Recommendation ITU-T Y.3162 (04/2024)

SERIES Y: Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities

Future networks

Evaluating intelligence capability for network slice management and orchestration in IMT-2020 network and beyond

ITU-T Y-SERIES RECOMMENDATIONS

Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities

GLOBAL INFORMATION INFRASTRUCTURE	Y.100-Y.999
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	Y.1000-Y.1999
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	Y.2000-Y.2999
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Enhancements to NGN	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Computing power networks	Y.2500-Y.2599
Packet-based Networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999
FUTURE NETWORKS	Y.3000-Y.3499
CLOUD COMPUTING	Y.3500-Y.3599
BIG DATA	Y.3600-Y.3799
QUANTUM KEY DISTRIBUTION NETWORKS	Y.3800-Y.3999
INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES	Y.4000-Y.4999
General	Y.4000-Y.4049
Definitions and terminologies	Y.4050-Y.4099
Requirements and use cases	Y.4100-Y.4249
Infrastructure, connectivity and networks	Y.4250-Y.4399
Frameworks, architectures and protocols	Y.4400-Y.4549
Services, applications, computation and data processing	Y.4550-Y.4699
Management, control and performance	Y.4700-Y.4799
Identification and security	Y.4800-Y.4899
Evaluation and assessment	Y.4900-Y.4999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T Y.3162 Evaluating intelligence capability for network slice management and orchestration in IMT-2020 network and beyond

Summary

As a novel technology of IMT-2020 network and beyond, network slicing allows the creation of multiple virtual networks on top of a shared physical infrastructure and meets diverse needs of users and applications. Meanwhile, artificial intelligence (AI) makes it intelligent especially by empowering network slice management and orchestration.

Recommendation ITU-T Y.3162 aims to evaluate the intelligence level for network slice management and orchestration in IMT-2020 network and beyond and mainly covers the following aspects: overview, intelligence level definition, evaluation methods, framework and procedures of intelligent network slice management and orchestration.

History *

Edition	Recommendation	Approval	Study Group	Unique ID	
1.0	ITU-T Y.3162	2024-04-29	13	11.1002/1000/15870	

Keywords

Evaluation, intelligence level, network slicing.

i

^{*} To access the Recommendation, type the URL <u>https://handle.itu.int/</u> in the address field of your web browser, followed by the Recommendation's unique ID.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents/software copyrights, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at http://www.itu.int/ITU-T/ipr/.

© ITU 2024

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of	Contents
----------	----------

			Page
1	Scope		1
2	Referen	ices	1
3	Definiti	ons	1
	3.1	Terms defined elsewhere	1
	3.2	Terms defined in this Recommendation	2
4	Abbrev	iations and acronyms	2
5	Conven	tions	2
6	Overvie	ew of intelligent network slice management and orchestration	3
	6.1	Functional architecture of network slice management and orchestration	3
	6.2	Workflow of network slice management and orchestration	3
	6.3	Intelligent network slice management and orchestration	4
7	Method	s for evaluating the intelligence levels of network slicing	4
	7.1	Dimensions	4
	7.2	Intelligence levels	5
	7.3	Basic method	5
8	Framew	vork and procedure for evaluating intelligence levels of each phase	6
	8.1	Overview	6
	8.2	Grading method and procedure for the preparation phase	8
	8.3	Grading method and procedure for the commissioning phase	10
	8.4	Grading method and procedure for the maintenance phase	12
	8.5	Grading method and procedure for the optimization phase	14
	8.6	Grading method and procedure for the decommissioning phase	16
9	Security	y considerations	17
Biblic	ography		18

Recommendation ITU-T Y.3162

Evaluating intelligence capability for network slice management and orchestration in IMT-2020 network and beyond

1 Scope

This Recommendation aims to evaluate the intelligence level for network slice management and orchestration in IMT-2020 network and beyond and mainly covers the following aspects:

