
Superseded by a more recent version

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.100
TELECOMMUNICATION (03/93)
STANDARDIZATION SECTOR
OF ITU

PROGRAMMING LANGUAGES

CCITT SPECIFICATION AND DESCRIPTION
LANGUAGE (SDL)

ITU-T Recommendation Z.100
Superseded by a more recent version

(Previously “CCITT Recommendation”)

Superseded by a more recent version

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Telecom-
munication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

ITU-T Recommendation Z.100 was revised by the ITU-T Study Group X (1988-1993) and was approved by the WTSC
(Helsinki, March 1-12, 1993).

NOTES

1 As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT
ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was
created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the
Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing
the acronyms “CCITT, CCIR or IFRB” or their associated entities such as Plenary Assembly, Secretariat, etc. Future
editions of this Recommendation will contain the proper terminology related to the new ITU structure.

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version i

TABLE OF CONTENTS

Page

1 Introduction to SDL.. 1

1.1 Introduction... 1

1.1.1 Objective ... 1

1.1.2 Application .. 1

1.1.3 System specification.. 2

1.2 SDL grammars .. 2

1.3 Basic definitions.. 3

1.3.1 Definition, type and instance... 3

1.3.2 Environment .. 5

1.3.3 Errors... 5

1.4 Presentation style .. 5

1.4.1 Division of text.. 5

1.4.2 Titled enumeration items... 5

1.5 Metalanguages .. 7

1.5.1 Meta IV ... 7

1.5.2 BNF ... 9

1.5.3 Metalanguage for graphical grammar.. 10

1.6 Differences to SDL-88 .. 11

2 Basic SDL... 13

2.1 Introduction... 13

2.2 General rules ... 13

2.2.1 Lexical rules .. 13

2.2.2 Visibility rules, names and identifiers ... 16

2.2.3 Informal text .. 20

2.2.4 Drawing rules .. 20

2.2.5 Partitioning of diagrams .. 20

2.2.6 Comment ... 21

2.2.7 Text extension ... 22

2.2.8 Text symbol... 22

2.3 Basic data concepts ... 22

2.3.1 Data type definitions ... 23

2.3.2 Variable ... 23

2.3.3 Values and literals. .. 23

2.3.4 Expressions.. 23

2.4 System structure .. 23

2.4.1 Organisation of SDL specifications... 23

2.4.1.1 Framework .. 23

2.4.1.2 Package.. 24

2.4.1.3 Referenced definition .. 26

2.4.2 System ... 28

2.4.3 Block ... 30

2.4.4 Process... 32

2.4.5 Service... 37

2.4.6 Procedure... 39

2.5 Communication ... 42

2.5.1 Channel.. 42

2.5.2 Signal route ... 44

Superseded by a more recent version

ii Recommendation Z.100 (03/93) Superseded by a more recent version

Page

2.5.3 Connection .. 47

2.5.4 Signal... 48

2.5.5 Signal list definition .. 49

2.6 Behaviour .. 50

2.6.1 Variables.. 50

2.6.1.1 Variable definition... 50

2.6.1.2 View definition.. 51

2.6.2 Start ... 51

2.6.3 State... 52

2.6.4 Input .. 53

2.6.5 Save ... 55

2.6.6 Spontaneous transition .. 56

2.6.7 Label.. 57

2.6.8 Transition .. 58

2.6.8.1 Transition body ... 58

2.6.8.2 Transition terminator ... 59

2.6.8.2.1 Nextstate .. 59

2.6.8.2.2 Join .. 60

2.6.8.2.3 Stop.. 60

2.6.8.2.4 Return .. 61

2.7 Action.. 62

2.7.1 Task ... 62

2.7.2 Create .. 63

2.7.3 Procedure call .. 64

2.7.4 Output.. 65

2.7.5 Decision... 68

2.8 Timer... 70

2.9 Internal input and output ... 71

2.10 Examples ... 72

3 Structural Decomposition Concepts in SDL... 82

3.1 Introduction... 82

3.2 Partitioning.. 82

3.2.1 General .. 82

3.2.2 Block partitioning.. 83

