. This completes the procedures of this subclause.

NOTE — Both 30.5.6 and 30.5.7 specify no alignment if "aub” times "b" is less than 16, and alignment if the product is greater
than 16. For avaue exactly equal to 16, 30.5.6 specifies no alignment and 30.5.7 specifies alignment.

30.6 This subclause applies to character strings that are not known-multiplier character strings. In this case,
constraints are never PER-visible, and the type can never be extensible for PER encoding.

30.6.1 For BASIC-PER, reference below to "base encoding” means production of the octet string specified in ITU-T
Rec. X.690 | ISO/IEC 8825-1, 8.23.5. For CANONICAL-PER it means the production of the same octet string subject
to the restrictions specified for CER and DER in ITU-T Rec. X.690 | ISO/IEC 8825-1, 11.4.

30.6.2 The"base encoding" shall be applied to the character string to give afield of "n" octets.

30.6.3 Subclause 11.9 shall be invoked to add the field of "n" octets as a bit-field (octet-aligned in the ALIGNED
variant), preceded by an unconstrained length determinant with "n" as a count in octets, completing the procedures of
this subclause.

31 Encoding the unrestricted character string type

311 There are two waysin which an unrestricted character string type can be encoded:

a) thesynt axes aternative of the unrestricted character string type is constrained with a PER-visible inner
type constraint to a single value or i dentification is constrained with a PER-visible inner type
congtraint to the fi xed aternative, in which case only the stri ng-val ue shall be encoded; this is
called the "predefined” case;

26 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

b) aninner type constraint is not employed to constrain the synt axes aternative to a single value, nor to
constrain i denti fication to the fi xed alternative, in which case both the i dentifi cati on and
st ri ng- val ue shall be encoded; thisis called the "genera" case.

31.2 For the "predefined" case, the encoding of the value of the CHARACTER STRI NG type shall be the PER-
encoding of a value of the OCTET STRI NGtype. The value of the OCTET STRI NG shall be the octets which form the
complete encoding of the character string value referenced in ITU-T Rec. X.680 | ISO/IEC 8824-1, 44.3 a).

313 In the "genera” case, the encoding of a value of the unrestricted character string type shall be the PER
encoding of the type defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 44.5, with the dat a- val ue- descri pt or
component removed (that is, there shall be no OPTI ONAL bit-map at the head of the encoding of the SEQUENCE). The
value of the st ri ng- val ue component of type OCTET STRI NG shall be the octets which form the complete encoding
of the character string value referenced in ITU-T Rec. X.680 | ISO/IEC 8824-1, 44.3 a).

32 Encoding thetime type, the useful timetypes, the defined time types and the
additional timetypes

32.1 General

32.1.1 The encoding of the useful time types, the defined time types and the additional time types shal be
determined by the property settings of the abstract values of these types. Property settings for the abstract values of the
useful and defined time types are specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 38.4 and Annex B, respectively.
Property settings for the abstract values of additional time types are determined by the property settings of the parent
type, restricted by any PER-visible constraints that apply (see 10.3.13).

32.1.2 If al the abstract values of the type to be encoded have one of the property settings listed in arow of column
2 of Table 2, then that type shall be encoded as if the type with its constraints (if any) had been replaced by the type
specified in the corresponding row of column 3 of Table 2. Otherwise, it shall be encoded as specified in 32.11.

NOTE - If atime property (for example M dni ght) is not listed in Table 2 for a particular row, there is no constraint on its
setting.

32.1.3 For rows 24 to 32 to be applicable, al abstract values of the type are required to have the same value of n
inFn.

3214 The types specified in column 3 of Table 2 are defined (using the ASN.1 notation) in 32.2 to 32.10, and are
assumed to be defined in an environment of AUTOMATI C TAGS.

NOTE 1 — The use of these type reference names in the specification of PER encodings does not make them available for use by
an application designer in an ASN.1 specification, nor are they reserved words in such a specification. However, with the
removal of - ENCODI NG, they correspond to the names of the useful time types or defined time types specified in

ITU-T Rec. X.680 | ISO/IEC 8824-1, 38.4 and Annex B.

NOTE 2 — All the useful and defined time types satisfy the conditions for one of the rows of Table 2, and hence have optimized
encodings. Additional time types may satisfy the conditions for one of the rows, but are otherwise encoded as specified in 32.11.
The unconstrained TI Ve type is dways encoded as specified in 32.11.

Table 2 — Encoding of atime subtype with all abstract values having specified property settings

nl?rr?\éver Property settings ASN.1typeto be encoded

"Basi c=Dat e Dat e=C Year =Basi c" CENTURY- ENCCODI NG
1 or (see32.2.1)

"Basi c=Dat e Dat e=C Year =Prol eptic"

"Basi c=Dat e Dat e=C Year =Negat i ve" ANY- CENTURY- ENCODI NG
2 or (see32.2.2)

"Basi c=Dat e Dat e=C Year =Ln" (for any n)

"Basi c=Dat e Dat e=Y Year =Basi c" YEAR- ENCCODI NG
3 or (see 32.2.3)

"Basi c=Dat e Dat e=Y Year=Prol eptic"

"Basi c=Dat e Dat e=Y Year =Negati ve" ANY- YEAR- ENCCDI NG
4 or (see32.2.4)

"Basi c=Dat e Date=Y Year=Ln" (for any n)

ITU-T Rec. X.691 (11/2008) 27

| SO/IEC 8825-2:2008 (E)

Table 2 — Encoding of atime subtype with all abstract values having specified property settings

nfn(w)\klaver Property settings ASN.1 type to be encoded

"Basi c=Dat e Dat e=YM Year =Basi c" YEAR- MONTH- ENCODI NG
5 or (see 32.2.5)

"Basi c=Dat e Dat e=YM Year =Prol eptic"

"Basi c=Dat e Dat e=YM Year =Negati ve" ANY- YEAR- MONTH- ENCCDI NG
6 or (see 32.2.6)

"Basi c=Dat e Dat e=YM Year =Ln" (for any n)

" Basi c=Dat e Dat e=YMD Year =Basi c" DATE- ENCODI NG
7 or (see32.2.7)

"Basi c=Dat e Dat e=YMD Year =Prol eptic"

"Basi c=Dat e Dat e=YMD Year =Negati ve" ANY- DATE- ENCCDI NG
8 or (see 32.2.8)

"Basi c=Dat e Dat e=YMD Year =Ln" (for any n)

"Basi c=Dat e Dat e=YD Year =Basi c" YEAR- DAY- ENCODI NG
9 or (see 32.2.9)

"Basi c=Dat e Dat e=YD Year =Prol eptic"

"Basi c=Dat e Dat e=YD Year =Negati ve" ANY- YEAR- DAY- ENCODI NG
10 or (see 32.2.10)

"Basi c=Dat e Dat e=YD Year =Ln" (for any n)

"Basi c=Dat e Dat e=YW Year =Basi c" YEAR- VEEEK- ENCCODI NG
11 or (see 32.2.11)

"Basi c=Dat e Dat e=YW Year =Prol epti c"

"Basi c=Dat e Dat e=YW Year =Negati ve" ANY- YEAR- EEEK- ENCODI NG
12 | or (see32.2.12)

"Basi c=Dat e Dat e=YW Year =Ln" (for any n)

"Basi c=Dat e Date=YWD Year =Basi c" YEAR- VEEK- DAY- ENCODI NG
13 o (see32.2.13)

"Basi c=Dat e Dat e=YWD Year =Prol eptic"

"Basi c=Dat e Dat e=YWD Year =Negati ve" ANY- YEAR- VEEEK- DAY- ENCCDI NG
14 or (see 32.2.14)

"Basi c=Dat e Dat e=YWD Year =Ln" (for any n)

"Basi c=Ti me Ti me=H Local - or - UTC=L" HOURS- ENCCODI NG
15 (see32.3.1)

"Basi c=Ti ne Ti me=H Local - or - UTC=Z" HOURS- UTC- ENCODI NG
16 (see32.3.2)

"Basi c=Ti me Ti me=H Local - or - UTC=LD" HOURS- AND- DI FF- ENCCDI NG
17 (see 32.3.3)

"Basi c=Ti me Ti me=HM Local - or - UTC=L" M NUTES- ENCCDI NG
18 (see 32.3.4)

"Basi c=Ti me Ti me=HM Local - or - UTC=Z" M NUTES- UTC- ENCODI NG
19 (see 32.3.5)

"Basi c=Ti ne Ti me=HM Local - or - UTC=LD" M NUTES- AND- DI FF- ENCODI NG
20 (see 32.3.6)

"Basi c=Ti me Ti me=HV5 Local - or - UTC=L" TI ME- OF- DAY- ENCODI NG
21 (see32.3.7)

"Basi c=Ti me Ti me=HV5 Local - or - UTC=Z" TI ME- OF- DAY- UTC- ENCODI NG
22 (see 32.3.8)

"Basi c=Ti ne Ti me=HMS Local - or - UTC=LD' Tl ME- OF- DAY- AND- DI FF- ENCODI NG
23 (see 32.3.9)

"Basi c=Ti me Ti me=HFn Local - or - UTC=L" HOURS- AND- FRACTI ON- ENCODI NG
24 (but see 32.1.3) (see 32.3.10)

28 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

Table 2 — Encoding of atime subtype with all abstract values having specified property settings

nfn(w)\klaver Property settings ASN.1 type to be encoded

"Basi c=Ti me Ti me=HFn Local - or - UTC=Z" HOURS- UTC- AND- FRACTI ON- ENCCDI NG
25 (but see 32.1.3) (see 32.3.11)

"Basi c=Ti me Ti me=HFn Local - or - UTC=LD" HOURS- AND- DI FF- AND- FRACTI ON- ENCODI NG
26 (but see 32.1.3) (see 32.3.12)

"Basi c=Ti me Ti me=HVFn Local - or - UTC=L" M NUTES- AND- FRACTI ON- ENCODI NG
27 (but see 32.1.3) (see 32.3.13)

"Basi c=Ti me Ti me=HVFn Local - or - UTC=Z" M NUTES- UTC- AND- FRACTI ON- ENCODI NG
28 (but see 32.1.3) (see 32.3.14)

"Basi c=Ti me Ti me=HVFn Local - or - UTC=LD' M NUTES- AND- DI FF- AND- FRACTI ON- ENCODI NG
29 (but see 32.1.3) (see 32.3.15)

"Basi c=Ti me Ti me=HVBFn Local - or - UTC=L" TI ME- OF- DAY- AND- FRACTI ON- ENCODI NG
30 (but see 32.1.3) (see 32.3.16)

"Basi c=Ti me Ti me=HVBFn Local - or - UTC=Z" TI ME- OF- DAY- UTC- AND- FRACTI ON- ENCODI NG
31 (but see 32.1.3) (see 32.3.17)

"Basi c=Ti ne Ti ne=HVBFn Local - or - UTC=LD" TI ME- OF- DAY- AND- DI FF- AND- FRACTI ON-
32 (but see 32.1.3) ENCODI NG

(see 32.3.18)

"Basi c=Dat e- Ti me" DATE- TI ME- ENCODI NG
33 All abstract values are required to have the same { Dat e- Type, Ti me- Type}

additional property settings specified in one of rows 7, 8, (instantiated as specified in 32.4.1)

9, 10, 13 and 14 for " Basi c=Dat e" together with the

same additional property settings specified in one of the

rows 15 to 32 for " Basi c=Ti ne".

"Basi c=lnterval I|nterval-type=SE START- END- DATE- | NTERVAL- ENCODI NG
34 SE- poi nt =Dat e" { Dat e- Type}

All abstract values are required to have the same (see325.1)

additional property settings specified in one of rows 1 to

14 for " Basi c=Dat e".

"Basi c=lnterval I|nterval-type=SE START- END- TI ME- | NTERVAL- ENCODI NG
35 SE- poi nt =Ti ne" {Ti me- Type}

All abstract values are required to have the same (see32.5.2)

additional property settings specified in one of rows 15

to 32 for " Basi c=Ti ne".

"Basi c=lnterval I|nterval-type=SE START- END- DATE- Tl ME- | NTERVAL- ENCODI NG
36 SE- poi nt =Dat e- Ti ne" {Dat e- Type, Ti ne-Type}

All abstract values are required to have the same (see32.5.3)

additional property settings specified in one of rows 7, 8,

9, 10, 13 and 14 for " Basi c=Dat e" together with the

same additional property settings specified in one of

rows 15to 32 for " Basi c=Ti ne".

"Basi c=l nterval |nterval-type=D" DURATI ON- | NTERVAL- ENCODI NG
37 (see32.6.1)

"Basi c=I nterval Interval-type=SD START- DATE- DURATI ON- | NTERVAL- ENCODI NG
38 | SE-poi nt =Dat e" {Date-Type}

All abstract values are required to have the same (see32.7.1)

additional property settings specified in one of rows 1 to

14 for " Basi c=Dat e" .

"Basi c=l nterval I|nterval-type=SD START- Tl ME- DURATI ON- | NTERVAL- ENCCDI NG
39 SE- poi nt =Ti me" { Ti me- Type}

All abstract values are required to have the same (see32.7.2)

additional property settings specified in one of rows 15

to 32 for " Basi c=Ti ne".

ITU-T Rec. X.691 (11/2008) 29

| SO/IEC 8825-2:2008 (E)

Table 2 — Encoding of atime subtype with all abstract values having specified property settings

Row .
number Property settings ASN.1 type to be encoded

"Basi c=Interval Interval-type=SD START- DATE- TI ME- DURATI ON-
40 SE- poi nt =Dat e- Ti ne" I NTERVAL- ENCCDI NG

All abstract values are required to have the same {Date-Type, Time-Type}

additional property settings specified in one of rows 7, 8, (see32.7.3)

9, 10, 13 and 14 for " Basi c=Dat e" together with the

same additional property settings specified in one of

rows 15 to 32 for " Basi c=Ti ne".

"Basi c=l nterval |nterval-type=DE DURATI ON- END- DATE- | NTERVAL- ENCODI NG
41 SE- poi nt =Dat e" { Dat e- Type}

All abstract values are required to have the same (see 32.7.4)

additional properties specified in one of rows 1 to 14 for

"Basi c=Dat e".

"Basic=Interval Interval-type=DE DURATI ON- END- TI ME- | NTERVAL - ENCODI NG
42 SE- poi nt =Ti nme" {Ti me- Type}

All abstract values are required to have the same (see 32.7.5)

additional properties specified in one of rows 15 to 32

for " Basi c=Ti ne".

"Basi c=l nterval |nterval-type=DE DURATI ON- END- DATE- Tl ME- | NTERVAL-
43 SE- poi nt =Dat e- Ti ne" ENCODI NG

All abstract values are required to have the same {Date-Type, Tine-Type}

additional properties specified in one of rows 7, 8, 9, 10, (see32.7.6)

13 and 14 for " Basi c=Dat e" together with the same

additional property settings specified in one of rows 15

to 32 for " Basi c=Ti ne".