- Overview of intelligent network slice management and orchestration;
- Intelligence level definition of network slice management and orchestration;
- Evaluation methods of network slice management and orchestration;
- Framework and procedure for evaluating intelligence levels of each phase.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T M.3080]	Recommendation ITU-T M.3080 (2021), <i>Framework of artificial intelligence</i> enhanced telecom operation and management (AITOM).
[ITU-T Y.3153]	Recommendation ITU-T Y.3153 (2019), Network slice orchestration and management for providing network services to 3rd party in the IMT-2020 network.
[ITU-T Y.3156]	Recommendation ITU-T Y.3156 (2020), Framework of network slicing with AI-assisted analysis in IMT-2020 networks.
[ITU-T Y.3173]	Recommendation ITU-T Y.3173 (2020), Framework for evaluating intelligence levels of future networks including IMT-2020.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 IMT-2020 [b-ITU-T Y.3100]: Systems, system components, and related technologies that provide far more enhanced capabilities than those described in [b-ITU-R M.1645].

3.1.2 management [b-ITU-T Y.3100]: In the context of IMT-2020, the processes aiming at fulfilment, assurance, and billing of services, network functions, and resources in both physical and virtual infrastructure including compute, storage, and network resources.

3.1.3 orchestration [b-ITU-T Y.3100]: In the context of IMT-2020, the processes aiming at the automated arrangement, coordination, instantiation and use of network functions and resources for both physical and virtual infrastructures by optimization criteria.

3.1.4 network slice [b-ITU-T Y.3100]: A logical network that provides specific network capabilities and network characteristics.

3.1.5 network intelligence level [ITU-T Y.3173]: Level of application of automation capabilities including those enabled by the integration of artificial intelligence techniques in the network.

3.2 Terms defined in this Recommendation

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

- 3GPP 3rd Generation Partnership Project
- AI Artificial Intelligence
- M&O Management & Orchestration
- RAN Radio Access Network
- SLA Service Level Agreement
- SMOS Slice Management and Orchestration System

5 Conventions

The keywords "is required to" indicate a requirement which must be strictly followed and from which no deviation is permitted if conformance to this document is to be claimed.

The keywords "is recommended" indicate a requirement which is recommended but which is not absolutely required. Thus, this requirement need not be present to claim conformance.

The keyword "may" indicates an optional requirement which is permissible, without implying any sense of being recommended. This term is not intended to imply that the vendor's implementation must provide the option and the feature can be optionally enabled by the network operator/service provider. Rather, it means the vendor may optionally provide the feature and still claim conformance with the specification.

In the body of this document and its annexes, the words shall, shall not and should, sometimes appear, in which case they are to be interpreted, respectively, as is required to, is prohibited from and is recommended. The appearance of such phrases or keywords in an appendix or in material explicitly marked as informative are to be interpreted as having no normative intent.

6 Overview of intelligent network slice management and orchestration

6.1 Functional architecture of network slice management and orchestration

Figure 1 – Functional architecture of network slice management and orchestration [ITU-T Y.3153]

The network slice management and orchestration provides a complete set of network functions, which is required to support customer services over different network domains. The functional architecture consists of four entities described in [ITU-T Y.3153]: network slice customer, capability exposure, slice management and orchestration and resource management. Once capability exposure accepts a network slice requirement from a customer, the requirement is sent to the slice management and orchestration to instantiate, modify or release a network slice instance. The responsibilities of resource management are to manage the lifecycle of required network functions and corresponding virtualized resources respectively.

6.2 Workflow of network slice management and orchestration

The workflow of network slice management and orchestration is summarized from [ITU-T Y.3153] and [b-3GPP TS28.530]. It consists of the following five phases.

- 1) Preparation. The main aim of this phase is to prepare a slice instance. It includes operations such as network slice design, network slice capacity planning, preparation of network environment.
- 2) Commissioning. The main aim of this phase is to create a slice instance. It includes operations such as resource allocation and network configuration.
- 3) Maintenance. The main aim of this phase is to ensure that the network slice runs in a normal state. It includes operations such as function monitoring and resource modification.
- 4) Optimization. The main aim of this phase is to increase the performance and efficiency of a network slice. It includes operations such as resource adjustment and network topology adjustment.
- 5) Decommissioning. The main aim of this phase is to terminate a slice instance. It includes operations such as releasing resources and configuration.

6.3 Intelligent network slice management and orchestration

Slice management and orchestration is the main part in which AI is deployed and is shown in Figure 2. AI empowers slice management and orchestration and makes it intelligent. In detail, cross-domain intelligence and single domain intelligence are achieved with an AI engine, which is added to telecom operation and management [ITU-T M.3080] and will be an indispensable part of the future network.