3.2.3 Channel partitioning .. 86

3.3 Refinement .. 89

4 Additional Concepts of Basic SDL... 91

4.1 Introduction... 91

4.2 Macro .. 91

4.2.1 Lexical rules .. 91

4.2.2 Macro definition .. 91

4.2.3 Macro call.. 95

4.3 Generic system definition.. 97

4.3.1 External synonym.. 97

4.3.2 Simple expression.. 97

4.3.3 Optional definition .. 98

4.3.4 Optional transition string... 100

4.4 Asterisk state ... 102

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version iii

Page

4.5 Multiple appearance of state ... 103

4.6 Asterisk input .. 103

4.7 Asterisk save ... 103

4.8 Implicit transition .. 103

4.9 Dash nextstate ... 104

4.10 Priority Input ... 104

4.11 Continuous signal.. 105

4.12 Enabling condition .. 106

4.13 Imported and Exported value .. 109

4.14 Remote procedures.. 112

5 Data in SDL.. 115

5.1 Introduction... 115

5.1.1 Abstraction in data types ... 115

5.1.2 Outline of formalisms used to model data... 115

5.1.3 Terminology .. 116

5.1.4 Division of text on data ... 116

5.2 The data kernel language .. 116

5.2.1 Data type definitions ... 116

5.2.2 Literals and parameterised operators... 119

5.2.3 Axioms .. 121

5.2.4 Conditional equations.. 124

5.3 Passive use of SDL data.. 125

5.3.1 Extended data definition constructs... 125

5.3.1.1 Special operators ... 126

5.3.1.2 Character string literals ... 127

5.3.1.3 Predefined data .. 128

5.3.1.4 Equality and noequality... 129

5.3.1.5 Boolean axioms ... 129

5.3.1.6 Conditional terms .. 130

5.3.1.7 Errors... 131

5.3.1.8 Ordering .. 132

5.3.1.9 Syntypes .. 132

5.3.1.9.1 Range condition... 134

5.3.1.10 Structure sorts.. 136

5.3.1.11 Inheritance... 137

5.3.1.12 Generators ... 139

5.3.1.12.1 Generator definition... 139

5.3.1.12.2 Generator transformation... 141

5.3.1.13 Synonyms ... 142

5.3.1.14 Name class literals... 143

5.3.1.15 Literal mapping ... 144

5.3.2 Operator definitions... 146

5.3.3 Use of data... 148

5.3.3.1 Expressions.. 148

5.3.3.2 Ground expressions ... 149

5.3.3.3 Synonym.. 150

5.3.3.4 Indexed primary .. 151

5.3.3.5 Field primary ... 151

Superseded by a more recent version

iv Recommendation Z.100 (03/93) Superseded by a more recent version

Page
5.3.3.6 Structure primary... 152
5.3.3.7 Conditional ground expression.. 153

5.4 Use of data with variables ... 153
5.4.1 Variable and data definitions... 153
5.4.2 Accessing variables ... 154

5.4.2.1 Active expressions... 154
5.4.2.2 Variable access .. 155
5.4.2.3 Conditional expression .. 155
5.4.2.4 Operator application .. 156

5.4.3 Assignment statement.. 157
5.4.3.1 Indexed variable .. 158
5.4.3.2 Field variable... 158
5.4.3.3 Default initialization.. 159

5.4.4 Imperative operators.. 160
5.4.4.1 Now expression ... 160
5.4.4.2 Import expression .. 161
5.4.4.3 PId expression ... 161
5.4.4.4 View expression .. 162
5.4.4.5 Timer active expression... 162
5.4.4.6 Anyvalue expression ... 163

5.4.5 Value returning procedure call .. 163
5.4.6 External data.. 164

6 Structural Typing Concepts in SDL ... 166
6.1 Types, instances, and gates ... 166

6.1.1 Type definitions... 166
6.1.1.1 System type ... 166
6.1.1.2 Block type ... 167
6.1.1.3 Process type... 168
6.1.1.4 Service type ... 170

6.1.2 Type expression... 171
6.1.3 Definitions based on types .. 172

6.1.3.1 System definition based on system type.. 172
6.1.3.2 Block definition based on block type .. 173
6.1.3.3 Process definition based on process type .. 173
6.1.3.4 Service definition based on service type ... 174