"Basi c=Rec-Interval Interval-type=SE REC- START- END- DATE- | NTERVAL- ENCCDI NG
44 SE- poi nt =Dat e" { Dat e- Type}

All abstract values are required to have the same (see328.1)

additional property settings specified in one of rows 1 to

14 for " Basi c=Dat e" .

"Basi c=Rec-Interval Interval-type=SE REC- START- END- Tl ME- | NTERVAL- ENCODI NG
45 SE- poi nt =Ti me" {Ti me- Type}

All abstract values are required to have the same (see 32.8.2)

additional property settings specified in one of rows 15

to 32 for " Basi c=Ti ne".

"Basi c=Rec-Interval Interval-type=SE REC- START- END- DATE- Tl ME- | NTERVAL-
46 SE- poi nt =Dat e- Ti ne" ENCCDI NG

All abstract values are required to have the same {Date-Type, Time-Type}

additional property settings specified in one of rows 7, 8, (see32.8.3)

9, 10, 13 and 14 for " Basi c=Dat e" together with the

same additional property settings specified in one of

rows 15 to 32 for " Basi c=Ti ne".

"Basi c=Rec-Interval Interval-type=D' REC- DURATI ON- | NTERVAL- ENCCDI NG
47 (see 32.9.1)

"Basi c=Rec-Interval Interval-type=SD REC- START- DATE- DURATI ON- | NTERVAL -
48 SE- poi nt =Dat e" ENCODI NG

All abstract values are required to have the same { Dat e- Type}

additional property settings specified in one of rows 1 to (see32.10.1)

14 for " Basi c=Dat e".

"Basi c=Rec-Interval Interval-type=SD REC- START- Tl ME- DURATI ON- | NTERVAL-
49 SE- poi nt =Ti me" ENCODI NG

All abstract values are required to have the same {Ti me- Type}

additional property settings specified in one of rows 15 (see 32.10.2)

to 32 for " Basi c=Ti ne".

30 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

Table 2 — Encoding of atime subtype with all abstract values having specified property settings

Row .
number Property settings ASN.1 type to be encoded
"Basi c=Rec-Interval Interval-type=SD REC- START- DATE- TI ME- DURATI ON- | NTERVAL-
50 SE- poi nt =Dat e- Ti me" ENCODI NG
All abstract values are required to have the same {Date-Type, Time-Type}
additional property settings specified in one of rows 7, 8, (see 32.10.3)
9, 10, 13 and 14 for " Basi c=Dat e" together with the
same additional property settings specified in one of
rows 15 to 32 for " Basi c=Ti ne".
"Basi c=Rec-Interval Interval-type=DE REC- DURATI ON- END- DATE- | NTERVAL- ENCCODI NG
51 SE- poi nt =Dat e" { Dat e- Type}
All abstract values are required to have the same (see 32.10.4)
additional properties specified in one of rows 1 to 14 for
" Basi c=Dat e".
"Basi c=Rec-Interval Interval-type=DE REC- DURATI ON- END- Tl ME- | NTERVAL- ENCODI NG
52 SE- poi nt =Ti ne" {Ti me- Type}
All abstract values are required to have the same (see 32.10.5)
additional properties specified in one of rows 15 to 32
for " Basi c=Ti ne".
"Basi c=Rec-Interval Interval-type=DE REC- DURATI ON- END- DATE- TI ME- | NTERVAL-
53 SE- poi nt =Dat e- Ti me" ENCODI NG
All abstract values are required to have the same {Date-Type, Time-Type}
additional properties specified in one of rows 7, 8, 9, 10, (see 32.10.6)
13 and 14 for " Basi c=Dat e" together with the same
additional property settings specified in one of rows 15
to 32 for " Basi c=Ti ne".
32.2 Encoding subtypeswith the" Basi c=Dat e" property setting

This subclause defines the ASN.1 types referenced in Table 2, column 3 for types where al the abstract values of the
type have the " Basi c=Dat " property setting.

3221

The CENTURY- ENCODI NGtypeis:
CENTURY- ENCODI NG : : =

| NTEGER(0..99) -- 7 bits

with the integer value set to the value specified by the first two digits of the year component of the abstract value.

32.2.2

The ANY- CENTURY- ENCODI NG typeis:

ANY- CENTURY- ENCCODI NG : : = | NTEGER(M N. . VAX)

with the integer value set to the value specified by the year component of the abstract value, ignoring the last two digits.

32.2.3

The YEAR- ENCODI NGtypeis:

YEAR-ENCODING :: = CHOCE { -- 2 bits for choi ce determ nant

i medi at e I NTEGER (2005..2020), -- 4 bits
near-future I NTEGER (2021..2276), ~-- 8 bits
near - past | NTEGER (1749..2004), -- 8 bits
r emai nder I NTECER (M N.. 1748 | 2277..NMAX)}

with the integer value set to the year component of the abstract value.
NOTE — This has been optimized to provide a 6-bit or a 10-bit encoding in common cases.

32.2.4

The ANY- YEAR- ENCODI NGtypeis:
ANY- YEAR- ENCCDI NG : : = | NTEGER(M N. . MAX)

with the integer value set to the year component of the abstract value.

ITU-T Rec. X.691 (11/2008) 31

| SO/IEC 8825-2:2008 (E)

3225 The YEAR- MONTH ENCODI NGtypeis:

YEAR- MONTH- ENCCDI NG : : = SEQUENCE {
year YEAR- ENCODI NG,
nmont h I NTEGER (1..12) -- 4 bits -- }

with the YEAR- ENCODI NG set according to 32.2.3 and the nont h integer value set to the month component of the
abstract value.
NOTE — This has been optimized to provide a 10-bit or a 14-bit encoding in common cases.

32.26 The ANY- YEAR- MONTH- ENCODI NGtypeis:

ANY- YEAR- MONTH- ENCODI NG : : = SEQUENCE {
year ANY- YEAR- ENCODI NG,
nont h I NTEGER (1..12) }

with the ANY- YEAR- ENCODI NG set according to 32.2.4 and the nont h integer value set to the month component of the
abstract value.

32.2.7 The DATE- ENCODI NGtypeis:
DATE- ENCODI NG : : = SEQUENCE {

year YEAR- ENCCDI NG,
month INTEGER (1..12), -- 4 bits
day INTEGER (1..31) -- 5 bits -- }

with the YEAR- ENCODI NG set according to 32.2.3, the nont h integer value set to the month component of the abstract
value and the day integer value set to the day component of the abstract value.

NOTE — This has been optimized to provide a 15-bit or a 19-bit encoding in common cases.

32.2.8 The ANY- DATE- ENCODI NGtypeis:
ANY- DATE- ENCODI NG : : = SEQUENCE {

year ANY- YEAR- ENCODI NG,
nont h I NTEGER (1..12),
day I NTEGER (1..31)}

with the ANY- YEAR- ENCODI NG set according to 32.2.4, the nont h integer value set to the month component of the
abstract value and the day integer value set to the day component of the abstract value.

32.2.9 The YEAR- DAY- ENCODI NGtypeis:

YEAR- DAY- ENCODI NG : : = SEQUENCE {
year YEAR- ENCCDI NG,
day I NTEGER (1..366)}

with the YEAR- ENCODI NG set according to 32.2.3 and the day integer value set to the day component of the abstract
value.

32.2.10 The ANY- YEAR- DAY- ENCODI NGtypeis:

ANY- YEAR- DAY- ENCODI NG : : = SEQUENCE {
year ANY- YEAR- ENCODI NG,
day I NTEGER (1..366)}

with the ANY- YEAR- ENCODI NG set according to 32.2.4 and the day integer value set to the day component of the
abstract value.

32.2.11 The YEAR EEK- ENCODI NGtypeis:

YEAR- WEEK- ENCODI NG : : = SEQUENCE {
year YEAR- ENCCDI NG,
week I NTEGER (1..53) -- 6 bits --}

with the YEAR- ENCODI NG set according to 32.2.3 and the week integer value set to the week component of the abstract
value.
NOTE — This has been optimized to provide a 12-hit or a 16-bit encoding in common cases.

32.2.12 The ANY- YEAR- WEEK- ENCODI NGtypeis:
ANY- YEAR- WEEK- ENCCODI NG : : = SEQUENCE {

year ANY- YEAR- ENCCDI NG,
week I NTEGER (1..53)}

32 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)
with the ANY- YEAR- ENCODI NG set according to 32.2.4 and the week integer value set to the week component of the
abstract value.

32.2.13 The YEAR- WEEK- DAY- ENCCDI NGtypeis:
YEAR- WEEK- DAY- ENCODI NG : : = SEQUENCE {

year YEAR- ENCCDI NG,
week I NTEGER (1..53), -- 6 bits
day INTEGER (1..7) -- 3 bits -- }

with the YEAR- ENCODI NG set according to 32.2.3, the week integer value set to the week component of the abstract
value and the day integer value set to the day component of the abstract value.

NOTE — This has been optimized to provide a 15-bit or a 19-bit encoding in common cases.
32.2.14 The ANY- YEAR- WEEK- DAY- ENCCDI NGtypeis:
ANY- YEAR- EEK- DAY- ENCCODI NG : : = SEQUENCE {

year ANY- YEAR- ENCODI NG,
week I NTEGER (1..53),
day I NTEGER (1..7)}

with the ANY- YEAR- ENCODI NG set according to 32.2.4, the week integer value set to the week component of the
abstract value and the day integer value set to the day component of the abstract value.

32.3 Encoding subtypeswith the " Basi ¢c=Ti ne" property setting

This subclause defines the ASN.1 types referenced in Table 2, column 3 for types where al the abstract values of the
type have the Basi c=Ti me property setting.

3231 TheHOURS- ENCCDI NGtypeis:
HOURS- ENCODI NG : : = I NTEGER(O..24) -- 5 bits

with the integer value set to the hours component of the abstract value.
NOTE — This has been optimized to provide a 5-bit encoding.

32.3.2 TheHOURS- UTC- ENCODI NGtypeis:
HOURS- UTC- ENCODI NG :: = I NTEGER(O0..24) -- 5 bits

with the integer value set to the hours component of the abstract value.
NOTE — This has been optimized to provide a 5-bit encoding.

32.3.3 TheHOURS- AND- DI FF- ENCODI NGtypeis:

HOURS- AND- DI FF- ENCODI NG : : = SEQUENCE {
| ocal - hours I NTEGER (0. .24),
time-difference TIME- D FFERENCE }

where:
TI ME- DI FFERENCE : : = SEQUENCE {
sign ENUMERATED { positive, negative },
hour s I NTEGER (0. . 15),

m nutes | NTEGER (1..59) OPTIONAL }

with the | ocal - hours integer value set to the hours component of the local time of the abstract value and the
ti me-di fference set to the sign, hours and minutes of the time-difference component of the abstract value. If the
minutes component of the time-difference is zero, the TI ME- DI FFERENCE ni nut es shall be omitted.

32.3.4 TheM NUTES- ENCODI NGtypeis:

M NUTES- ENCODI NG : : = SEQUENCE {
hour s I NTEGER (0..24), -- 5 bits
mnutes | NTEGER (0..59) -- 5 bits -- }

with the hour s integer value set to the hours component of the abstract value and the i nut es integer value set to the
minutes component.

NOTE — This has been optimized to provide a 10-bit encoding.

ITU-T Rec. X.691 (11/2008) 33

| SO/IEC 8825-2:2008 (E)

32.35 TheM NUTES- UTC- ENCCDI NGtypeis:

M NUTES- UTC- ENCODI NG : : = SEQUENCE {
hour s I NTEGER (0..24), -- 5 bits
mnutes | NTEGER (0..59) -- 5 bits -- }

with the hour s integer value set to the hours component of the abstract value and the ni nut es integer value set to the
minutes component.
NOTE — This has been optimized to provide a 10-bit encoding.

32.3.6 TheM NUTES- AND- DI FF- ENCODI NGtypeis:

M NUTES- AND- DI FF- ENCODI NG : : = SEQUENCE {
| ocal -tinme SEQUENCE {
hour s I NTEGER (0. . 24),
m nutes | NTEGER (0..59) },
time-difference Tl Me- Dl FFERENCE }

with the | ocal -ti ne set to the hours and minutes component of the local time of the abstract value and the ti me-
di f f er ence set to the sign, hours and minutes of the time-difference component of the abstract value as specified in
32.3.3.

32.3.7 TheTl ME- OF- DAY- ENCODI NGtypeis:

Tl ME- OF- DAY- ENCODI NG : : = SEQUENCE {
hours | NTEGER (0..24), -- 5 bits
m nutes | NTEGER (0..59), -- 5 bits
seconds | NTEGER (0..60) -- 5 bits -- }

with the hour s integer value set to the hours component of the abstract value, the ni nut es integer value set to the
minutes component, and the seconds integer value set to the seconds component.

NOTE — This has been optimized to provide a 15-bit encoding.

32.3.8 The Tl ME- OF- DAY- UTG- ENCODI NGtypeis:

TI ME- OF- DAY- UTC- ENCCDI NG : : = SEQUENCE {
hour s I NTEGER (0..24), -- 5 bits
m nutes | NTEGER (0..59), -- 5 bits
seconds | NTEGER (0..60) -- 5 bits -- }

with the hour s integer value set to the hours component of the abstract value, the ni nut es integer value set to the
minutes component, and the seconds integer value set to the seconds component.

NOTE — This has been optimized to provide a 15-bit encoding.
32.3.9 TheTl ME- OF- DAY- AND- DI FF- ENCODI NGtypeis:

Tl ME- OF- DAY- AND- DI FF- ENCODI NG : : = SEQUENCE {
local -time SEQUENCE {
hours | NTEGER (0. . 24),
m nutes | NTEGER (0..59),
seconds | NTEGER (0..60) },
time-difference TI M- D FFERENCE }

with thel ocal -t i me set to the hours, minutes and seconds components of the local time of the abstract value and the
time-difference set to the sign, hours and minutes of the time-difference component of the abstract value as
specified in 32.3.3.

32.3.10 The HOURS- AND- FRACTI ON- ENCODI NGtypeis:

HOURS- AND- FRACTI ON- ENCODI NG : : = SEQUENCE {
hour s I NTEGER (0..24), -- 5 bits
fraction I NTEGER (0..999, ..., 1000..MNAX)
-- 11 bits for up to three digits accuracy -- }

with the hour s integer value set to the hours component of the abstract value and thef r act i on integer value set to the
fractional hours multiplied by ten-to-the-power-N, where N is the specified number of digitsin the fractional part.

NOTE — This has been optimized to provide a 16-bit encoding for up to 3-digit accuracy.

34 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

32.3.11 The HOURS- UTC- AND- FRACTI ON- ENCODI NGtypeis:

HOURS- UTC- AND- FRACTI ON- ENCODI NG : : = SEQUENCE {
hour s I NTEGER (0..24), -- 5 bits
fraction I NTEGER (0..999, ..., 1000..MNAX)
-- 11 bits for up to three digits accuracy -- }

with the hour s integer value set to the hours component of the abstract value and thef r act i on integer value set to the
fractional hours multiplied by ten-to-the-power-N, where N is the specified number of digitsin the fractional part.
NOTE — This has been optimized to provide a 16-hit encoding for up to 3-digit accuracy.