NOTE – AI engine: The realization and mechanization, in software or hardware, of one or more functions dedicated to performing a specific AI task.

The cross-domain intelligence may include the automatic translation of customers' intent and automatic creation of slice templates and the single domain intelligence may include network resource prediction and abnormal detection in a single domain.

Applying AI to network slice management and orchestration is manifold, and includes in particular the following aspects:

- Resource allocation: AI capabilities facilitate allocating resources to network slices to provide the required network slice performance and avoid service level agreement (SLA) violation.
- Fault management: AI can automate the process of detecting, isolating and resolving faults for network slice and ensure its continuous and reliable operation by minimizing downtime.
- Security management: the AI-based attack detection enables faster attack identification, remediation and slice reconfiguration.
- Multiobjective optimization: AI-based algorithms can be used for simultaneous optimization of multiple goals, for example, resource consumption and energy consumption.

7 Methods for evaluating the intelligence levels of network slicing

7.1 Dimensions

Being consistent with [ITU-T Y.3173], this Recommendation makes use of the following five dimensions to evaluate intelligence levels of network slice management and orchestration, including demand mapping, data collection, analysis, decision and action implementation. The explanations of dimensions can refer to [ITU-T Y.3173]. For each dimension, intelligence capability level is identified by human, human and slice management and orchestration System (SMOS), and SMOS. "Human" represents cases in which all operations are performed by a humans. SMOS represents cases in which all operations are performed by the system without human intervention. Human & SMOS represents hybrid operations.

4 Rec. ITU-T Y.3162 (04/2024)

7.2 Intelligence levels

Being consistent with [ITU-T Y.3173], this Recommendation makes use of six intelligence levels (i.e., L0–L5) to evaluate network slice management and orchestration. Intelligence levels and corresponding explanations are defined as follows.

- L0: Manual network operation. All operations of network slice management and orchestration are performed by a human.
- L1: Assisted network operation. Operations of data collection and action implementation are partly performed by a human and SMOS.
- L2: Preliminary intelligence. All operations of action implementation are performed by SMOS while operations of data collection and analysis are partly performed by a human and SMOS.
- L3: Intermediate intelligence. All operations of action implementation and data collection are performed by SMOS. Operations of analysis and decision are partly performed by a human and SMOS.
- L4: Advanced intelligence. All operations of action implementation, data collection, analysis and decision are performed by SMOS. Operations of demand mapping are partly performed by a human and SMOS.
- L5: Full intelligence. All operations of network slice management and orchestration are performed by SMOS automatically without human invention.

7.3 Basic method

As shown in Table 1, each intelligence level is determined with the following five widely applicable dimensions: demand mapping, data collection, analysis, decision, action implementation.

Intelligence levels		Dimensions				
		Action implementation	Data collection	Analysis	Decision	Demand mapping
LO	Manual network operation	Human	Human	Human	Human	Human
L1	Assisted network operation	Human & SMOS	Human & SMOS	Human	Human	Human
L2	Preliminary intelligence	SMOS	Human & SMOS	Human	Human	Human
L3	Intermediate intelligence	SMOS	SMOS	Human & SMOS	Human	Human
L4	Advanced intelligence	SMOS	SMOS	SMOS	Human & SMOS	Human
L5	Full intelligence	SMOS	SMOS	SMOS	SMOS	SMOS

Table 1 – Intelligence levels of network slice management and orchestration

The above five dimensions are applicable to workflow intelligence level described in [ITU-T Y.3173] so they can be applied to the workflow of network slice management and orchestration in order to determine the intelligence level of each phase, as shown in Figure 3. So, the intelligence level of the network slice management and orchestration is the lowest intelligence level among all phases.

Figure 3 – Evaluating intelligence levels by dimensions

Each dimension in one phase is further divided into tasks, which represent more detailed operations in this dimension, since it is easier to infer the intelligence capability level of a task. For example, the demand mapping of the preparation phase is consisted of an intent collection task and intent translation task. The intelligence capability level of the task is also identified by human, human and SMOS, and SMOS. Then, the intelligent capabilities of all tasks comprising a dimension are used to deduce the intelligence capability level of the dimension.