6.1.4 Gate ... 175
6.2 Context parameter ... 177

6.2.1 Process context parameter ... 179
6.2.2 Procedure context parameter ... 179
6.2.3 Remote procedure context parameter .. 180
6.2.4 Signal context parameter ... 180
6.2.5 Variable context parameter.. 181
6.2.6 Remote variable context parameter ... 181
6.2.7 Timer context parameter.. 181
6.2.8 Synonym context parameter .. 181
6.2.9 Sort context parameter... 182

6.3 Specialization .. 182
6.3.1 Adding properties .. 182
6.3.2 Virtual type.. 183
6.3.3 Virtual transition/save ... 184

6.4 Examples ... 185

7 Transformation of SDL Shorthands ... 194
7.1 Transformation of additional concepts.. 194
7.2 Insertion of full qualifiers.. 198

Annex A – Index to articles 2 to 7 of Recommendation Z.100 (normative parts)... 200

Annex B – SDL Glossary .. 220

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version v

SUMMARY

Scope-objective

This Recommendation defines SDL (CCITT Specification and Description Language) intended for unambiguous
specification and description of telecommunications systems. The scope of SDL is elaborated in 1.1.1. This
Recommendation is a reference manual for the language.

Coverage

SDL has concepts for behaviour and data description as well as for structuring large systems. The basis of behaviour
description is extended finite state machines communicating by messages. The basis for data description is algebraic data
types. The basis for structuring is hierarchical decomposition and type hierarchies. These foundations of SDL are
elaborated in the respective main sections of the Recommendation. A distinctive feature of SDL is the graphical
representation.

Applications

SDL is applicable within standard bodies and industry. The main applications areas, which SDL has been designed for
are stated in 1.1.2, but SDL is generally suitable for describing reactive systems.

Status/Stability

This Recommendation is the complete language reference manual supported by guidelines for its usage in Appendix I.
Annex F gives a formal definition of SDL semantics.

Associated work

The main text is accompanied by annexes:

A Index of non-terminals and keywords

B Glossary

C Initial Algebra Model

D SDL Predefined Data

E reserved for future use

F Formal Definition

And appendices:

I SDL Methodology Guidelines

II SDL Bibliography

One method for SDL usage within standards is described in Recommendation Q.65. A recommended strategy for
introducing a formal description technique like SDL in standards is available in Recommendation Z.110. References to
additional material on SDL, including information on industrial usage of SDL, can be found in Appendix III.

Background

Different versions of SDL have been recommended by CCITT since 1976. This version is a revision of Z.100,
ITU 1988.

Compared to SDL as defined in 1988, the version defined herein has been extended in the area of object-oriented
structuring to cope with object-oriented system modelling. Other minor extensions have been included, whereas care has
been taken not to invalidate existing SDL-88 documents. Details on the changes introduced can be found in 1.6

Keywords

Abstract data types, formal description technique, functional specification, graphical presentation, hierarchical
decomposition, object orientation, specification technique, state machine.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 1

Recommendation Z.100
Recommendation Z.100 (03/93) Superseded by a more recent version

CCITT SPECIFICATION AND DESCRIPTION LANGUAGE (SDL)

(Melbourne, 1988; revised in Helsinki, 1993)

1 Introduction to SDL

The text of clause 1 is not normative; rather it defines the conventions used for describing SDL. The usage of SDL in
this section is only illustrative. The metalanguages and conventions introduced are solely introduced for the purpose of
describing SDL unambigously.

1.1 Introduction

The purpose of recommending SDL (Specification and Description Language) is to provide a language for unambiguous
specification and description of the behaviour of telecommunications systems. The specifications and descriptions using
SDL are intended to be formal in the sense that it is possible to analyse and interpret them unambiguously.

The terms specification and description are used with the following meaning:

a) a specification of a system is the description of its required behaviour, and

b) a description of a system is the description of its actual behaviour.

A system specification, in a broad sense, is the specification of both the behaviour and a set of general parameters of the
system. However SDL is intended to specify the behavioural aspects of a system; the general parameters describing
properties like capacity and weight have to be described using different techniques.