32.3.12 The HOURS- AND- DI FF- AND- FRACTI ON- ENCODI NGtypeis:

HOURS- AND- DI FF- AND- FRACTI ON- ENCCDI NG : : = SEQUENCE {
| ocal -hours I NTEGER (0..24), -- 5 bits
fraction I NTEGER (0..999, ..., 1000..MNAX)
-- 11 bits for up to three digits accuracy -- ,
time-difference TI M- D FFERENCE }

with the | ocal - hour s integer value set to the hours component of the local time of the abstract value, the f r act i on
integer value set to the fractional hours multiplied by ten-to-the-power-N (where N is the specified number of digitsin
the fractional part) and theti me- di f f er ence set to the sign, hours and minutes of the time-difference component of
the abstract value as specified in 32.3.3.

32.3.13 TheM NUTES- AND- FRACTI ON- ENCODI NGtypeis:
M NUTES- AND- FRACTI ON- ENCODI NG : : = SEQUENCE {

hour s I NTEGER (0..24), -- 5 bits
m nutes | NTEGER (0..59), -- 5 bits
fraction | NTEGER (0..999, ..., 1000..MAX)

-- 11 bits for up to three digits accuracy -- }

with the hour s integer value set to the hours component of the abstract value, the ni nut es integer value set to the
minutes component and the f r act i on integer value set to the fractional hours multiplied by ten-to-the-power-N, where
N isthe specified number of digitsin the fractional part.

NOTE — This has been optimized to provide a 21-bit encoding for up to 3-digit accuracy.

32.3.14 TheM NUTES- UTC- AND- FRACTI ON- ENCODI NGtypeis:
M NUTES- UTC- AND- FRACTI ON- ENCODI NG : : = SEQUENCE {

hour s I NTEGER (0..24), -- 5 bits
m nutes | NTEGER (0..59), -- 5 bits
fraction | NTEGER (0..999, ..., 1000..MAX)

-- 11 bits for up to three digits accuracy -- }

with the hour s integer value set to the hours component of the abstract value, the ni nut es integer value set to the
minutes component and the f r act i on integer value set to the fractional hours multiplied by ten-to-the-power-N (where
N isthe specified number of digitsin the fractional part).

NOTE — This has been optimized to provide a 21-bit encoding for up to 3-digit accuracy.

32.3.15 TheM NUTES- AND- DI FF- AND- FRACTI ON- ENCCDI NGtypeis:

M NUTES- AND- DI FF- AND- FRACTI ON- ENCODI NG : : = SEQUENCE {
| ocal -time SEQUENCE {

hour s I NTEGER (0. . 24),
m nutes | NTEGER (0. .59),
fraction | NTEGER (0..999, ..., 1000..MAX)},

time-difference TIMe- Dl FFERENCE }

with the | ocal -ti ne set to the hours and minutes component of the local time of the abstract value, the fracti on
integer value set to the fractional minutes multiplied by ten-to-the-power-N (where N is the specified number of digits
in the fractional part) and the ti me- di f f er ence set to the sign, hours and minutes of the time-difference component
of the abstract value as specified in 32.3.3.

32.3.16 The Tl ME- OF- DAY- AND- FRACTI ON- ENCODI NGtypeis:
TI ME- OF- DAY- AND- FRACTI ON- ENCCDI NG : : = SEQUENCE {

hour s I NTEGER (0..24), -- 5 bits

m nut es I NTEGER (0..59), -- 5 bits
seconds I NTEGER (0..60), -- 5 bits --
fraction I NTEGER (0..999, ..., 1000..NMAX)

ITU-T Rec. X.691 (11/2008) 35

| SO/IEC 8825-2:2008 (E)

-- 11 bits for up to three digits accuracy -- }

with the hour s integer value set to the hours component of the abstract value, the ni nut es integer value set to the

minutes component, the seconds integer value set to the seconds component and f r act i on integer value set to the

fractional seconds multiplied by ten-to-the-power-N, where N is the specified number of digitsin the fractional part.
NOTE — This has been optimized to provide a 26-bit encoding.

32.3.17 TheTI Me- OF- DAY- UTC- AND- FRACTI ON- ENCODI NGtypeis:
TI ME- OF- DAY- UTC- AND- FRACTI ON- ENCCDI NG : : = SEQUENCE {

hour s I NTEGER (0..24), -- 5 bits
mnutes | NTEGER (0..59), -- 5 bits
seconds | NTEGER (0..60), -- 5 bits --
fracti on I NTEGER (0..999, ..., 1000..MAX)

-- 11 bits for up to three digits accuracy -- }

with the hour s integer value set to the hours component of the abstract value, the ni nut es integer value set to the

minutes component, the seconds integer value set to the seconds component and f r act i on integer value set to the

fractional seconds multiplied by ten-to-the-power-N, where N is the specified number of digitsin the fractional part.
NOTE — This has been optimized to provide a 26-hit encoding.

32.3.18 The Tl ME- OF- DAY- AND- DI FF- AND- FRACTI ON- ENCODI NGtypeis:

TI ME- OF- DAY- AND- DI FF- AND- FRACTI ON- ENCODI NG : : = SEQUENCE {
local -time SEQUENCE {
hours | NTEGER (0. . 24),
m nutes | NTEGER (0..59),
seconds | NTEGER (0. . 60),
fraction I NTEGER (0..999, ..., 1000..MAX)},
time-difference TI M- D FFERENCE }

with thel ocal - ti ne set to the hours, minutes, seconds and fractional part components of the local time of the abstract
value and the t i me- di f f er ence set to the sign, hours and minutes of the time-difference component of the abstract
value as specified in 32.3.3.

324 Encoding subtypeswith the " Basi c=Dat e- Ti ne" property setting

This subclause defines the ASN.1 type referenced in Table 2, column 3 for types where al the abstract values of the
type have the " Basi c=Dat e- Ti me" property setting.

324.1 The DATE- Tl ME- ENCODI NGtypeis:
DATE- TI ME- ENCODI NG { Dat e- Type, Ti me-Type} ::= SEQUENCE {
date Dat e- Type,
tinme Ti me- Type}
32.4.2 The encoding shall be the encoding of an instantiation of this type with the Dat e- Type and Ti me- Type

actual parameters set to the types specified in Table 2 column 3 of the "Basi c=Dat e" and " Basi c=Ti me" rows
(respectively) that specify the additional property settings of al the abstract values of the type.
NOTE — This has been optimized to provide a 32-bit encoding in common cases.

325 Encoding subtypeswith the" Basi c=I nt erval | nterval -type=SE" property setting

This subclause defines the ASN.1 types referenced in Table 2, column 3 for types where al the abstract values of the
type havethe" Basi c=I nterval | nterval -type=SE" property setting.

325.1 The START- END- DATE- | NTERVAL- ENCCDI NGtypeis:

START- END- DATE- | NTERVAL- ENCCDI NG { Dat e- Type} ::= SEQUENCE {
start Dat e- Type,
end Dat e- Type}

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Dat e" row that specifies the additional property settings of al the
abstract values of the type. The st art component shall be set to the start date and the end component shall be set to the
end date of theinterval.

36 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

325.2 The START- END- TI ME- | NTERVAL- ENCCDI NGtypeis:

START- END- TI ME- | NTERVAL- ENCCODI NG { Ti me- Type} ::= SEQUENCE {
start Ti me- Type,
end Ti me- Type}

and the encoding shall be the encoding of an instantiation of this type with the Ti me- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Ti ne" row that specifies the additional property settings of al the
abstract values of the type. The st art component shall be set to the start time and the end component shall be set to
the end time of theinterval.

3253 The START- END- DATE- T ME- | NTERVAL- ENCODI NGtypeis:
START- END- DATE- TI ME- | NTERVAL- ENCCDI NG { Dat e- Type, Ti ne- Type} ::=

SEQUENCE {
start DATE- Tl ME- ENCODI NG { Dat e- Type, Ti ne- Type},
end DATE- TI ME- ENCODI NG { Dat e- Type, Ti me- Type}}

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type and Ti ne- Type actual
parameters set to the types specified in Table 2 column 3 of the "Basi c=Date" and "Basi c=Ti me" rows
(respectively) that specify the additional property settings of al the abstract values of the type. The st art component
shall be set (as specified in 32.4) to the start date-time and the end component shall be set to the end date-time of the
interval.

32.6 Encoding subtypeswith the" Basi c=I nterval | nterval -type=D' property setting

This subclause defines the ASN.1 type referenced in Table 2, column 3 for types where al the abstract values of the
type havethe" Basi c=I nterval I nterval -type=D" property setting.

32.6.1 The DURATI ON- | NTERVAL- ENCODI NGtypeis:
DURATI ON- | NTERVAL- ENCODI NG : : = SEQUENCE { -- 8 bits for optionality

years I NTEGER (0..31, ..., 32..MAX) OPTI ONAL,
-- 5 bits for up to 31 years
nont hs I NTEGER (0..15, ..., 16..MAX) OPTI ONAL,
-- 4 bits for up to 15 nonths
weeks I NTEGER (0..63, ..., 64..MAX) OPTI ONAL,
-- 6 bits for up to 63 weeks
days I NTEGER (0..31, ..., 32..MAX) OPTI ONAL,
-- 5 bits for up to 31 days
hour s I NTEGER (0..31, ..., 32..MAX) OPTI ONAL,
-- 5 bits for up to 31 hours
m nut es I NTEGER (0..63, ..., 64..MX) OPTI ONAL,
-- 6 bits for up to 63 mnutes
seconds I NTEGER (0..63, ..., 64..NMAX) OPTI ONAL,

-- 6 bits for up to 63 seconds
fractional -part SEQUENCE {

nunber-of -digits INTEGER(1..3, ..., 4..MX),
-- 3 bits for up to three digits accuracy
fractional -value I NTEGER(1..999, ..., 1000..MAX)
-- 11 bits for up to three digits accuracy
} OPTI ONAL }

32.6.2 The weeks component shall be present if, and only if, the years, nont hs, days, hours, ni nutes, and
seconds components are all absent.

NOTE - Thisreflects restrictions that are present for the use of time elements in the definition of the DURATI ON abstract value.

32.6.3 If atime element component of the abstract value is zero, and does not have a fractional part, then the
corresponding component of DURATI ON-I NTERVAL-ENCODI NG shall be absent unless this time element is the least
significant time element in the abstract value. If atime element of the abstract value has the value zero, and is the least
significant time element in the abstract value, or has a fractional part, then the corresponding component shall be
present in DURATI ON-1 NTERVAL-ENCCODI NG with the value zero.

NOTE — This ensures that the encoding is canonical.

32.6.4 Thefractional-part of DURATI ON-l NTERVAL-ENCODI NG shall be absent if there is no fractional part of
any time element, otherwise it shall be set to the fractional part (of the least significant time element) as specified in
32.6.5.

ITU-T Rec. X.691 (11/2008) 37

| SO/IEC 8825-2:2008 (E)

32.6.5 The number of digitsin the fractional part shall be placed in nunber -of -di gi t s. If the number of digitsis N,
then the value of the fractional part shall be multiplied by ten-to-the-power-N and the resulting integer value placed in
fractional -val ue.

NOTE 1 — Decoders can recover the original fractional part from these encodings, including any trailing zeros.

NOTE 2 — This encoding has been optimized for the cases where there are only a few non-zero time elements in the abstract
value, and where the values of the time elements are small. Encodings of less than 16 bits occur in simple cases.

32.7 Encoding subtypeswith the" Basi c=I nterval | nterval -type=SD' or " Basi c=I nt er val
I nterval -type=DE" property setting

This subclause defines the ASN.1 types referenced in Table 2, column 3 for types where al the abstract values of the
type havethe" Basi c=I nterval Interval -type=SD' or "Basi c=I nterval | nterval -type=DE" property setting.

32.7.1 The START- DATE- DURATI ON- | NTERVAL- ENCODI NGtypeis:

START- DATE- DURATI ON- | NTERVAL- ENCCDI NG { Dat e- Type} ::= SEQUENCE {
start Dat e- Type,
duration DURATI ON- | NTERVAL- ENCODI NG

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Dat e" row that specifies the additional property settings of all the
abstract values of the type. The st art component shall be set to the start date and the dur at i on component shall be
set (as specified in 32.6) to the duration of the interval.

32.7.2 The START- TI ME- DURATI ON- | NTERVAL- ENCODI NGtypeis:

START- Tl ME- DURATI ON- | NTERVAL- ENCODI NG { Ti me- Type} ::= SEQUENCE {
start Ti me- Type,
dur ati on DURATI ON- | NTERVAL- ENCODI NG }

and the encoding shall be the encoding of an instantiation of this type with the Ti me- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Ti me" row that specifies the additional property settings of all the
abstract values of the type. The st art component shall be set to the start time and the dur at i on component shall be
set (as specified in 32.6) to the duration of the interval.

32.7.3 The START- DATE- Tl ME- DURATI ON- | NTERVAL- ENCODI NGtypeis:
START- DATE- TI ME- DURATI ON- | NTERVAL- ENCODI NG { Dat e- Type, Ti me-Type} ::=
SEQUENCE {
start DATE- TI ME- ENCODI NG { Dat e- Type, Ti me-Type},
dur ati on DURATI ON- | NTERVAL- ENCODI NG }

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type and Ti ne- Type actual
parameters set to the types specified in Table 2 column 3 of the "Basi c=Date" and "Basic=Ti me" rows
(respectively) that specify the additional property settings of al the abstract values of the type. The st art component
shall be set (as specified in 32.4) to the start date-time and the dur at i on component shall be set (as specified in 32.6)
to the duration of the interval.

32.7.4 The DURATI ON- END- DATE- | NTERVAL- ENCODI NGtypeis:

DURATI ON- END- DATE- | NTERVAL - ENCODI NG { Dat e- Type} ::= SEQUENCE {
dur at i on DURATI ON- | NTERVAL- ENCCDI NG,
end Dat e- Type }

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Dat e" row that specifies the additional property settings of all the
abstract values of the type. The dur at i on component shall be set (as specified in 32.6) to the duration of the interval
and the end component shall be set to the end date.

32.75 The DURATI ON- END- Tl ME- | NTERVAL- ENCODI NGtypeis:

DURATI ON- END- Tl ME- | NTERVAL- ENCODI NG { Ti me- Type} ::= SEQUENCE {
dur ati on DURATI ON- | NTERVAL- ENCODI NG,
end Ti me- Type }

and the encoding shall be the encoding of an instantiation of this type with the Ti me- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Ti me" row that specifies the additional property settings of all the
abstract values of the type. The dur at i on component shall be set (as specified in 32.6) to the duration of the interval
and the end component shall be set to the end time.

38 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

32.7.6 The DURATI ON- END- DATE- TI ME- | NTERVAL- ENCCDI NGtypeis:

DURATI ON- END- DATE- Tl ME- | NTERVAL- ENCODI NG { Dat e- Type, Ti me- Type} ::= SEQUENCE {
dur ati on DURATI ON- | NTERVAL- ENCODI NG,
end DATE- TI ME- ENCODI NG { Dat e- Type, Ti me- Type}}

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type and Ti ne- Type actual
parameters set to the types specified in Table 2 column 3 of the "Basi c=Date" and "Basic=Ti me" rows
(respectively) that specify the additional property settings of all the abstract values of the type. The duration
component shall be set (as specified in 32.6) to the duration of the interval and the end component shall be set (as
specified in 32.4) to the end date-time.