Overall, the intelligence levels of network slice management and orchestration are obtained by the following steps.

- 1) Determine tasks of dimensions. Each dimension of a given phase is divided into tasks with more specific operations.
- 2) Determine intelligence capability level of tasks. The intelligence capability level of a task is determined by the ratio of human intervention.
- 3) Determine the intelligence capability level of a dimension. The intelligence capability of a given dimension is determined by the ratio of human intervention in all tasks comprising the dimension.
- 4) Determine the intelligence level of a phase. The intelligence level of a given phase is determined by selecting the minimum intelligence capability level across all dimensions.
- 5) Determine the intelligence level of network slice management and orchestration. The overall intelligence level of network slice management and orchestration is determined by selecting the minimum intelligence level of all phases.

8 Framework and procedure for evaluating intelligence levels of each phase

8.1 Overview

Evaluating the intelligence level of a phase in the workflow of network slice management of orchestration is mainly conducted as follows.

6 Rec. ITU-T Y.3162 (04/2024)

Firstly, the tasks of each dimension for a given phase are determined. Table 2 summarizes the tasks of each dimension for the five phases of the network slice management and orchestration. Operations and descriptions of all tasks are detailed in the following subclauses.

Next, the intelligence capability level of a task is determined, and then the intelligence capability level of a dimension and intelligence level of a phase are determined sequentially. The intelligence capability level of a task equals that of a dimension if there is only one task in a dimension. Otherwise, it is determined by the ratio of human intervention in all tasks comprising the dimension. The intelligence level of a phase is finally determined by the minimum intelligence capability level across all dimensions. In summary, a mapping relation is established between the intelligence capability level of tasks and intelligence level of a phase.

	Dimensions					
Phases	Demanding mapping	Data collection	Analysis	Decision	Action implementation	
Preparation	Task1: Intent collection Task2: Intent translation	Task1: Network resource collection	Task1: Network resource analysis Task2: Network slicing estimation	Task1: Network resource orchestration	Task1: Network slice template generation	
Commissioning	Task1: Intent collection Task2: Intent translation	Task1: Network resource collection	Task1: Network capability analysis Task2: SLA analysis	Task1: Deployment strategy generation	Task1: Network slice creation and commissioning	
Maintenance	Task1: Intent translation	Task1: Network slice state monitoring	Task1: Network slice state analysis	Task1: Maintenance strategy generation	Task1: Maintenance operation	
Optimization	Task1: Intent translation	Task1: Network slice state monitoring	Task1: Network slice state prediction	Task1: Optimization strategy generation	Task1: Network slice optimization execution	
Decommissioning	Task1: Intent translation	Task1: Network slice state monitoring	Task1: Network slice state analysis Task2: Network slice state prediction	Task1: Decommissioning strategy generation	Task1: Decommissioning execution	

 $Table \ 2-Tasks \ of \ network \ slice \ management \ and \ or chestration$

8.2 Grading method and procedure for the preparation phase

8.2.1 Task

Figure 4 – Generic flow for the preparation phase

The generic flow and tasks in dimensions for the preparation phase are shown in Figure 4. The detailed description of tasks classified by dimensions is as follows:

- Tasks of demand mapping.
 - 1) Intent collection: Collect the intent of customers to network slice in various application scenarios through comprehensive communication with them and finally form an intent set of network slice.
 - 2) Intent translation: Convert the intent of customers for network slicing into requirements of network slice, including network slicing performance, network slicing function and customer's category.
- Tasks of data collection.
 - 1) Network resource collection: Collect the information of network resources, network configuration and network operation in order to obtain the information of network infrastructure.
- Tasks of analysis.
 - 1) Network resource analysis: Make an analysis on the data of network resources and obtain network capabilities to support network slices.
 - 2) Network slicing estimation: Estimate the range of network slicing capabilities with customer's requirements and network resources.
- Tasks of decision.
 - 1) Network resource orchestration: Orchestrate the underlying network resources for different network slices and classify network slices.
- Tasks of action implementation.
 - Network slice template generation: Generate generic network slice templates with different network slice capabilities. In addition, generate a specific network slice template for requirements of customer that cannot satisfied by the generic network slice template.