NOTE – Since there is no distinction between use of SDL for specification and its use for description, the term
specification is in the subsequent text used for both required behaviour and actual behaviour.

1.1.1 Objective

The general objectives when defining SDL have been to provide a language that:

a) is easy to learn, use and interpret;

b) provides unambiguous specification for ordering and tendering;

c) may be extended to cover new developments;

d) is able to support several methodologies of system specification and design, without assuming any
particular methodology.

1.1.2 Application

This Recommendation is the reference manual for SDL. A methodology guidelines document which gives examples of
SDL usage is available as Appendix I.

The main area of application for SDL is the specification of the behaviour of aspects of real time systems. Applications
include:

a) call processing (e.g. call handling, telephony signalling, metering) in switching systems;

b) maintenance and fault treatment (e.g. alarms, automatic fault clearance, routine tests) in general
telecommunications systems;

c) system control (e.g. overload control, modification and extension procedures);

d) operation & maintenance functions, network management;

e) data communication protocols;

f) telecommunications services.

Superseded by a more recent version

2 Recommendation Z.100 (03/93) Superseded by a more recent version

SDL can, of course, be used for the functional specification of the behaviour of any object whose behaviour can be
specified using a discrete model; i.e. the object communicates with its environment by discrete messages.

SDL is a rich language and can be used for both high level informal (and/or formally incomplete) specifications,
semi-formal and detailed specifications. The user must choose the appropriate parts of SDL for the intended level of
communication and the environment in which the language is being used. Depending on the environment in which a
specification is used then many aspects may be left to the common understanding between the source and the destination
of the specification.

Thus SDL may be used for producing:

a) facility requirements;

b) system specifications;

c) CCITT Recommendations;

d) system design specifications;

e) detailed specifications;

f) system design descriptions (both high level and detailed);

g) system testing descriptions

and the user organization can choose the appropriate level of application of SDL.

1.1.3 System specification

An SDL specification defines a system behaviour in a stimulus/response fashion, assuming that both stimuli and
responses are discrete and carry information. In particular a system specification is seen as the sequence of responses to
any given sequence of stimuli.

The system specification model is based on the concept of communicating extended finite state machines.

SDL also provides structuring concepts which facilitate the specification of large and/or complex systems. These
constructs allow the partitioning of the system specification into manageable units that may be handled and understood
independently. Partitioning may be performed in a number of steps resulting in a hierarchical structure of units defining
the system at different levels.

1.2 SDL grammars

SDL gives a choice of two different syntactic forms to use when representing a system; a Graphic Representation
(SDL/GR), and a textual Phrase Representation (SDL/PR). As both are concrete representations of the same SDL, they
are equivalent. In particular they are both equivalent to an abstract grammar for the corresponding concepts.

A subset of SDL/PR is common with SDL/GR. This subset is called common textual grammar.

Figure 1.1 shows the relationships between SDL/PR, SDL/GR, the concrete grammars and the abstract grammar.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 3

T1007150-92/d01SDL/PR

SDL/GR

Abstract grammar

Common textual grammar

Textual grammar

Graphical grammar

FIGURE 1.1/Z.100

SDL grammars

FIGURE 1.1/Z.100...[D01] = 3 CM

Each of the concrete grammars has a definition of its own syntax and of its relationship to the abstract grammar (i.e. how
to transform into the abstract syntax). Using this approach there is only one definition of the semantics of SDL; each of
the concrete grammars will inherit the semantics via its relations to the abstract grammar. This approach also ensures that
SDL/PR and SDL/GR are equivalent.

A formal definition of SDL is provided which defines how to transform a system specification into the abstract syntax
and defines how to interpret a specification, given in terms of the abstract grammar. The formal definition is given in
Annex F to this Recommendation.

1.3 Basic definitions

Some general concepts and conventions are used throughout this Recommendation, their definitions are given in the
following sections.

1.3.1 Definition, type and instance

In the Recommendation, the concepts of type and instance and their relationship are fundamental. The schema and
terminology defined below and shown in Figure 1.2 are used.

This section introduces the basic semantics of type definitions, instance definitions, parameterized type definitions,
parameterization, binding of context parameters, specialization and instantiation.