32.8 Encoding subtypeswith the" Basi c=Rec- I nterval | nterval -type=SE" property setting

This subclause defines the ASN.1 types referenced in Table 2, column 3 for types where al the abstract values of the
type have the" Basi c=Rec- I nt erval | nterval -type=SE" property setting.

32.8.1 TheREC START- END- DATE- | NTERVAL- ENCCDI NGtypeis:

REC- START- END- DATE- | NTERVAL- ENCODI NG { Dat e- Type} ::= SEQUENCE {
recurrence | NTEGER OPTI ONAL,
start Dat e- Type,
end Dat e- Type}

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Dat e" row that specifies the additional property settings of all the
abstract values of the type. Ther ecur r ence component shall be absent for an unlimited number of recurrences in the
abstract value, and shall otherwise be set to the number of recurrences. The st art component shall be set to the start
date and the end component shall be set to the end date of the interval.

32.8.2 TheREC START- END- TI ME- | NTERVAL- ENCODI NGtypeis:

REC- START- END- TI ME- | NTERVAL- ENCODI NG { Ti ne- Type} ::= SEQUENCE {
recurrence | NTEGER OPTI ONAL,
start Ti me- Type,
end Ti me- Type}

and the encoding shall be the encoding of an instantiation of this type with the Ti me- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Ti me" row that specifies the additional property settings of all the
abstract values of the type. Ther ecur r ence component shall be absent for an unlimited number of recurrences in the
abstract value, and shall otherwise be set to the number of recurrences. The st art component shall be set to the start
time and the end component shall be set to the end time of the interval.

32.8.3 TheREC START- END- DATE- TI ME- | NTERVAL- ENCODI NGtypeis:
REC- START- END- DATE- Tl ME- | NTERVAL- ENCODI NG { Dat e- Type, Ti me- Type} :: =

SEQUENCE {
recurrence | NTEGER OPTI ONAL,
start DATE- TI ME- ENCODI NG { Dat e- Type, Ti ne- Type},
end DATE- TI ME- ENCODI NG { Dat e- Type, Ti me- Type}}

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type and Ti ne- Type actual
parameters set to the types specified in Table 2 column 3 of the "Basi c=Date" and "Basi c=Ti me" rows
(respectively) that specify the additional property settings of al the abstract values of the type. The recurrence
component shall be absent for an unlimited number of recurrences in the abstract value, and shall otherwise be set to
the number of recurrences. The st art component shall be set (as specified in 32.4) to the start date-time and the end
component shall be set to the end date-time of the recurring interval.

32.9 Encoding subtypeswith the" Basi c=Rec- I nterval | nterval -type=D' property setting

This subclause defines the ASN.1 type referenced in Table 2, column 3 for types where all the abstract values of the
type havethe" Basi c=Rec- I nt erval | nterval -type=D' property setting.

32.9.1 The REC DURATI ON- | NTERVAL- ENCODI NGtypeis:

REC- DURATI ON- | NTERVAL- ENCODI NG : : = SEQUENCE {
recurrence | NTEGER OPTI ONAL,
dur at i on DURATI ON- | NTERVAL- ENCCDI NG}

ITU-T Rec. X.691 (11/2008) 39

| SO/IEC 8825-2:2008 (E)

32.9.2 Therecurrence component shall be absent for an unlimited number of recurrences in the abstract value, and
shall otherwise be set to the number of recurrences. The dur at i on component shall be set (as specified in 32.6) to the
duration of the recurring interval.

32.10 Encoding subtypeswith the" Basi c=Rec- I nterval Interval-type=SD' or
"Basi c=Rec- I nterval Interval-type=DE" property setting

This subclause defines the ASN.1 types referenced in Table 2, column 3 for types where al the abstract values of the
type have the "Basic=Rec-Interval Interval-type=SD' or "Basi c=Rec-Interval Interval-type=DE"
property setting.

32.10.1 The REC START- DATE- DURATI ON- | NTERVAL- ENCODI NGtypeis:

REC- START- DATE- DURATI ON- | NTERVAL- ENCODI NG { Dat e- Type} ::= SEQUENCE {
recurrence | NTEGER OPTI ONAL,
start Dat e- Type,
duration DURATI ON- | NTERVAL- ENCODI NG

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Dat e" row that specifies the additional property settings of all the
abstract values of the type. Ther ecur r ence component shall be absent for an unlimited number of recurrences in the
abstract value, and shall otherwise be set to the number of recurrences. The st art component shall be set to the start
date and the dur at i on component shall be set (as specified in 32.6) to the duration of the interval.

32.10.2 The REC- START- TI ME- DURATI ON- | NTERVAL- ENCODI NGtypeis:

REC- START- Tl ME- DURATI ON- | NTERVAL- ENCODI NG { Ti me- Type} ::= SEQUENCE {
recurrence | NTEGER OPTI ONAL,
start Ti ne- Type,
duration DURATI ON- | NTERVAL- ENCODI NG '}

and the encoding shall be the encoding of an instantiation of this type with the Ti me- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Ti me" row that specifies the additional property settings of all the
abstract values of the type. Ther ecur r ence component shall be absent for an unlimited number of recurrences in the
abstract value, and shall otherwise be set to the number of recurrences. The st art component shall be set to the start
time and the dur at i on component shall be set (as specified in 32.6) to the duration of the interval.

32.10.3 The REC START- DATE- TI ME- DURATI ON- | NTERVAL - ENCODI NGtypeis:

REC- START- DATE- Tl ME- DURATI ON- | NTERVAL- ENCODI NG { Dat e- Type, Ti ne-Type} ::= SEQUENCE

{
recurrence | NTEGER OPTI ONAL,

start DATE- TI ME- ENCODI NG { Dat e- Type, Ti me- Type},
dur ati on DURATI ON- | NTERVAL- ENCODI NG }

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type and Ti ne- Type actual
parameters set to the types specified in Table 2 column 3 of the "Basi c=Date" and "Basic=Ti me" rows
(respectively) that specify the additional property settings of al the abstract values of the type. The recurrence
component shall be absent for an unlimited number of recurrences in the abstract value, and shall otherwise be set to
the number of recurrences. The st art component shall be set (as specified in 32.4) to the start date-time and the
dur at i on component shall be set (as specified in 32.6) to the duration of the recurring interval.

32.10.4 The REC- DURATI ON- END- DATE- | NTERVAL- ENCODI NGtypeis:

REC- DURATI ON- END- DATE- | NTERVAL- ENCODI NG { Dat e- Type} ::= SEQUENCE ({
recurrence | NTEGER OPTI ONAL,
duration DURATI ON- | NTERVAL- ENCODI NG,
end Dat e- Type }

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Dat e" row that specifies the additional property settings of al the
abstract values of the type. Ther ecur r ence component shall be absent for an unlimited number of recurrences in the
abstract value, and shall otherwise be set to the number of recurrences. The dur ati on component shall be set (as
specified in 32.6) to the duration of the interval and the end component shall be set to the end date.

40 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

32.10.5 The REC- DURATI ON- END- TI ME- | NTERVAL- ENCODI NGtypeis:

REC- DURATI ON- END- TI ME- | NTERVAL- ENCODI NG { Ti ne- Type} ::= SEQUENCE {
recurrence | NTEGER OPTI ONAL,
dur at i on DURATI ON- | NTERVAL- ENCODI NG,
end Ti ne- Type }

and the encoding shall be the encoding of an instantiation of this type with the Ti me- Type actual parameter set to the
type specified in Table 2 column 3 of the " Basi c=Ti me" row that specifies the additional property settings of all the
abstract values of the type. Ther ecur r ence component shall be absent for an unlimited number of recurrencesin the
abstract value, and shall otherwise be set to the number of recurrences. The dur ati on component shall be set (as
specified in 32.6) to the duration of the interval and the end component shall be set to the end time.

32.10.6 The REC- DURATI ON- END- DATE- TI ME- | NTERVAL- ENCCDI NGtypeis:

REC- DURATI ON- END- DATE- Tl ME- | NTERVAL- ENCCDI NG { Dat e- Type, Ti me-Type} ::= SEQUENCE {
recurrence | NTEGER OPTI ONAL,
duration DURATI ON- | NTERVAL- ENCODI NG,
end DATE- TI ME- ENCODI NG { Dat e- Type, Ti me- Type}}

and the encoding shall be the encoding of an instantiation of this type with the Dat e- Type and Ti ne- Type actual
parameters set to the types specified in Table 2 column 3 of the "Basi c=Date" and "Basic=Ti me" rows
(respectively) that specify the additional property settings of all the abstract values of the type. The recurrence
component shall be absent for an unlimited number of recurrences in the abstract value, and shall otherwise be set to
the number of recurrences. The dur at i on component shall be set (as specified in 32.6) to the duration of the interval
and the end component shall be set (as specified in 32.4) to the end date-time.

32.11 Encoding subtypeswith mixed settings of the Basi ¢ property

This subclause specifies the encoding for the Tl ME type and subsets of that type whose abstract values do not all have
the same setting of the Basi ¢ property or for which there is no applicable row in Table 2 (for example, because of the
use of multiple accuracies — see 32.1.3). It defines and uses the types DATE- TYPE, Tl ME- TYPE, and M XED- ENCODI NG
(see 32.11.5t0 32.11.7). These types are defined using the ASN. 1 types defined in earlier subclauses.

32.11.1 For al abstract values of the TI ME type, there is exactly one row of Table 2 for which the property settings
specified in column 2 match the property settings of the abstract value, for al of those property settings that are listed in
column 2. (The abstract value may have additiona property settings not listed in column 2.) This is called the main
determining row.

32.11.2 If the main determining row isrow 33, 34, 36, 38, 40, 41, 43, 44, 46, 48, 50, 51, or 53, there is a requirement
that the additional properties match those specified in one of rows 1 to 14. The applicable row 1 to 14 is called the date
determining row.

32.11.3 If the main determining row is row 33, 35, 36, 39, 40, 42, 43 45, 46, 49, 50, 52 or 53, there is a requirement
that the additional properties match those specified in one of rows 15 to 32. The applicable row 15 to 32 is called the
time determining row.

32.11.4 Inthe DATE- TYPE, TI ME- TYPE and M XED- ENCODI NG type, the r ow n aternative shall be selected if the date
determining row, the time determining row, or the main determining row (respectively) isrow n.

32.11.5 Theencoding of the abstract value shall be the encoding of the M XED- ENCODI NG type:
M XED- ENCODI NG : : = CHA CE {

row 1 CENTURY- ENCODI NG,

row 2 ANY- CENTURY- ENCODI NG,
row 3 YEAR- ENCODI NG,

row 4 ANY- YEAR- ENCODI NG,

row5 YEAR- MONTH- ENCODI NG,

row 6 ANY- YEAR- MONTH- ENCODI NG,
row 7 DATE- ENCODI NG,

row 8 ANY- DATE- ENCCODI NG,

row 9 YEAR- DAY- ENCODI NG,

row 10 ANY- YEAR- DAY- ENCODI NG,
row 11 YEAR- EEEK- ENCODI NG,

row 12 ANY- YEAR- VEEK- ENCCDI NG,
row 13 YEAR- VEEK- DAY- ENCCODI NG,
row 14 ANY- YEAR- WEEK- DAY- ENCODI NG,
row 15 HOURS- ENCODI NG,

row 16 HOURS- UTC- ENCODI NG,

ITU-T Rec. X.691 (11/2008) 41

| SO/IEC 8825-2:2008 (E)

row 17
row 18
row 19
row 20
row 21
row 22
row 23
row 24
row 25
row 26
row 27
row 28
row 29
row 30
row 31
row 32
row 33
row 34
row 35
row 36
row 37
row 38
row 39
row 40
row 41
row 42
row 43
row 44
row 45
row 46
row 47
row 48
row 49
row 50

row 51
row 52
row 53

HOURS- AND- DI FF- ENCODI NG,

M NUTES- ENCODI NG,

M NUTES- UTC- ENCODI NG,

M NUTES- AND- DI FF- ENCCDI NG,

TI ME- OF- DAY- ENCCDI NG,

TI ME- OF- DAY- UTC- ENCODI NG,

TI ME- OF- DAY- AND- Di FF- ENCODI NG,

FRACTI ONAL- Tl ME{ HOURS- AND- FRACTI ON- ENCCDI NG,

FRACTI ONAL- Tl ME{ HOURS- UTC- AND- FRACTI ON- ENCODI NG},

FRACTI ONAL- Tl ME{ HOURS- AND- DI FF- AND- FRACTI ON- ENCODI NG},

FRACTI ONAL- TI ME{ M NUTES- AND- FRACTI ON- ENCODI NG} ,

FRACTI ONAL- TI ME{ M NUTES- UTC- AND- FRACTI ON- ENCODI NG},

FRACTI ONAL- TI ME{ M NUTES- AND- DI FF- AND- FRACTI ON- ENCCDI NG},
FRACTI ONAL- TI ME{ TI ME- OF- DAY- AND- FRACTI ON- ENCODI NG},

FRACTI ONAL- TI ME{ TI ME- OF- DAY- UTC- AND- FRACTI ON- ENCODI NG}

FRACTI ONAL- TI ME{ TI ME- OF- DAY- AND- Di FF- AND- FRACTI ON- ENCODI NG}
DATE- TI ME- ENCODI NG { DATE- TYPE, TI ME- TYPE},

START- END- DATE- | NTERVAL- ENCODI NG { DATE- TYPE},

START- END- TI ME- | NTERVAL- ENCODI NG { TI ME- TYPE},

START- END- DATE- Tl ME- | NTERVAL- ENCODI NG { DATE- TYPE, Tl ME- TYPE},
DURATI ON- | NTERVAL- ENCODI NG,

START- DATE- DURATI ON- | NTERVAL- ENCODI NG { DATE- TYPE}

START- TI ME- DURATI O\- | NTERVAL- ENCODI NG { TI ME- TYPE}

START- DATE- TI ME- DURATI ON- | NTERVAL- ENCODI NG { DATE- TYPE, Tl ME- TYPE},
DURATI ON- END- DATE- | NTERVAL- ENCODI NG { DATE- TYPE},

DURATI ON- END- TI ME- | NTERVAL- ENCODI NG { TI ME- TYPE},

DURATI ON- END- DATE- Tl ME- | NTERVAL- ENCODI NG { DATE- TYPE, Tl ME- TYPE},
REC- START- END- DATE- | NTERVAL- ENCODI NG { DATE- TYPE},

REC- START- END- TI ME- | NTERVAL- ENCODI NG { TI ME- TYPE},

REC- START- END- DATE- Tl ME- | NTERVAL- ENCODI NG { DATE- TYPE, TI ME- TYPE},
REC- DURATI ON- | NTERVAL- ENCODI NG,

REC- START- DATE- DURATI ON- | NTERVAL - ENCODI NG { DATE- TYPE},

REC- START- TI ME- DURATI ON- | NTERVAL- ENCODI NG { TI ME- TYPE},

REC- START- DATE- Tl ME- DURATI ON- | NTERVAL- ENOCDI NG

{ DATE- TYPE, TI ME- TYPE},

REC- DURATI ON- END- DATE- | NTERVAL- ENCODI NG { DATE- TYPE},

REC- DURATI ON- END- TI ME- | NTERVAL- ENCODI NG { TI ME- TYPE},

REC- DURATI ON- END- DATE- TI ME- | NTERVAL- ENCODI NG

{ DATE- TYPE, TIME-TYPE} }

where the encoding of the type of each alternative shall be as specified in the subclause identified in Table 2, column 3

of the main determining row.