ł
ł

	Action implementation	Data collection	Ana	lysis	Decision	Demand	mapping
LO	Network slice template generation	Network resource collection	Network resource analysis	Network slicing estimation	Network resource orchestration	Intent collection	Intent translation
L1	Network slice template generation	Network resource collection	Network resource analysis	Network slicing estimation	Network resource orchestration	Intent collection	Intent translation
L2	Network slice template generation	Network resource collection	Network resource analysis	Network slicing estimation	Network resource orchestration	Intent collection	Intent translation
					•		
L3	Network slice template generation	Network resource collection	Network resource analysis	Network slicing estimation	Network resource orchestration	Intent collection	Intent translation
					•		
L4	Network slice template generation	Network resource collection	Network resource analysis	Network slicing estimation	Network resource orchestration	Intent collection	Intent translation
L5	Network slice template generation	Network resource collection	Network resource analysis	Network slicing estimation	Network resource orchestration	Intent collection	Intent translation
	Н	uman	Hybrid	S	SMOS		Y.3162(24)

Figure 5 – **Grading method for the preparation phase**

The general grading method for the preparation phase, which is consistent with Table 1, is shown in Figure 5, and the detailed descriptions are as follows:

- L0 (Manual network operation): All tasks are performed by a human.
- L1 (Assisted network operation): Network slice template generation task and network resource collection task are performed by a human and SMOS while other tasks are performed by a human.
- L2 (Preliminary intelligence): Network slice template generation task is fully performed by SMOS. Besides network resource collection task, network resource analysis task and network slicing estimation task are performed by a human and SMOS. Other tasks are performed by a human.
- L3 (Intermediate intelligence): Besides the network slice template generation task, the network resource collection task is fully performed by SMOS. Besides the network resource analysis task, the network slicing estimation task and network resource orchestration task is performed by a human and SMOS. Other tasks are performed by a human.
- L4 (Advanced intelligence): Intent collection tasks and intent translation tasks are performed by a human and SMOS. Other tasks are fully performed by a SMOS.
- L5 (Full intelligence): All tasks are fully performed by a SMOS.

8.3 Grading method and procedure for the commissioning phase

8.3.1 Task

Figure 6 – **Generic flow for the commissioning phase**

The generic flow and tasks in dimensions for commissioning phase are shown in Figure 6. The detailed description of tasks classified by dimensions is as follows:

- Tasks of demand mapping.
 - 1) Intent collection: Collect specific requirements of customers for network slicing.
 - 2) Intent translation: Select a suitable network slice template for the requirements of customers.
- Tasks of data collection.
 - 1) Network resource collection: Collect the data of network resources status, network configuration and network operation, etc.
- Tasks of analysis.
 - 1) Network capability analysis: Make a comprehensive analysis with current network resource information and obtain the network capabilities.
 - 2) SLA analysis: Compare SLA requirements of network slices to network capabilities and analyse the possibility to create a network slice with the selected network slice template.
- Tasks of decision.
 - 1) Deployment strategy generation: Generate a deployment strategy with the above analysis results.
- Tasks of action implementation.
 - 1) Network slice creation and commissioning: Create a new network slice with the selected network slice template and deploy it for customers with specified strategy.

8.3.2 Grading method

	Action implementation	Data collection	Anal	lysis	Decision	Demand	mapping
L0	Network slice creation and commissioning	Network resource collection	Network resource analysis	SLA analysis	Deployment strategy generation	Intent collection	Intent translation
L1	Network slice creation and commissioning	Network resource collection	Network resource analysis	SLA analysis	Deployment strategy generation	Intent collection	Intent translation
L2	Network slice creation and commissioning	Network resource collection	Network resource analysis	SLA analysis	Deployment strategy generation	Intent collection	Intent translation
L3	Network slice creation and commissioning	Network resource collection	Network resource analysis	SLA analysis	Deployment strategy generation	Intent collection	Intent translation
L4	Network slice creation and commissioning	Network resource collection	Network resource analysis	SLA analysis	Deployment strategy generation	Intent collection	Intent translation
L5	Network slice creation and commissioning	Network resource collection	Network resource analysis	SLA analysis	Deployment strategy generation	Intent collection	Intent translation
	Н	uman	Hybrid	S	SMOS		Y.3162(24)