Superseded by a more recent version

4 Recommendation Z.100 (03/93) Superseded by a more recent version

T1007160-92/d02

With some context
parameters bound is

Parameterized type

Parameterizes
as With all context parameters

bound is

Definition Instance
Specializes as

FIGURE 2.2/Z.100

The type concept

Type Instantiates as

FIGURE 2.2/Z.100...[D02] = 3 CM

Definitions introduce named entities which are either types or instances. A definition of a type defines all properties
associated with that type. An example of an instance definition is a variable definition. An example of a definition which
is a type definition is a signal definition.

A type may be instantiated in any number of instances. An instance of a particular type has all the properties defined for
that type. An example of a type is a procedure, which may be instantiated by procedure calls.

A parameterized type is a type where some entities are represented as formal context parameters. A formal context
parameter of a type definition has a constraint. The constraints allow static analysis of the parameterized type. Binding
all the parameters of a parameterized type yields an ordinary type. An example of a parameterized type is a
parameterized signal definition where one of the sorts conveyed by the signal is specified by a formal sort context
parameter; this allows the parameter to be of different sorts in different contexts.

An instance is defined either directly or by the instantiation of a type. An example of an instance is a system instance
which can be defined by a system definition or be an instantiation of a system type.

Specialization allows one type, the subtype, to be based on another type, its supertype, by adding properties to those of
the supertype or by redefining virtual properties of the supertype. A virtual property may be constrained in order to
provide for analysis of general types.

Binding all context parameters of a parameterized type yields an unparameterized type. There is no supertype/subtype
relationship between a parameterized type and the unparameterized type derived from it.

Data type is a special kind of type (see 2.3 and 5).

NOTE – To avoid cumbersome text, the convention is used that the term instance may be omitted. For example “a system
is interpreted.......” means “a system instance is interpreted....”.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 5

1.3.2 Environment

Systems specified in SDL behave according to the stimuli received from the external world. This external world is called
the environment of the system being specified.

It is assumed that there are one or more process instances in the environment, and therefore signals flowing from the
environment towards the system have associated identities of these process instances. These processes have PId values
which are distinguishable from any of the PId values within the system (see Annex D, D.10).

Although the behaviour of the environment is non-deterministic, it is assumed to obey the constraints given by the
system specification.

1.3.3 Errors

A system specification is a valid SDL system specification only if it satisfies the syntactic rules and the static conditions
of SDL.

If a valid SDL specification is interpreted and a dynamic condition is violated then an error occurs. An interpretation of a
system specification which leads to an error means that the subsequent behaviour of the system cannot be derived from
the specification.

1.4 Presentation style

1.4.1 Division of text

The Recommendation is organized by topics described by an optional introduction followed by titled enumeration items
for:

a) Abstract grammar – Described by abstract syntax and static conditions for well-formedness.

b) Concrete textual grammar – Both the common textual grammar used for SDL/PR and SDL/GR and the
grammar used only for SDL/PR. This grammar is described by the textual syntax, static conditions and
well-formedness rules for the textual syntax, and the relationship of the textual syntax with the abstract
syntax.

c) Concrete graphical grammar – Described by the graphical syntax, static conditions and well-formedness
rules for the graphical syntax, the relationship of this syntax with the abstract syntax, and some additional
drawing rules (to those in 2.2.4).

d) Semantics – Gives meaning to a construct, provides the properties it has, the way in which it is interpreted
and any dynamic conditions which have to be fulfilled for the construct to behave well in the SDL sense.

e) Model – Gives the mapping for shorthand notations expressed in terms of previously defined strict
concrete syntax constructs.

f) Examples.

1.4.2 Titled enumeration items

Where a topic has an introduction followed by a titled enumeration item, then the introduction is considered to be an
informal part of the Recommendation presented only to aid understanding and not to make the Recommendation
complete.

If there is no text for a titled enumeration item the whole item is omitted.

Superseded by a more recent version

6 Recommendation Z.100 (03/93) Superseded by a more recent version

The remainder of this section describes the other special formalisms used in each titled enumeration item and the titles
used. It can also be considered as an example of the typographical layout of first level titled enumeration items defined
above where this text is part of an introductory section.