32.11.6 FRACTI ONAL- TI ME is defined as follows:

FRACTI ONAL- TI ME{ Ti me- Type} ::= SEQUENCE {
nunmber-of -digits | NTEGER (1..MAX),
tine-val ue Ti ne- Type}

The nunber - of - di gi t s encodes the number of digitsin the fractional part of the abstract value.

32.11.7 TheDATE- TYPEIs:

DATE- TYPE ::= CHO CE {
row 1 CENTURY- ENCODI NG,

row 2
row 3
row4
row5
r ow 6
row 7
row 8
row 9
row 10
row 11
row 12
row 13
row 14

ANY- CENTURY- ENCCDI NG,
YEAR- ENCCDI NG,

ANY- YEAR- ENCCDI NG,

YEAR- MONTH- ENCCDI NG,
ANY- YEAR- MONTH- ENCCDI NG,
DATE- ENCODI NG,

ANY- DATE- ENCCDI NG,

YEAR- DAY- ENCODI NG,

ANY- YEAR- DAY- ENCCDI NG,
YEAR- VVEEK- ENCODI NG,

ANY- YEAR- WEEK- ENCCDI NG,
YEAR- VEEEK- DAY- ENCODI NG,
ANY- YEAR- WEEK- DAY- ENCCDI NG }

where the encoding of the type of each alternative shall be as specified in the subclause identified in Table 2, column 3

of the date determining row.

42 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

32.11.8 TheTI ME- TYPEIS:

TI ME- TYPE :: = SEQUENCE {
nunber-of-digits | NTEGER (1..MAX) OPTI ONAL,
tine-type CHO CE {
row 15 HOURS- ENCODI NG,
row 16 HOURS- UTC- ENCODI NG,
row 17 HOURS- AND- DI FF- ENCODI NG,
row 18 M NUTES- ENCODI NG,
row19 M NUTES- UTC- ENCODI NG,
row-20 M NUTES- AND- DI FF- ENCODI NG,
row 21 Tl ME- OF- DAY- ENCODI NG
row 22 Tl ME- OF- DAY- UTC- ENCODI NG,
row 23 Tl Me- O DAY- AND- DI FF- ENCODI NG
row 24 HOURS- AND- FRACTI ON- ENCODI NG,
row25 HOURS- UTC- AND- FRACTI ON- ENCODI NG,
row 26 HOURS- AND- DI FF- AND- FRACTI ON- ENCODI NG,
row 27 M NUTES- AND- FRACTI ON- ENCCDI NG,
row28 M NUTES- UTC- AND- FRACTI ON- ENCODI NG,
row29 M NUTES- AND- DI FF- AND- FRACTI ON- ENCODI NG,
row 30 Tl ME- OF- DAY- AND- FRACTI ON- ENCODI NG,
row 31 Tl ME- OF- DAY- UTC- AND- FRACTI ON- ENCCDI NG,
row 32 Tl ME- OF- DAY- AND- DI FF- AND- FRACTI ON- ENCODI NG} }

where the encoding of the type of each alternative shall be as specified in the subclause identified in Table 2, column 3
of the time determining row.

32.11.9 The nunber - of - di gi t s shall be present in the TI ME- TYPE if and only if the ti ne-t ype alternative is one
of r ow 24 to r ow 32. It shall encode the number of digitsin the fractional part of the abstract value.

33 Object identifiersfor transfer syntaxes

331 The encoding rules specified in this Recommendation | International Standard can be referenced and applied
whenever there is a need to specify an unambiguous bit string representation for all of the values of a single ASN.1

type.

33.2 The following object identifier, OID internationalized resource identifier (with assignment of Unicode labels)
and object descriptor values are assigned to identify and describe the encoding rules specified in this Recommendation |
International Standard:

For BASIC-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) aligned (0)}
"/ ASN. 1/ Packed- Encodi ng/ Basi c/ Al i gned”
"Packed encoding of a single ASN. 1 type (basic aligned)"

For BASIC-PER, UNALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) unaligned (1)}
"/ ASN. 1/ Packed- Encodi ng/ Basi c/ Unal i gned"
"Packed encoding of a single ASN. 1 type (basic unaligned)"

For CANONICAL-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) aligned (0)}
"/ ASN. 1/ Packed- Encodi ng/ Canoni cal / Al i gned"
"Packed encoding of a single ASN. 1 type (canonical aligned)"

For CANONICAL-PER, UNALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) unaligned (1)}
"/ ASN. 1/ Packed- Encodi ng/ Canoni cal / Unal i gned"
"Packed encoding of a single ASN. 1 type (canonical unaligned)"

333 Where an application standard defines an abstract syntax as a set of abstract values, each of which isavalue
of some specifically named ASN.1 type defined using the ASN.1 notation, then the object identifier values specified
in 33.2 may be used with the abstract syntax name to identify those transfer syntaxes which result from the application
of the encoding rules specified in this Recommendation | International Standard to the specifically named ASN.1 type
used in defining the abstract syntax.

334 The names specified in 33.2 shall not be used with an abstract syntax name to identify a transfer syntax if the
conditions of 33.3 for the definition of the abstract syntax are not met.

ITU-T Rec. X.691 (11/2008) 43

| SO/IEC 8825-2:2008 (E)

Annex A

Example of encodings
(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates the use of the Packed Encoding Rules specified in this Recommendation | International Standard
by showing representations in octets of a (hypothetical) personnel record which is defined using ASN.1.

A.l Record that does not use subtype constraints

A.11 ASN.1description of therecord structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in ITU-T
Rec. X.680 | ISO/IEC 8824-1 for defining types. This is identica to the example defined in ITU-T Rec. X.690 |
ISO/IEC 8825-1, Annex A.

Per sonnel Record ::= [APPLI CATION O] IMPLICI T SET {
nane Nane,
title [0] VisibleString,
nunber Enpl oyeeNunber ,
dateOHre [1] Date,
naneCf Spouse [2] Nane,
children [3] IMPLICAT
SEQUENCE OF Chi |l dl nformati on DEFAULT {} }
Childinformation ::= SET
{ nane Narre,
dateOBirth [0] Date}
Narme ::= [APPLI CATION 1] | MPLICI T SEQUENCE
{ gi venNane Vi si bl eString,
initial Vi sibleString,
fam | yNane Vi si bl eString}
Enpl oyeeNunber ::= [APPLI CATION 2] | MPLICI T | NTEGER
Date ::= [APPLICATION 3] IMPLICIT VisibleString -- YYYYMVDD

A.12 ASN.1description of arecord value
The value of John Smith's personnel record is formally described below using ASN.1.

{ name {givenNane "John",initial "P',fam|yNane "Smth"},

title "Director",
nunber 51,
dateCfHre "19710917",

name Spouse
{givenNarmre "Mary",initial "T",fam|yName "Smth"},
children
{{name {givenNane "Ral ph",initial "T",fam|lyName "Snith"},
dateO'Birth "19571111"},
{name {givenNane "Susan",initial "B',fam|yNane "Jones"},
dateO'Birth "19590717"}}}

A.1.3 ALIGNED PER representation of thisrecord value

The representation of the record value given above (after applying the ALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in
hexadecimal, followed by a commented description of the encoding shown in binary.

The length of this encoding is 94 octets. For comparison, the same PersonnelRecord value encoded using the
UNALIGNED variant of PER is 84 octets, BER with the definite length form is at least 136 octets, and BER with the
indefinite length form is at least 161 octets.

44 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

A.1.3.1 Hexadecimal view

80044A6F 686E0150 05536D69 74680133 08446972 6563746F 72083139 37313039
3137044D 61727901 5405536D 69746802 0552616C 70680154 05536D69 74680831
39353731 31313105 53757361 6E014205 4A6F6E65 73083139 35393037 3137

A.1.3.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within
acharacter string; and an 'x' represents a zero pad bit that is used from time to time to align fields on an octet boundary.

IXXXXXXX Bitmap bit = 1 indicates "children" is present
00000100 Length of name.givenName = 4
01001010 01101111 01101000 01101110 name.givenName = "John"

00000001 Length of name.initial = 1

01010000 name.initial ="P"

00000101 Length of name.familyName =5
01010011 01101101 01101001 01110100 01101000 name.familyName = " Smith"
00000001 Length of (employee) number =1
00110011 (employee) number = 51

00001000 Length of title=8

01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010 title = "Director"

00001000 Length of dateOfHire =8

00110001 00111001 00110111 00110001 00110000 00111001 00110001 00110111 dateOfHire ="19710917"

00000100 Length of nameOfSpouse.givenName = 4
01001101 01100001 01110010 01111001 nameOf Spouse.givenName = "Mary"
00000001 Length of nameOfSpouse.initial = 1
01010100 nameOfSpouse.initial ="T"
00000101 Length of nameOf Spouse.familyName = 5
01010011 01101101 01101001 01110100 01101000 nameOf Spouse.familyName = " Smith"
00000010 Number of children

00000101 Length of children[0].givenName =5
01010010 01100001 01101100 01110000 01101000 children[0] .givenName = "Ralph"
00000001 Length of children[Q].initial = 1
01010100 children[0].initial ="T"

00000101 Length of children[0].familyName =5
01010011 01101101 01101001 01110100 01101000 children[0].familyName = " Smith"
00001000 Length of children[0].dateOfBirth = 8
00110001 00111001 00110101 00110111 00110001 00110001 00110001 00110001 children[0].dateOfBirth = "19571111"
00000101 Length of children[1].givenName =5
01010011 01110101 01110011 01100001 01101110 children[1].givenName = " Susan"
00000001 Length of children[1].initial =1
01000010 children[1].initial ="B"

00000101 Length of children[1].familyName =5
01001010 01101111 01101110 01100101 01110011 children[1].familyName = "Jones"
00001000 Length of children[1].dateOfBirth =8

00110001 00111001 00110101 00111001 00110000 00110111 00110001 00110111 children[1].dateOfBirth = "19590717"

A.1l4 UNALIGNED PER representation of thisrecord value

The representation of the record value given above (after applying the UNALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in
hexadecimal, followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in
the UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

ITU-T Rec. X.691 (11/2008) 45

| SO/IEC 8825-2:2008 (E)

The length of this encoding is 84 octets. For comparison, the same PersonnelRecord value encoded using the
ALIGNED variant of PER is 94 octets, BER with the definite length form is at least 136 octets, and BER with the
indefinite length form is at least 161 octets.

A.1.41 Hexadecimal view

824ADFA3 700D005A 7B74F4D0 02661113 4F2CB8FA 6FE410C5 CB762C1C B16E0937
OF2F2035 O0169EDD3 D340102D 2C3B3868 01A80B4F 6E9E9A02 18B96ADD 8B162C41
69F5E787 700C2059 5BF765E6 10C5CB57 2C1BB16E

A.1.42 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within
a character string; a period (.) is used to mark octet boundaries; and an 'x' represents a zero-bit used to pad the final
octet to an octet boundary.

1 Bitmap bit = 1 indicates "children" is present
0000010.0 Length of name.givenName =4
1001010 .1101111 1.101000 11.01110 name.givenName = "John"

000.00001 Length of name.initial = 1

101.0000 name.initial = "P"

0000.0101 Length of name.familyName =5
1010.011 11011.01 110100.1 1110100 .1101000 name.familyName = " Smith"
0.0000001 Length of (employee) number = 1
0.0110011 (employee) number =51

0.0001000 Length of title=8

1.000100 11.01001 111.0010 1100.101 11000.11 111010.0 1101111.1110010 title="Director"

0.0001000 Length of dateOfHire = 8

0.110001 01.11001 011.0111 0110.001 01100.00 011100.1 0110001 .0110111 dateOfHire="19710917"

0.0000100 Length of nameOf Spouse.givenName = 4
1.001101 11.00001 111.0010 1111.001 nameOf Spouse.givenName = "Mary"
00000.001 Length of nameOfSpouse.initial = 1
10101.00 nameOfSpouse.initial ="T"
000001.01 Length of nameOfSpouse.familyName =5
101001.1 1101101 .1101001 1.110100 11.01000 nameOf Spouse.familyName = "Smith"
000.00010 Number of children

000.00101 Length of children[0].givenName =5
101.0010 1100.001 11011.00 111000.0 1101000 children[0].givenName = "Ralph"
.00000001 Length of children[O].initial = 1
.1010100 children[0].initial ="T"

0.0000101 Length of children[0].familyName=5
1.010011 11.01101 110.1001 1110.100 11010.00 children[0].familyName = "Smith"
000010.00 Length of children[0].dateOfBirth = 8
011000.1 0111001 .0110101 0.110111 01.10001 011.0001 0110.001 01100.01 children[0].dateOfBirth = "19571111"
000001.01 Length of children[1].givenName =5
101001.1 1110101 .1110011 1.100001 11.01110 children[1].givenName = " Susan"
000.00001 Length of children[1].initial = 1
100.0010 children[1].initial = "B"

0000.0101 Length of children[1].familyName=5
1001.100 11011.11 110111.0 1100101 .1110011 children[1].familyName = "Jones"
0.0001000 Length of children[1].dateOfBirth = 8

0.110001 01.11001 011.0101 0111.001 01100.00 011011.1 0110001 .0110111x children[1].dateOfBirth = "19590717"

46 ITU-T Rec. X.691 (11/2008)

A2 Record that uses subtype constraints

| SO/IEC 8825-2:2008 (E)

This example is the same as that shown in clause A.1, except that it makes use of the subtype notation to impose

constraints on some items.

A.21 ASN.ldescription of therecord structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in ITU-T

Rec. X.680 | ISO/IEC 8824-1 for defining types.

Per sonnel Record ::

= [APPLI CATI ON 0]

IMPLICI T SET {

nane Nane,
title [0] VisibleString,
nunber Enpl oyeeNunber,
dateOHre [1] Date,
namef Spouse [2] Nane,
children [3] IMPLIOT
SEQUENCE CF Childlnformation DEFAULT {} }
Childinformation ::= SET
{ nane Nane,
dateOBirth [0] Date}
Nane ::= [APPLICATION 1] I MPLIC T SEQUENCE
{ givenNare NaneStri ng,
initial NameString (Sl ZE(1)),
fam | yName NaneSt ri ng}

Enpl oyeeNunber :
Date ::= [APPLI CATI ON 3]

NameString ::= VisibleString

A.22 ASN.ldescription of arecord value

: = [APPLI CATI ON 2]
IMPLICIT VisibleString

I MPLI CI T | NTEGER

(FROM"0".."9") ~ SIZE(8)) -- YYYYMDD
(FROM"a".."z" | "A".."Z" | "-.") ~ SIZE(1

The value of John Smith's personnel record is formally described below using ASN.1.