Figure 7 – **Grading method for the commissioning phase**

The general grading method for the commissioning phase, which is consistent with Table 1, is shown in Figure 7, and the detailed descriptions are as follows:

- L0 (Manual network operation): All tasks are performed by a human.
- L1 (Assisted network operation): Network slice creation and the commissioning task and network resource collection task are performed by a human and SMOS while other tasks are performed by a human.
- L2 (Preliminary intelligence): The network slice creation and commissioning task is fully performed by SMOS. Besides the network resource collection task, the network capability analysis task and SLA analysis task are performed by a human and SMOS. Other tasks are performed by a human.
- L3 (Intermediate intelligence): Besides network slice creation and commissioning task, the network resource collection task is fully performed by SMOS. Besides the network capability analysis task and SLA analysis task, the deployment strategy generation task is performed by a human and SMOS. Other tasks are performed by a human.
- L4 (Advanced intelligence): Intent collection tasks and intent translation tasks are performed by a human and SMOS. Other tasks are fully performed by SMOS.
- L5 (Full intelligence): All tasks are fully performed by SMOS.

8.4 Grading method and procedure for the maintenance phase

8.4.1 Task

Figure 8 – Generic flow for the maintenance phase

The generic flow and tasks in dimensions for the maintenance phase are shown in Figure 8. The detailed description of tasks classified by dimensions is as follows:

- Tasks of demand mapping.
 - 1) Intent translation: Convert requirements of SLA into requirements of network slice maintenance.
- Tasks of data collection.
 - 1) Network slice state monitoring: Monitor running state of network slice and network infrastructure and collect their running data, including network slice configuration, slice topology, network slice performance, network configuration, network topology and network performance.
- Tasks of analysis.
 - 1) Network slice state analysis: Analysis on the data of network slice and network infrastructure and judgement on whether they meet the requirements of network slice maintenance. This task also includes recognition of abnormal behaviour or failure of the network slices and network infrastructure.
- Tasks of decision.
 - 1) Maintenance strategy generation: Generate a maintenance strategy according to the requirements of network slice maintenance and the running state of network slices and network infrastructure. In particular, generate a solution for any failure.
- Tasks of action implementation.
 - 1) Maintenance operation: Execute maintenance operations with the generated strategy including trouble shooting if an error occurs.

8.4.2 Grading method

Figure 9 – **Grading method for the maintenance phase**

The general grading method for the maintenance phase, which is consistent with Table 1, is shown in Figure 9, and the detailed descriptions are as follows:

- L0 (Manual network operation): All tasks are performed by a human.
- L1 (Assisted network operation): Maintenance operation task and network slice state monitoring task are performed by a human and SMOS while other tasks are performed by a human.
- L2 (Preliminary intelligence): Maintenance operation task is fully performed by SMOS.
 Besides network slice state monitoring task, network slice state analysis task is performed by a human and SMOS. Other tasks are performed by a human.
- L3 (Intermediate intelligence): Besides the maintenance operation task, the network slice state monitoring task is fully performed by SMOS. Besides network slice state analysis task, the maintenance strategy generation task is performed by a human and SMOS. Other tasks are performed by a human.
- L4 (Advanced intelligence): The intent translation task is performed by a human and SMOS. Other tasks are fully performed by SMOS.
- L5 (Full intelligence): All tasks are fully performed by SMOS.

8.5 Grading method and procedure for the optimization phase

8.5.1 Task

Figure 10 – **Generic flow for the optimization phase**

The generic flow and tasks in dimensions for the optimization phase is shown in Figure 10. The detailed description of tasks classified by dimensions is as follows:

- Tasks of demand mapping.
 - 1) Intent translation: Convert requirements of SLA into requirements of network slice optimization.
- Tasks of data collection.
 - 1) Network slice state monitoring: Monitor the running state of the network slice and network infrastructure, and collect their running data, including network slice configuration, network slice topology, network slice performance, network configuration, network topology and network performance.
- Tasks of analysis.
 - 1) Network slice state prediction: Analyse the running data of the network slice and network infrastructure and make a prediction for the future performance of the network slice.
- Tasks of decision.
 - 1) Optimization strategy generation: Generate an optimization strategy for network slices according to the prediction for network slices.
- Tasks of action implementation.
 - 1) Optimization execution: Implement an optimization strategy for network slices, in order to guarantee SLA requirements all the time.