Abstract grammar

The abstract syntax notation is defined in 1.5.1.

If the titled enumeration item Abstract grammar is omitted, then there is no additional abstract syntax for the topic being
introduced and the concrete syntax will map onto the abstract syntax defined by another numbered text section.

The rules in the abstract syntax may be referred to from any of the titled enumeration items by use of the rule name in
italics.

The rules in the formal notation may be followed by paragraphs which define conditions which must be satisfied by a
well-formed SDL definition and which can be checked without interpretation of an instance. The static conditions at this
point refer only to the abstract syntax. Static conditions which are only relevant for the concrete syntax are defined after
the concrete syntax. Together with the abstract syntax the static conditions for the abstract syntax define the abstract
grammar of the language.

Concrete textual grammar

The concrete textual syntax is specified in the extended Backus-Naur Form of syntax description defined in 2.1/Z.200
(see also 1.5.2 of this Recommandation).

The textual syntax is followed by paragraphs defining the static conditions which must be satisfied in a well-formed text
and which can be checked without interpretation of an instance. Static conditions (if any) for the abstract grammar also
apply.

In many cases there is a simple relationship between the concrete and abstract syntax as a concrete syntax rule is simply
represented by a single rule in the abstract syntax. When the same name is used in the abstract and concrete syntax in
order to signify that they represent the same concept, then the text “<x> in the concrete syntax represents X in the
abstract syntax” is implied in the language description and is often omitted. In this context, case is ignored but
underlined semantic sub-categories are significant.

Concrete textual syntax which is not a shorthand form (derived syntax modelled by other SDL constructs) is strict
concrete textual syntax. The relationship from concrete textual syntax to abstract syntax is defined only for the strict
concrete textual syntax.

The relationship between concrete textual syntax and abstract syntax is omitted if the topic being defined is a shorthand
form which is modelled by other SDL constructs (see Model below).

Concrete graphical grammar

The concrete graphical syntax is specified in the extended Backus-Naur Form of syntax description defined in 1.5.3.

The graphical syntax is followed by paragraphs defining the static conditions which must be satisfied in well-formed
SDL/GR and which can be checked without interpretation of an instance. Static conditions (if any) for the abstract
grammar and relevant static conditions from the concrete textual grammar also apply.

The relationship between concrete graphical syntax and abstract syntax is omitted if the topic being defined is a
shorthand form which is modelled by other SDL constructs (see Model below).

In many cases there is a simple relationship between concrete graphical grammar diagrams and abstract syntax
definitions. When the name of a non-terminal ends in the concrete grammar with the word “diagram” and there is a name
in the abstract grammar which differs only by ending in the word definition, then the two rules represent the same
concept. For example, <system diagram> in the concrete grammar and System-definition in the abstract grammar
correspond.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 7

Expansion in the concrete syntax arising from such facilities as referenced definitions (2.4.1.3), macros (4.2) and literal
mappings (5.3.1.15), etc., must be considered before the correspondence between the concrete and the abstract syntax.
These expansions are detailed in clause 7.

Semantics

Properties are relations between different concepts in SDL. Properties are used in the well-formedness rules.

An example of a property is the set of valid input signal identifiers of a process. This property is used in the static
condition “For each State-node, all input Signal-identifiers (in the valid input signal set) appear in either a Save-signalset
or an Input-node”.

All instances have an identity property but unless this is formed in some unusual way this identity property is determined
as defined by the general section on identities in clause 2. This is usually not mentioned as an identity property. Also, it
has not been necessary to mention sub-components of definitions contained by the definition since the ownership of such
sub-components is obvious from the abstract syntax. For example, it is obvious that a block definition “has” enclosed
process definitions and/or a block substructure definition.

Properties are static if they can be determined without interpretation of an SDL system specification and are dynamic if
an interpretation of the same is required to determine the property.

The interpretation is described in an operational manner. Whenever there is a list in the Abstract Syntax, the list is
interpreted in the order given. That is, the Recommendation describes how the instances are created from the system
definition and how these instances are interpreted within an “abstract SDL machine”.