{ name {givenNane "John",initial

title
nunber
dateOHre
name Spouse
{gi venNane "Mary",initi
chil dren

{{name {gi venNane "Ral ph",initial

"P',fam |l yNane "Snith"},
"Director”,

51,

"19710917",

al "T", fanilyName "Snith"},

“T*, familyName "Smith"},

dateO'Birth "19571111"},

{name {gi venNane "Susan",initial

"B, fam | yName "Jones"},

dateCfBirth "19590717"}}}

A23

ALIGNED PER representation of thisrecord value

.. 64))

The representation of the record value given above (after applying the ALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in
hexadecimal, followed by a commented description of the encoding shown in binary. In the binary view an 'x' is used to
represent pad bits that are encoded as zero-hits; they are used to aign the fields from time to time.

The length of this encoding is 74 octets. For comparison, the same PersonnelRecord value encoded using the
UNALIGNED variant of PER is 61 octets, BER with the definite length form is at least 136 octets, and BER with the

indefinite length form is at least 161 octets.

A.2.3.1 Hexadecimal view

864A6F68 6E501053 6D697468 01330844 69726563 746F7219 7109170C 4D617279
5410536D 69746802 1052616C 70685410 536D6974 68195711 11105375 73616E42

104A6F6E 65731959 0717

ITU-T Rec. X.691 (11/2008)

47

| SO/IEC 8825-2:2008 (E)

A.23.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within
acharacter string; and an 'x' represents a zero pad bit that is used from time to time to align fields on an octet boundary.

1

000011x
01001010 01101111 01101000 01101110

01010000

000100xx
01010011 01101101 01101001 01110100 01101000

00000001
00110011

00001000

01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010

0001 1001 0111 0001 0OOO 1001 0001 0111

000011xx
01001101 01100001 01110010 01111001

01010100

000100xx
01010011 01101101 01101001 01110100 01101000

00000010

000100xx
01010010 01100001 01101100 01110000 01101000

01010100

000100xx
01010011 01101101 01101001 01110100 01101000

0001 1001 0101 0111 0001 0001 OOO1 0001

000100xx
01010011 01110101 01110011 01100001 01101110

01000010

000100xx
01001010 01101111 01101110 01100101 01110011

0001 1001 0101 1001 0000 0111 0001 0111

Bitmap bit = 1 indicates "children" is present

Length of name.givenName = 4
name.givenName = "John"

name.initial = "P"

Length of name.familyName =5
name.familyName = "Smith"

Length of (employee) number =1
(employee) number = 51

Length of title=8
title = "Director"

dateOfHire = "19710917"

Length of nameOf Spouse.givenName = 4
nameOf Spouse.givenName = "Mary"

nameOfSpouse.initial ="T"

Length of nameOf Spouse.familyName =5
nameOf Spouse.familyName = " Smith"

Number of children

Length of children[0].givenName =5
children[0].givenName = "Ralph"

children[0].initial ="T"

Length of children[0].familyName =5
children[0].familyName = "Smith"

children[0].dateOfBirth = "19571111"

Length of children[1].givenName =5
children[1].givenName = "Susan"

children[1].initial ="B"

Length of children[1].familyName =5
children[1].familyName = "Jones"

children[1].dateOfBirth = "19590717"

A.24 UNALIGNED PER representation of thisrecord value

The representation of the record value given above (after applying the UNALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in
hexadecimal, followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in
the UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

The length of this encoding is 61 octets. For comparison, the same PersonnelRecord value encoded using the
ALIGNED variant of PER is 74 octets, BER with the definite length form is at least 136 octets, and BER with the
indefinite length form is at least 161 octets.

A.2.4.1 Hexadecimal view
865D51D2 888A5125 F1809984 44D3CB2E 3E9BF90C B8848B86 7396ES8A8 8A5125F1
81089B93 Dr71AA229 4497C632 AE222222 985CE521 885D54C1 70CAC838 B8

48 ITU-T Rec. X.691 (11/2008)

A.24.2 Binary view

| SO/IEC 8825-2:2008 (E)

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within
a character string; a period (.) is used to mark octet boundaries; and an X' represents a zero-bit used to pad the final

octet to an octet boundary:
1

000011
0.01011 101.010 10001.1 101001

0.10001

000.100
01010.0 101000 1.00100 101.111 10001.1

0000000.1
0011001.1

0000100.0
1000100 .1101001 1.110010 11.00101 110.0011 1110.100 11011.11 111001.0

0001 100.1 0111 000.1 0000 100.1 0001 O11.1

000011
0.01110 011.100 10110.1 110100

0.10101

000.100
01010.0 101000 1.00100 101.111 10001.1

0000001.0

000100
0.10011 011.100 10011.1 101011 1.00011

010.101

00010.0
010100 1.01000 100.100 10111.1 100011
0.001 1001 0.101 0111 0.001 0001 0.001 0001

0.00100
010.100 11000.0 101110 0.11100 101.001

00001.1

000100
0.01011 101.010 10100.1 100000 1.01110

000.1 1001 010.1 1001 000.0 0111 000.1 0111xxx

A3 Record that uses extension markers

A.3.1 ASN.ldescription of therecord structure

Bitmap bit = 1 indicates "children" is present

Length of name.givenName =4
name.givenName = "John"

name.initial ="P"

Length of name.familyName=5
name.familyName = "Smith"

Length of (employee) number =1
(employee) number = 51

Length of title=8
title = "Director"

dateOfHire = "19710917"

Length of nameOfSpouse.givenName = 4
nameOf Spouse.givenName = "Mary"

nameOf Spouse.initial ="T"

Length of nameOf Spouse.familyName = 5
nameOf Spouse.familyName = " Smith"

Number of children

Length of children[0].givenName =5
children[0].givenName = "Ralph"

children[0].initial ="T"

Length of children[0].familyName =5
children[0].familyName = "Smith"
children[0].dateOfBirth = "19571111"

Length of children[1].givenName =5
children[1].givenName = "Susan"

children[1].initial ="B"

Length of children[1].familyName =5
children[1].familyName = "Jones"

children[1].dateOfBirth = "19590717"

The structure of the hypothetical personnel record is formaly described below using ASN.1 specified in

ITU-T Rec. X.680 | 1SO/IEC 8824-1 for defining types:

Per sonnel Record ::= [APPLI CATION 0] IMPLICT SET {

nane Narre,

title [0] VisibleString,

nunber Enpl oyeeNunber,

dateCHre [1] Date,

name Spouse [2] Nane,

chil dren [3] IMPLICIT

SEQUENCE (Sl ZE(2, ...)) OF Childlnformation OPTI ONAL,

}

ITU-T Rec. X.691 (11/2008)

49

| SO/IEC 8825-2:2008 (E)

Childlnformation ::= SET
{ nane Narre,
dateOBirth [0] Date,
sex [1] | MPLICIT ENUVERATED {nal e(1), fenale(2),
unknown(3)} OPTI ONAL
}
Name ::= [APPLI CATION 1] I MPLICI T SEQUENCE
{ gi venNare NaneStri ng,
initial NaneString (SIZE(1)),
fam | yNane NanmeStri ng,
}

Enpl oyeeNunber ::= [APPLICATION 2] IMPLICI T I NTEGER (0. .9999,

Date ::= [APPLICATION 3] IMPLICIT VisibleString
(FROM"0".."9") " SIZE(8,

»

9..20)) -- YYYYMDD

NaneString ::= VisibleString
(FROM"a".."z" | "A".."Z" | "-.") N SIZE(1..64, ...))
A.3.2 ASN.ldescription of arecord value
The value of John Smith's personnel record isformally described below using ASN.1:
{ name {givenNane "John",initial "P',fam|lyNane "Smth"},
title "Director”,
nunber 51,
dateOHire "19710917",
name Spouse
{givenNane "Mary",initial "T",fam|lyNane "Snith"},
children
{{name {gi venNane "Ral ph",initial "T",fam|yName "Snith"},
dateOBirth "19571111"},
{name {givenNane "Susan",initial "B',fam|yNanme "Jones"},

dateOBirth "19590717", sex fermale}}}

A.3.3 ALIGNED PER representation of thisrecord value
The representation of the record value given above (after applyi

ng the ALIGNED variant of the Packed Encoding

Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in
hexadecimal, followed by a commented description of the encoding shown in binary. In the binary view an 'x' is used to
represent pad bits that are encoded as zero-hits; they are used to aign the fields from time to time.

The length of this encoding is 83 octets. For comparison, the same PersonnelRecord value encoded using the
UNALIGNED variant of PER is 65 octets, BER with the definite length form is at least 139 octets, and BER with the

indefinite length form is at least 164 octets.

A.3.3.1 Hexadecimal view

40004A6F 686E5008 536D6974 68000033 084469
61727954 08536D69 74680100 52616C70 685408
7573616E 42084A6F 6E657300 19590717 010140

A.3.3.2 Binary view

72 6563746F 72001971 0917034D
53 6D697468 00195711 11820053

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within
acharacter string; and an 'x' represents a zero pad bit that is used from time to time to align fields on an octet boundary:

0

1
0

0
0000 1IXXXXXX
01001010 01101111 01101000 01101110

50 ITU-T Rec. X.691 (11/2008)

No extension values present in
Personnel Record
Bitmap bit = 1 indicates "children" is present

No extension values present in "name"

Length iswithin range of extension root
Length of name.givenName = 4
name.givenName = "John"

01010000

0
000100x
01010011 01101101 01101001 01110100 01101000

OXXXXXXX
00000000 00110011

00001000

01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010

OXXXXXXX
0001 1001 0111 0001 0OOO 1001 0001 0111

0

0
000011
01001101 01100001 01110010 01111001

01010100

0
000100x
01010011 01101101 01101001 01110100 01101000

0

0
000100xX XXXX
01010010 01100001 01101100 01110000 01101000

01010100

0
000100x
01010011 01101101 01101001 01110100 01101000

OXXXXXXX
0001 1001 0101 0111 0001 0001 0001 0001

1
0

0
00010 OXXXXXXX
01010011 01110101 01110011 01100001 01101110

01000010

0
000100x
01001010 01101111 01101110 01100101 01110011

OXXXXXXX
0001 1001 0101 1001 0000 0111 0001 0111

0000000

1

00000001
OIXXXXXX

| SO/IEC 8825-2:2008 (E)

name.initial ="P"

Length iswithin range of extension root
Length of name.familyName =5
name.familyName = "Smith"

Valueiswithin range of extension root
(employee) number = 51

Length of title=8
title = "Director"

Length iswithin range of extension root
dateOfHire = "19710917"

No extension values present in nameOf Spouse

Length iswithin range of extension root
Length of nameOf Spouse.givenName = 4
nameOf Spouse.givenName = "Mary"

nameOfSpouse.initial ="T"

Length iswithin range of extension root
Length of nameOfSpouse.familyName =5
nameOf Spouse.familyName = " Smith"

Number of "children" is within the range of
the extension root

No extension values present in children[0]

No extension values present in
children[0].name

Length iswithin range of extension root
Length of children[0].givenName =5
children[0].givenName = "Ralph"

children[Q].initial ="T"

Length iswithin range of extension root
Length of children[0].familyName =5
children[0].familyName = "Smith"

Length iswithin range of extension root
children[0].dateOfBirth = "19571111"

Extension value(s) present in children[1]

No extension values present in
children[1].name

Length iswithin range of extension root
Length of children[1].givenName =5
children[1].givenName = "Susan"

children[1].initial ="B"

Length iswithin range of extension root
Length of children[1].familyName =5
children[1].familyName = "Jones'

Length iswithin range of extension root
children[1].dateOfBirth = "19590717"

Length of extension addition bitmap
for children[1] =1
Indicate extension value for "sex" is present

Length of the complete encoding of "sex"
Complete encoding of "sex" = female

ITU-T Rec. X.691 (11/2008) 51

| SO/IEC 8825-2:2008 (E)

A.34 UNALIGNED PER representation of thisrecord value

The representation of the record value given above (after applying the UNALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in
hexadecimal, followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in
the UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

The length of this encoding is 65 octets. For comparison, the same PersonnelRecord value encoded using the
ALIGNED variant of PER is 83 octets, BER with the definite length form is at least 139 octets, and BER with the
indefinite length form is at least 164 octets.

A.34.1 Hexadecimal view

40CBAA3A 5108A512 5F180330 889A7965 CrD37F20 (CB8848B8 19CES5BA2 Al114A24B
E3011372 7AE35422 94497C61 95711118 22985CE5 21842EAA 60B832B2 O0E2E0202

80

A.3.4.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within
a character string; a period (.) is used to mark octet boundaries; and an 'x' represents a zero-bit used to pad the final
octet to an octet boundary:

0 No extension values present in
Personnel Record
1 Bitmap bit = 1 indicates "children" is present
0 No extension values present in "name"
0 Length iswithin range of extension root
0000.11 Length of name.givenName =4
001011 .101010 10.0011 1010.01 name.givenName = "John"
010001 name.initial ="P"
.0 Length iswithin range of extension root
000100 Length of name.familyName =5
0.10100 101.000 10010.0 101111 1.00011 name.familyName = "Smith"
0 Value is within range of extension root
00.00000011.0011 (employee) number = 51
0000.1000 Length of title=8
1000.100 11010.01 111001.0 1100101 1100011 1.110100 11.01111 111.0010 title="Director"
0 Length iswithin range of extension root
000.1 1001 011.1 0001 000.0 1001 000.1 0111 dateOfHire ="19710917"
0 No extension values present in
nameOf Spouse

0 Length iswithin range of extension root
0.00011 Length of nameOf Spouse.givenName = 4
001.110 01110.0 101101 1.10100 nameOf Spouse.givenName = "Mary"
010.101 nameOfSpouse.initial ="T"
0 Length iswithin range of extension root
0001.00 Length of nameOfSpouse.familyName =5
010100 .101000 10.0100 1011.11 100011 nameOf Spouse.familyName = " Smith"
.0 Number of "children" is within the range of

the extension root
0 No extension values present in children[0]
0 No extension values present in

children[0].name
0 Length iswithin range of extension root
0001.00 Length of children[0].givenName =5

010011 .011100 10.0111 1010.11 100011

52 ITU-T Rec. X.691 (11/2008)

children[0].givenName = "Ralph"

.010101

0
0.00100

010.100 10100.0 100100 1.01111 100.011

0

0001 .1001 0101 .0111 0001 .0001 0001 .0001

1
0

0
0.00100

010.100 11000.0 101110 0.11100 101.001

00001.1

0
000100

.001011 10.1010 1010.01 100000 .101110

0

0.001 1001 0.101 1001 0.000 0111 0.001 0111

0.000000

1

0.0000001
0. IXXXXXX
X

A4 Record that uses extension addition groups

A.41 ASN.ldescription of therecord structure

| SO/IEC 8825-2:2008 (E)

children[O].initial ="T"

Length iswithin range of extension root
Length of children[0].familyName=5
children[0].familyName = "Smith"

Length iswithin range of extension root
children[0].dateOfBirth = "19571111"

Extension value(s) present in children[1]

No extension values present in
children[1].name

Length iswithin range of extension root
Length of children[1].givenName =5
children[1].givenName = "Susan"

children[1].initial ="B"

Length iswithin range of extension root
Length of children[1].familyName =5
children[1] .familyName = "Jones"

Length iswithin range of extension root
children[1].dateOfBirth = "19590717"

Length of extension addition bitmap for
children[1] =1

Indicate extension value for "sex" is present

Length of the complete encoding of "sex"
Complete encoding of "sex" = female
Pad bit to create complete encoding of
Personnel Record

The structure of the hypothetical customer record is formally described below using ASN.1 specified in ITU-T
Rec. X.680 | ISO/IEC 8824-1 for defining types. AUTOVATI C TAGS is assumed:

AX 1= SEQUENCE {
a I NTEGER (250. . 253),
b BOCOLEAN,
c CHA CE {
d I NTEGER,
[l
e BOOLEAN,
f IA5String
11,

NurericString (SIZE(3)),
BOCOLEAN OPTI ONAL

BMPSt ri ng OPTI ONAL,
Printabl eString OPTI ONAL

ITU-T Rec. X.691 (11/2008)

53

| SO/IEC 8825-2:2008 (E)

A.42 ASN.ldescription of arecord value

Thevaue of Ax isformally described below using ASN.1:
{a 253, b TRUE, ¢ e: TRUEE g "123", h TRUE}

A.43 ALIGNED PER representation of thisrecord value

The representation of the value given above (after applying the ALIGNED variant of the Packed Encoding Rules
defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary. In the binary view an 'x' is used to represent
pad bits that are encoded as zero-bits; they are used to aign the fields from time to time.