8.5.2 Grading method

Figure 11 – Grading method for the optimization phase

The general grading method for the optimization phase, which is consistent with Table 1, is shown in Figure 11, and the detailed descriptions are as follows:

- L0 (Manual network operation): All tasks are performed by a human.
- L1 (Assisted network operation): Optimization execution task and network slice state monitoring task are performed by a human and SMOS while other tasks are performed by a human.
- L2 (Preliminary intelligence): The optimization execution task is fully performed by SMOS. Besides the network slice state monitoring task, the network slice state prediction task is performed by a human and SMOS. Other tasks are performed by a human.
- L3 (Intermediate intelligence): Besides the optimization execution task, the network slice state monitoring task is fully performed by SMOS. Besides the network slice state prediction task, optimization strategy generation task is performed by a human and SMOS. Other tasks are performed by a human.
- L4 (Advanced intelligence): The intent translation task is performed by a human and SMOS. Other tasks are fully performed by SMOS.
- L5 (Full intelligence): All tasks are fully performed by SMOS.

8.6 Grading method and procedure for the decommissioning phase

8.6.1 Task

Figure 12 – **Generic flow for the decommissioning phase**

The generic flow and tasks in dimensions for the decommissioning phase are shown in Figure 12. The detailed description of tasks classified by dimensions is as follows:

- Tasks of demand mapping.
 - 1) Intent translation: Convert requests of decommissioning from customers for unused network slice or from the system for inactive network slice into decommissioning requirements.
- Tasks of data collection.
 - 1) Network slice state monitoring: Monitor the running state of the network slice and collect data including operation and service data.
- Tasks of analysis.
 - 1) Network slice state analysis: Analyse the data to find inactive network slice.
 - 2) Network slice state prediction: Make a prediction for the trend of network slice usage.
- Tasks of decision.
 - 1) Decommissioning strategy generation: Determine the network slice that will be decommissioned and generate a corresponding decommissioning strategy.
- Tasks of action implementation.
 - 1) Decommissioning execution: Execute decommissioning command for selected network slice with the strategy.

8.6.2 Grading method

Figure 13 – **Grading method for the decommissioning phase**

The general grading method for the decommissioning phase, which is consistent with Table 1, is shown in Figure 13, and the detailed descriptions are as follows:

- L0 (Manual network operation): All tasks are performed by a human.
- L1 (Assisted network operation): Decommissioning execution task and network slice state monitoring task are performed by a human and SMOS while other tasks are performed by a human.
- L2 (Preliminary intelligence): The decommissioning execution task is fully performed by SMOS. Besides the network slice state monitoring task, the network slice state analysis task and network slice state prediction task are performed by a human and SMOS. Other tasks are performed by a human.
- L3 (Intermediate intelligence): Besides the decommissioning execution task, the network slice state monitoring task is fully performed by SMOS. Besides the network slice state analysis task and network slice state prediction task, the decommissioning strategy task is performed by a human and SMOS. Other tasks are performed by a human.
- L4 (Advanced intelligence): The intent translation task is performed by a human and SMOS. Other tasks are fully performed by SMOS.
- L5 (Full intelligence): All tasks are performed by SMOS.

9 Security considerations

This Recommendation describes the methods to evaluate the intelligence levels of network slice management and orchestration. Thus, the security considerations in [ITU-T Y.3156] and [ITU-T Y.3173] are applicable to this Recommendation.

Bibliography

[b-ITU-T Y.3100]	Recommendation ITU-T Y.3100 (2017), Terms and definitions for IMT-2020 network.
[b-ITU-R M.1645]	Recommendation ITU-R M.1645 (2003), Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000.
[b-3GPP TS28.530]	Technical Specification 3GPP TS28.530 v17.4.0 (2023), Management and orchestration; Concepts, use cases and requirements.

SERIES OF ITU-T RECOMMENDATIONS

E.

Series A	Organization of the work of ITU-T
Series D	Tariff and accounting principles and international telecommunication/ICT economic and policy issues
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Telephone transmission quality, telephone installations, local line networks
Series Q	Switching and signalling, and associated measurements and tests
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
Series Z	Languages and general software aspects for telecommunication systems