Dynamic conditions are conditions which must be satisfied during interpretation and cannot be checked without
interpretation. Dynamic conditions may lead to errors (see 1.3.3).

Model

Some constructs are considered to be “derived concrete syntax” (or a shorthand notation) for other equivalent concrete
syntax constructs. For example, omitting an input for a signal is derived concrete syntax for an input for that signal
followed by a null transition back to the same state.

Sometimes such “derived concrete syntax”, if expanded, would give rise to an extremely large (possibly infinite)
representation. Nevertheless, the semantics of such a specification can be determined.

Examples

The titled enumeration item Example(s) contains example(s).

1.5 Metalanguages

For the definition of properties and syntaxes of SDL different, metalanguages have been used according to the particular
needs.

In the following an introduction of the metalanguages used is given; where appropriate, only references to textbooks or
specific ITU publications are given.

1.5.1 Meta IV

The following subset of Meta IV is used to describe the abstract syntax of SDL.

A definition in the abstract syntax can be regarded as a named composite object (a tree) defining a set of
sub-components.

Superseded by a more recent version

8 Recommendation Z.100 (03/93) Superseded by a more recent version

For example the abstract syntax for view definition is

View-definition :: Variable-identifier

 Sort-reference-identifier

which defines the domain for the composite object (tree) named View-definition. This object consists of two
sub-components which in turn might be trees.

The Meta IV definition

Process-identifier = Identifier

expresses that a Process-identifier is an Identifier and therefore cannot syntactically be distinguished from other
identifiers.

An object might also be of some elementary (non-composite) domains. In the context of SDL, these are:

a) Integer objects

Example.

 Number-of-instances :: Intg [Intg]

 Number-of-instances denotes a composite domain containing one mandatory integer (Intg) value and one
optional integer ([Intg]) denoting respectively the initial number and the optional maximum number of
instances.

b) Quotation objects

 These are represented as any bold face sequence of uppercase letters and digits.

Example.

 Destination = Process-identifier | Service-identifier | ENVIRONMENT

 The Destination is either a Process-identifier, Service-identifier or the environment which is denoted by
the quotation ENVIRONMENT.

c) Token objects

 Token denotes the domain of tokens. This domain can be considered to consist of a potentially infinite set
of distinct atomic objects for which no representation is required.

Example.

 Name :: Token

 A name consists of an atomic object such that any Name can be distinguished from any other name.

d) Unspecified objects

 An unspecified object denotes domains which might have some representation, but for which the
representation is of no concern in this Recommendation.

Example.

 Informal-text :: ...

 Informal-text contains un object which is not interpreted.

The following operators (constructors) in BNF (see 1.5.2) are also used in the abstract syntax: “*” for possible empty
list, “+” for non-empty list, “|” for alternative, and “[” “]” for optional.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 9

Parentheses are used for grouping of domains which are logically related.

Finally, the abstract syntax uses another postfix operator “-set” yielding a set (unordered collection of distinct objects).

example

Process-graph :: Process-start-node State-node-set

A Process-graph consists of a Process-start-node and a set of State-nodes.

1.5.2 BNF

In the Backus-Naur Form, a terminal symbol is either indicated by not enclosing it within angle brackets (that is, the
less-than sign and greater-than sign, <and>) or it is one of the two representations <name> and <character string>. Note
that the two special terminals <name> and <character string> may also have semantics stressed as defined below.

The angle brackets and enclosed word(s) are either a non-terminal symbol or one of the two terminals <character string>
or <name>. Syntactic categories are the non-terminals indicated by one or more words enclosed between angle brackets.
For each non-terminal symbol, a production rule is given either in concrete textual grammar or in graphical grammar.
For example,

<textual block reference> ::=

 block <block name> referenced <end>

A production rule for a non-terminal symbol consists of the non-terminal symbol at the left-hand side of the symbol ::=,
and one or more constructs, consisting of non-terminal and/or terminal symbol(s) at the right-hand side. For example,
<textual block reference>, <block name> and <end> in the example above are non-terminals; block and referenced are
terminal symbols.

Sometimes the symbol includes an underlined part. This underlined part stresses a semantic aspect of that symbol,
e.g. <block name> is syntactically identical to <name>, but semantically it requires the name to be a block name.