The length of this encoding is 8 octets. For comparison, the same value encoded using the UNALIGNED variant of PER
is 8 octets, BER with the definite length form is at least 22 octets, and BER with the indefinite length form is at least 26
octets.

A.4.3.1 Hexadecimal view
9E000180 010291A4

A.43.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within
acharacter string; and an 'x' represents a zero pad bit that is used from time to time to align fields on an octet boundary:

1 Extension addition values present in Ax

00 Bitmap bits = 0 indicates optional fields (i & j) absent
11 a=253

1 b=TRUE

1 c'schoice value is an extension addition value
0000000 xx Choiceindex selectsc.e

00000001 Length of c.e

IXXXXXXX ce=TRUE

0000000 Number of extension additions defined in Ax =1
1 First extension addition is present

00000010 Length of extension addition encoding = 2

1 Bitmap = 1lindicates‘h’ is present

0010 0011 0100 g="123"

Ixx h=TRUE

A.44 UNALIGNED PER representation of thisrecord value

The representation of the record value given above (after applying the UNALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in
hexadecimal, followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in
the UNALIGNED variant, except possibly at the end of the encoding of the outermost value — and thus implicitly at the
end of the value carried by an open type.

The length of this encoding is 8 octets. For comparison, the same value encoded using the ALIGNED variant of PER is 8
octets, BER with the definite length formis at least 22 octets, and BER with the indefinite length formis at least 26 octets.

A.44.1 Hexadecimal view
9E000600 040A4690

A.44.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within
a character string; a period (.) is used to mark octet boundaries; and an 'x' represents a zero-bit used to pad the final
octet to an octet boundary:

54 ITU-T Rec. X.691 (11/2008)

1
00

11
1

1
0.000000

00.000001
IXXXXXXX

00.00000
1

00.000010
1

0.010 0011 0.100

IXXXX

| SO/IEC 8825-2:2008 (E)
Extension addition values present in Ax
Bitmap bits = 0 indicates optional fields (i & j) absent
a=253
b=TRUE

c's choice value is an extension addition value
Choiceindex selectsc.e

Length of c.e
c.e=TRUE

Number of extension additions defined in Ax =1
First extension addition is present

Length of extension addition encoding = 2
Bitmap = 1lindicates‘h’ is present

g="123"
h=TRUE

ITU-T Rec. X.691 (11/2008) 55

| SO/IEC 8825-2:2008 (E)

Annex B

Combining PER-visible and non-PER-visible constraints
(This annex does not form an integral part of this Recommendation | International Standard)

B.1 General

B.1.1 The correct determination of PER extensibility is critical to the interworking of implementations. It is also
important that different implementations make the same determination of the values that are to be encoded by PER as
root values and of the values that are to be encoded as extension additions for an extensible type.

B.1.2 Things written by users are usually simple, and the PER encoding is intuitive, but for complicated
congtructions, the interactions between PER-visibility, PER-extensibility, and set arithmetic needs further discussion,
and is the content of this clause.

B.1.3 Because some constraints are defined to be not PER-visible (see 10.3), atype may be defined to be extensible
by the rules of ITU-T Rec. X.680 | ISO/IEC 8824-1 but to be considered not extensible (with relaxed constraints that
would cover all possible extensions) for PER encoding.

B.14 Whereatypeisconsidered extensible in both cases, the set of root values for PER encoding is not always the
same as the set of values that would be considered to be root values by the definitions in ITU-T Rec. X.680 | ISO/IEC
8824-1.

B.1.5 Inmost of the cases that occur in actual specifications, the two determinations are easy and straightforward.

B.1.6 However, ASN.1 provides considerable power and generality in the application of complex constraints
resulting from set arithmetic and/or the serial application of simple or complex constraints.

B.1.7 User specifications are unlikely to define ASN.1 constructs involving the complexities discussed in this
annex, but implementers of tools need to know what code to produce if such constraints are, in fact, applied.

B.1.8 Therulesfor very complex constraints (perhaps involving type reference names) are not always intuitive, but
have been designed to simplify tool implementation and the complexity of the ASN.1 specification.

B.1.9 For SEQUENCE, SET, CHO CE, and ENUMERATED, atype is always extensible if it contains the extension marker
(the dlipsis™. .. "), even if constrained (see 10.3.22). A valueisaroot value if and only if the value does not include
any elements (or alternatives for CHO CE and enumerations for ENUMERATED) after the ellipsis. A non-extensible
SEQUENCE, SET, CHO CE or ENUMERATED can be a parent type to which an extensible constraint is applied, resulting in
an extensible sequence, set, choice, or enumerated type. However, constraints on these types are never PER-visible and
the resulting types encode without the extensibility bit in PER. These types are not discussed further in this annex,
which is concerned solely with extensibility arising from the use of extensible constraints on integer and restricted
known-multiplier character string types. (Constraints on other types do not affect PER encodings, except for size
constraints on octet string and bit string types, which are similar to size constraints on character string types, and are not
considered further here.)

B.1.10 The normative text specifies the precise rules, but this tutorial annex is intended to assist tool vendors in
understanding the rules.

B.1.11 For simplicity of exposition, the set of values in a non-extensible type or constraint are described below as
root values, although this term strictly only applies to extensible types or constraints.

B.1.12 ITU-T Rec. X.680 | ISO/IEC 8824-1, |.4, provides tutorial information on the combination of constraints
when all constraints are PER-visible as specified by that Recommendation | International Standard, and should be read
in conjunction with this annex. When constraints are involved that are not PER-visible, or where constraints are
applied to character string types, then the rules require further additions. These additional rules are covered in B.2.

B.2 Extensibility and visibility of constraintsin PER

B.2.1 General

B.2.1.1 In BER, encodings of values are the same for root values and extension additions, so extensibility has no
impact on the encoding. In PER, abstract values are generally encoded in an efficient manner if they arein the (usually,
but not necessarily, finite) set of root values, and less efficiently if they are extension additions.

56 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

B.2.1.2 However, for many PER encodings, there are values in the extension additions of a type (as determined by
ITU-T Rec. X.680 | ISO/IEC 8824-1) that are encoded by PER as if they were root values, not as extension additions.
The precise identification of these valuesis performed by noting that some constraints are "not PER-visible".

B.2.1.3 The concept of PER-visibility was introduced into this Recommendation | International Standard in order to
ease the task of encodersin trying to determine whether a value to be encoded isin the root of an extensible type or not.
Constraints that may be difficult for encoders to handle in an efficient manner are defined to be "not visible" for PER
encoding (have no effect on it).

B.2.1.4 With one exception, the visibility of a simple constraint depends only on the type being constrained, and/or
on aspects of the constraint that are not related to extensibility. For example, does the constraint depend textually on a
table constraint, or is it a variable constraint (a constraint which is textually dependent on a parameter of the abstract
syntax)?

B.2.1.5 If acongtraint is avariable constraint, or is textually dependent on atable constraint, it is never PER-visible,
no matter what typeit is applied to.

B.2.1.6 Additionally, constraints are never PER-visible unless they are applied to an integer or to a known-multiplier
restricted character string type (or are size constraints on a bitstring or octetstring).

B.2.1.7 The exception is a permitted-alphabet constraint on a known-multiplier restricted character string type. Thisis
PER-visibleif and only if it is not extensible.

B.2.1.8 Itisalsoimportant to note that single value subtype constraints on character string types are not PER-visible.

B.2.1.9 In PER, constraints on character string types have two independent dimensions - constraints on the size of the
string, and constraints on the permitted-alphabet. The first affects the presence and form of a length field in the
encoding, and the second affects the number of bits used to encode each character. In simple use, it is clear that a
constraint specifies one or other of these. Thus:

Al ::= VisibleString (SIZE (20))

-- A size constraint

A2 ::= VisibleString (FROM ("A".."F"))
-- A permtted-al phabet constraint

A3 ::= VisibleString (SIZE (2))(FROM ("A".."F"))
-- Both a size and a permtted-al phabet constraint

B.2.1.10 But consider:

B ::= VisibleString (Sl ZE (20) | NTERSECTI ON FROM ("A".."F")
UNI ON
SI ZE (3) | NTERSECTI ON FROM ("F".."K"))

B.2.1.11 To specify the encoding of types with complex constraints of this sort, PER introduces the concepts of an
effective size constraint, and an effective permitted-alphabet constraint. These are constraints that, taken together, will
alow al the abstract values in the root of the actual constraint, but usually some additional abstract values. In the
example above the effective size constraint is 3..20, and the effective permitted-alphabet constraint is

FROM"A".."K").
B.2.1.12 In order to handle extensibility, this Recommendation | International Standard introduces the further concept
that either or both of an effective size and an effective permitted-alphabet constraint can be extensible (the latter would

not be PER-visible, and would be ignored when determining encodings), and it is necessary to consider the effect of
(non) PER-visibility of extensible permitted-al phabet constraints on the effective constraints on atype.

B.2.1.13 The following clauses address the main issues. the effect of PER-visibility, and the calculation of effective
constraints for serial application of constraints, and for set arithmetic.

B.2.2 PER-visbility of constraints

B.22.1 Clause B.2.2.10 describes when a complete (complex) constraint is PER-visible and when it is not. Firgt,
however, we consider ssimply the serial application of constraints, each of which is (as a whole) PER-visible or not
PER-visible.

B.2.2.2 Theruleis very simple: If a complete constraint in serial application of constraints is not PER-visible, then
for the purposes of PER encodings, that constraint is simply completely ignored.

NOTE — When non-visible constraints are removed for the purposes of defining PER encodings, this does not imply that
applications can now legally transmit additional abstract values. The original constraints still apply to the values that can be
transmitted, although encoders would normally use only PER-visible constraints to perform checks and issue diagnostics.

ITU-T Rec. X.691 (11/2008) 57

| SO/IEC 8825-2:2008 (E)

B.2.2.3 It is important to redlize that the remova of non-visible constraints can have quite dramatic effects in
complex cases, and it is always important to consider extensibility (and what are root values) after removal of the
serially applied constraints that are not PER-visible. (If none of the serially applied constraints is PER-visible, then the
typeis unconstrained — and not extensible — for the purposes of PER encodings.)

B.2.2.4 A typewhich isextensible according to ITU-T Rec. X.680 | ISO/IEC 8824-1 could be inextensible for PER.

B.2.2.5 Even when the effects are not so dramatic, values which are extension additions according to ITU-T Rec.
X.680 | ISO/IEC 8824-1 may be part of the root values when some constraints are removed, and hence would encode in
PER as root values and not as extension additions.

NOTE — This means that the PER encodings are more verbose than is theoretically possible, but still have a unique encoding for
all abstract values in the type being encoded.

B.2.2.6 Three main types of factor affect the visibility of acomplex constraint which is being serially applied.

B.2.2.7 Thefirst factor to consider is whether the constraint is a variable constraint (depends textually on a parameter
of the abstract syntax), or depends textually on a table constraint. In such cases, the entire constraint that is being
serially applied is not PER-visible, and is discarded.

B.2.2.8 The second factor to consider applies only to constraints on character string types. Single value subtype
constraints on such types are not PER-visible, but their presence does not necessarily make the entire constraint that is
serially applied non-visible if set arithmetic is present within the constraint.

B.2.2.9 Therules for determining PER-visibility in this case are specified in 10.3.21, and are summarized here. Let
"V" denote PER-visible, and "I" denote non-visible (invisible).

B.2.2.10 Because UNI ON and | NTERSECTI ON are both commutative, the rule for the result is given only for the V first
case. Where all components are V, then the normal rules of ITU-T Rec. X.680 | ISO/IEC 8824-1 apply, and these are
not discussed further here. The cases where all components are | aways give |, and are again not listed. Therules are:

VUIONI =>1

V INTERSECTION | => V

-- The resulting Vis just the V part of the intersection
V EXCEPT | =>V

-- The resulting Vis just the V without the set difference
| EXCEPT V => |

V, ..., | =1

I, ..., V=1

B.2.2.11 There is one important consegquence of eliminating single value subtype constraints (and EXCEPT clauses) in
thisway. It meansthat al the "atomic" constraints that can be applied to a character string type are either purely asize
constraint, or purely a permitted-alphabet constraint. The total constraint is made up (only) of (arbitrarily complicated)
intersections, unions, and extension additions using such "atomic" units.

B.2.2.12 This significantly simplifies the calculation of what PER calls "effective constraints' on character string
types.

B.2.2.13 The third main factor is whether a permitted-al phabet constraint is extensible. Such constraints are not PER-
visible either, but their treatment is different from that listed above, as their presence does not affect the visibility of any
size constraints that might be present. Thisareais discussed in B.2.3.

B.2.3 Effective constraints

B.2.3.1 Every constraint on a known-multiplier character string type evaluates to a pair of effective constraints: an
effective permitted-alphabet constraint and an effective size constraint. Either or both of these may be extensible, or
may be null (no effective constraint).

B.2.3.2 In serial application, only the last constraint can have a member of the pair that is extensible, because of the
rulesin ITU-T Rec. X.680 | ISO/IEC 8824-1.

B.2.3.3 The definition of an effective size and an effective permitted-alphabet constraint is given in 3.7.8 and 3.7.9
and is not repeated here, but the definition is actually applied to the type with "invisible" constraints removed, as
specified in B.2.2.9 and B.2.2.10.

B.2.3.4 As with the removal of constraints that are not PER-visible, replacing an actual constraint by serial
application of an effective size constraint and an effective permitted-alphabet constraint adds new abstract values for
the purpose of PER encodings (any value with a size in the effective size constraint and using only the effective
permitted-alphabet is now included). However, such values will never be transmitted by a conforming application and
the effect is again simply to make the PER encoding less efficient than it theoretically could be.

58 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

B.235 EXAMPLE

A ::= VisibleString (SIZE(10) | NTERSECTI ON FROM"A")
UNI ON
Sl ZE(20) | NTERSECTI ON FROM"B"))

has only two values, so aone-bit encoding is theoretically possible, but PER encodings use the effective constraints and
can encode al one million (approximately) valuesin:

B::= VisibleString (SIZE (10 UNI ON 20)
| NTERSECTI ON
FROM ("AB"))

B.2.3.6 The effective constraints on the union of two sets of values is always the union of the effective constraints on
each set of values, but in the general case (if al constraints were PER-visible), this simple rule would not hold for
intersection.

B.2.3.7 Itishere, however, that the removal of single-value subtype constraints and of EXCEPT clauses is important.
When all "atomic" constraints are either purely a size constraint or purely a permitted-alphabet constraint (possibly
extended), then effective constraints can be calculated for arbitrary set arithmetic (with no EXCEPT clauses) in asimple
fashion.

B.2.3.8 Let {S, A} represent the set of al values permitted by a size constraint S serialy applied with a permitted-
alphabet constraint A. (Again, note that union and intersection are commutative.) Then we have:

{S1, Al} INTERSECTION {S2, A2} => {S1 | NTERSECTI ON S2,
Al | NTERSECTI ON A2}
{S1, Al} UNTON {S2, A2} => {S1 UNION S2,
Al UNI ON A2}
{Sl, A1}, ... =>{Sl, ... }

B.2.3.9 Thelast case needs some explanation. An extensible permitted-alphabet constraint has no effect on encoding,
as PER does not support a different number of bits for characters needed for root values and for those needed for
extension addition values. Thusif an (effective) permitted-alphabet constraint is extensible, it is no longer a constraint
— al characters have to be capable of representation. The effect of the ... " in the last case is to make both the
permitted-alphabet and the size extensible, but only the extensible size remains as a constraint. Thisis expressed in the
normative text by saying that extensible effective permitted-al phabet constraints are not PER-visible.

B.3 Examples

This clause contains a number of examplesthat provide further illustration.

A ::= INTEGER (M N .. MAX, ..., 1..10)
-- Ais extensible, but the root is unconstrained and the
-- extensibility bit is always set to zero

Al ::= INTEGER (1..32, ..., 33..128)
-- Al is extensible, and contains values 1 to 128 with 1 to 32 in the
-- root and 33 to 128 as extension additions

A2 ;1= INTEGER (1..32, ..., 33..128) (1..128)

-- This is illegal, as 128 is not in the root of the parent
-- (see ITUT Rec. X.680 | ISOIEC 8824-1, clause 50)

A3 ::= INTEGER ((1..32, ..., 33..128) ~ (1..128))

-- This is legal. A3 is extensible, and contains 1 to 32 in the root
-- and 33 to 128 as extensions

A4 = INTEGER (1..32) (MN .. 63)

-- MNis 1, and 63 is illegal

A5 ::= INTEGER ((1..32) » (MN..63))

-- This is legal. MNis nminus infinity and A3 contains 1 to 32
A6 ::= INTEGER ((1..64, ... , B "~ (1..32))

-- A6 always contains (only) the values 1..32, no matter what val ues
-- B contains, but is nonetheless formally extensible and PER wil |

-- encode all values in 5 bits, with an extensibility bit (always) set
-- to zero

A7 ::= INTEGER (1..32, ... , B) (1..256)
-- A7 is illegal, as the parent for (1..256) can never contain nore
-- than 1 to 32 no matter what B contains

ITU-T Rec. X.691 (11/2008) 59

| SO/IEC 8825-2:2008 (E)

60

A8 ::= IA5String (SIZE(3..4) | SIZE(9..10))

-- A8 has an effective size constraint of SIZE(3..4|9..10)

-- PERw Il encode as if it were SIZE(3..10), using three bits
-- to encode the length field

A9 ::= IA5String (FROM ("AB") ™ SIZE(1..2) |

FROM ("DE") "~ SIZE(3) |

FROM ("AXE") "~ (SIZE(1..5))
-- A9 has an effective size constraint of SIze(1..5), and PER will
-- encode the length in three bits. It has an effective al phabet
-- constraint of FROM"ABDEX') and PER wi ||l encode each character
-- using three bits

Al0 ::= | A5String (SIZE(1..4) | SIZE(5..10) »
FROM " ABCD') | SIZE(6..10))
-- Al10 has an effective size constraint of SIzE(1..10), but
-- the pernitted al phabet consists of the entire 1A5String al phabet

A1l ::= IA5String (SIZE(1..10) | FROM"A".."D"))
-- No size constraint, alphabet is the entire 1A5String al phabet
A12 ::= IA5String (SIZE(1..10) ~ FROM"A".."D"), ...)

-- Al2 has an extensible effective size constraint of SlzE(1..10,...)
-- and the al phabet is the entire 1A5String al phabet

Al3 ::= | A5String (SIZE(1..10, ...) ~ FROM"A".."D"))
-- Al13 has an extensible effective size constraint of SIzE(1..10,...)
-- and an effective al phabet constraint of FROM"A".."D")

Al4 ::= IA5String (SIZE(1..10, ...,29)) (FROM"A".."D"))

-- An effective size constraint of SIzE(1..10), not extensible,
-- because of the serial application of the FROM Effective
-- al phabet constraint is FROW"A".."D")

Al5 ::= IA5String (SIZE(1..10, ...) | FROM"A".."D"), ...)

-- An extensible effective size constraint, but fromMNto MM wth
-- all values in the root, encoding with an extensibility bit always
-- set to zero. The alphabet is the entire 1A5String al phabet

Al6 ::= IA5String (FROM"A".."D') ~ SIZE(1l..10), ...)
-- The effective size constraint is SIZE(1..10,...), extensible
-- The al phabet is the entire 1A5String al phabet

Al7 ::= 1A5String (FROM"A".."D"), ...) (SIzZE(1..10))

-- An effective al phabet constraint of FROM"A'.."D'), not extensible,
-- because of the serial application of the SIZE. Effective size

-- constraint is SIZE(1..10)

ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

Annex C

Support for the PER algorithms
(This annex does not form an integral part of this Recommendation | International Standard)

An application standard, or an International Standardized Profile, may specify which of the Packed Encoding Rules are
to be supported, and the corresponding transfer syntaxes to be offered or accepted in negotiation.

Where it has requirements for the use of relay safe and/or canonical encodings within EMBEDDED PDVs (or EXTERNALS)
or CHARACTER STRI NGs, this should be clearly stated.

The following text provides guidelines that can be used in the production of normative text.

ci1 A canonical encoding is intended for use when security features are being applied to the encoding. Use of
CANONICAL-PER can involve significant additional CPU utilization cost when the value to be encoded includes a
set-of type, and is generally not recommended for protocols unless security features are required.

Cc.2 Where an abstract syntax value contains embedded material that is encoded using atransfer or abstract syntax
different from that associated with the abstract syntax value, it is strongly recommended that the embedded material be
encoded in a relay-safe manner. A canonical encoding rule will be required if security features are important. In this
context, particular attention should be placed on the level of ISO/IEC 10646 which is to be used for the type
BMPString or Universal String, as only 1SO/IEC 10646 implementation level 1 is guaranteed to be canonical.

C3 It is strongly recommended that all implementations supporting decoding of any PER ALIGNED variant
transfer syntax support decoding of the BASIC-PER ALIGNED variant (and hence of the CANONICAL-PER
ALIGNED variant). Similarly for the UNALIGNED variant.

C4 It is recommended, in the interests of interworking, that all implementations of PER support both the
ALIGNED and the UNALIGNED variant (the added implementation complexity is small). Which is offered in an
instance of communication (either or both) is a local management matter, and which is accepted if both are offered is
also alocal management matter. If only oneis offered, it should be accepted.

C5 Acceptance of these recommendations is particularly important for the vendors of general-purpose tools.
Where an implementation is specific to some particular application, support of a single PER transfer syntax (perhaps
specified by that application designer) may be fully acceptable.

ITU-T Rec. X.691 (11/2008) 61

| SO/IEC 8825-2:2008 (E)

Annex D

Support for the ASN.1 rules of extensibility
(This annex does not form an integral part of this Recommendation | International Standard)

D.1 These Packed Encoding Rules are dependent on the total definition of the type to which they are applied. In
general, if any changes other than those of a purely syntactic nature are made to the type definition, then the encoding
for all values using that part of the specification will be affected. In particular, addition of further optional components
to a sequence, converting a component to a CHO CE of that component and some other type, or relaxing or tightening
constraints on some component are all likely to change the encoding of values of the type.

D.2 Nonetheless, these encoding rules have been designed to ensure that the requirements on encoding rules
specified in the ASN.1 model of type extension (see ITU-T Rec. X.680 | ISO/IEC 8824-1) are satisfied.

D.3 Where a type is not part of an extension sequence (no extension marker present), then the text earlier in this
annex applies: PER provides no support for extensibility of that type. Where a sequence or set type has an extension
marker, but no extension additions, then there is a one-bit overhead (which may become one octet due to padding in the
ALIGNED variants), compared with the same type without an extension marker. Where additions are present in the
type and are actually transmitted in an instance of communication, there is a further overhead of about one octet, plus
an additional length field for each extension addition that is transmitted, compared with the same type with the
extension marker removed.

D4 It is important to note that both the addition and removal of an extension marker changes the bits on the line,
and will in general require a version number change for the protocol.

D.5 There are no changes to the encoding from the inclusion of an extension marker in an information object set,
or from the addition or removal of exception specifications, but these may of course represent changes in the required
behaviour of an implementation and could still require a version number change for the protocol.

62 ITU-T Rec. X.691 (11/2008)

| SO/IEC 8825-2:2008 (E)

Annex E

Tutorial annex on concatenation of PER encodings
(This annex does not form an integral part of this Recommendation | International Standard)

El PER encodings are self-delimiting given knowledge of the encoding rules and the type of the encoding. The
complete encodings for the ALIGNED and UNALIGNED variant are aways a multiple of 8 hits.

E.2 For the purposes of carrying PER encodings in the OS| presentation layer protocol, encodings of the
ALIGNED and UNALIGNED variants can be concatenated in the octet string option.

ITU-T Rec. X.691 (11/2008)

63

| SO/IEC 8825-2:2008 (E)

Annex F

I dentification of encoding rules
(This annex does not form an integral part of this Recommendation | International Standard)

The following object identifier, OID internationalized resource identifier and object descriptor values are assigned in
this Recommendation | International Standard:

For BASIC-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) aligned (0)}
"/ ASN. 1/ Packed- encodi ng/ Basi ¢/ Al i gned"
"Packed encoding of a single ASN. 1 type (basic aligned)"

For BASIC-PER, UNALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) unaligned (1)}
"/ ASN. 1/ Packed- encodi ng/ Basi ¢/ Unal i gned”
"Packed encoding of a single ASN 1 type (basic unaligned)"

For CANONICAL-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) aligned (0)}
"/ ASN. 1/ Packed- encodi ng/ Canoni cal / Al i gned"
"Packed encoding of a single ASN. 1 type (canonical aligned)"

For CANONICAL-PER, UNALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) unaligned (1)}
"/ ASN. 1/ Packed- encodi ng/ Canoni cal / Unal i gned”
"Packed encoding of a single ASN. 1 type (canonical unaligned)"

64 ITU-T Rec. X.691 (11/2008)

Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2009

	ITU-T RECOMMENDATION
	INTERNATIONAL STANDARD ISO/IEC 8825-2
	ITU-T RECOMMENDATION X.691
	Summary
	Source
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 Specification of Basic Notation
	3.2 Information Object Specification
	3.3 Constraint Specification
	3.4 Parameterization of ASN.1 Specification
	3.5 Basic Encoding Rules
	3.6 PER Encoding Instructions
	3.7 Additional definitions

	4 Abbreviations
	5 Notation
	6 Convention
	7 Encoding rules defined in this Recommendation | International Standard
	8 Conformance
	9 PER encoding instructions
	10 The approach to encoding used for PER
	10.1 Use of the type notation
	10.2 Use of tags to provide a canonical order
	10.3 PER-visible constraints
	10.4 Type and value model used for encoding
	10.5 Structure of an encoding
	10.6 Types to be encoded

	11 Encoding procedures
	11.1 Production of the complete encoding
	11.2 Open type fields
	11.3 Encoding as a non-negative-binary-integer
	11.4 Encoding as a 2's-complement-binary-integer
	11.5 Encoding of a constrained whole number
	11.6 Encoding of a normally small non-negative whole number
	11.7 Encoding of a semi-constrained whole number
	11.8 Encoding of an unconstrained whole number
	11.9 General rules for encoding a length determinant

	12 Encoding the boolean type
	13 Encoding the integer type
	14 Encoding the enumerated type
	15 Encoding the real type
	16 Encoding the bitstring type
	17 Encoding the octetstring type
	18 Encoding the null type
	19 Encoding the sequence type
	20 Encoding the sequence-of type
	21 Encoding the set type
	22 Encoding the set-of type
	23 Encoding the choice type
	24 Encoding the object identifier type
	25 Encoding the relative object identifier type
	26 Encoding the internationalized resource reference type
	27 Encoding the relative internationalized resource reference type
	28 Encoding the embedded-pdv type
	29 Encoding of a value of the external type
	30 Encoding the restricted character string types
	31 Encoding the unrestricted character string type
	32 Encoding the time type, the useful time types, the defined time types and the
	additional time types
	32.1 General
	32.2 Encoding subtypes with the
	property setting
	32.3 Encoding subtypes with the "
	property setting
	32.4 Encoding subtypes with the
	property setting
	32.5 Encoding subtypes with the
	property setting
	32.6 Encoding subtypes with the
	property setting
	32.7 Encoding subtypes with the
	or
	property setting
	32.8 Encoding subtypes with the
	property setting
	32.9 Encoding subtypes with the
	property setting
	32.10 Encoding subtypes with the
	or
	property setting
	32.11 Encoding subtypes with mixed settings of the
	property

	33 Object identifiers for transfer syntaxes
	Annex A
	Example of encodings
	A.1 Record that does not use subtype constraints
	A.2 Record that uses subtype constraints
	A.3 Record that uses extension markers
	A.4 Record that uses extension addition groups

	Annex B
	Combining PER-visible and non-PER-visible constraints
	B.1 General
	B.2 Extensibility and visibility of constraints in PER
	B.3 Examples

	Annex C
	Support for the PER algorithms
	Annex D
	Support for the ASN.1 rules of extensibility
	Annex E
	Tutorial annex on concatenation of PER encodings
	Annex F
	Identification of encoding rules
	Series X Data networks, open system communications and security