At the right-hand side of the ::= symbol several alternative productions for the non-terminal can be given, separated by
vertical bars (|). For example,

<block area> ::=

 <block diagram>

 | <existing typebased block definition>

 | <graphical block reference>

 | <graphical typebased block definition>

expresses that a <block area> is either a <graphical block reference>, a <block diagram>, a <graphical typebased block
definition> or an <existing typebased block definition>.

Syntactic elements may be grouped together by using curly brackets ({ and }), similar to the parentheses in Meta IV
(see 1.5.1). A curly bracketed group may contain one or more vertical bars, indicating alternative syntactic elements. For
example,

<block interaction area> ::=

 {<block area> | <channel definition area>}+

Repetition of curly bracketed groups is indicated by an asterisk (*) or plus sign (+). An asterisk indicates that the group
is optional and can be further repeated any number of times; a plus sign indicates that the group must be present and can
be further repeated any number of times. The example above expresses that a <block interaction area> contains at least
one <block area> or <channel definition area> and may contain more <block area>s and <channel definition area>s.

If syntactic elements are grouped using square brackets ([and]), then the group is optional. For example,

Superseded by a more recent version

10 Recommendation Z.100 (03/93) Superseded by a more recent version

<valid input signal set> ::=
 signalset [<signal list>] <end>

expresses that a <valid input signal set> may, but need not, contain <signal list>.

1.5.3 Metalanguage for graphical grammar

For the graphical grammar the metalanguage described in 1.5.2 is extended with the following metasymbols:

a) contains

b) is associated with

c) is followed by

d) is connected to

e) set

The set metasymbol is a postfix operator operating on the immediately preceding syntactic elements within curly
brackets, and indicating an (unordered) set of items. Each item may be any group of syntactic elements, in which case it
must be expanded before applying the set metasymbol.

Example:

{{<system text area>}* {<macro diagram>}* <block interaction area>
 {<type in system area>}* }set

is a set of zero or more <system text area>s, zero or more <macro diagram>s one <block interaction area> and zero or
more <type in system area>s.

All the other metasymbols are infix operators, having a graphical non-terminal symbol as the left-hand argument. The
right-hand argument is either a group of syntactic elements within curly brackets or a single syntactic element. If the
right-hand side of a production rule has a graphical non-terminal symbol as the first element and contains one or more of
these infix operators, then the graphical non-terminal symbol is the left-hand argument of each of these infix operators.
A graphical non-terminal symbol is a non-terminal ending with the word “symbol”.

The metasymbol contains indicates that its right-hand argument should be placed within its left-hand argument and the
attached <text extension symbol>, if any. For example,

<graphical block reference> ::=
 <block symbol> contains <block name>

<block symbol> ::=

means the following

<block name>

The metasymbol is associated with indicates that its right-hand argument is logically associated with its left-hand
argument (as if it were “contained” in that argument, the unambiguous association is ensured by appropriate drawing
rules).

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 11

The metasymbol is followed by means that its right-hand argument follows (both logically and in drawing) its left-hand
argument.

The metasymbol is connected to means that its right-hand argument is connected (both logically and in drawing) to its
left-hand argument.

1.6 Differences to SDL-88

The language defined in this Recommendation is an extension of Z.100 as published in the 1988 Blue Books. In this
section, the language defined in the Blue Books will be called SDL-88 and the language defined in this Recommendation
will be called SDL-92. Every effort has been made to make SDL-92 a pure extension of SDL-88, without invalidating
the syntax or changing the semantics of any existing SDL-88 usage. In addition, enhancements were only accepted based
on need as supported by several CCITT member-bodies.

The major extensions are in the area of object orientation. While SDL-88 is object based in its underlying model, some
language constructs have been added to allow SDL-92 to more completely and uniformly support the object paradigm
(see 2.4.1.2 and 6):

a) packages (2.4.1.2);

b) system, block, process and service types (6.1.1);

c) system, block, process and service (set of) instances based on types (6.1.2);

d) parameterization of types by means of context parameters (6.2);

e) specialization of types, and redefinition of virtual types and transitions (6.3).

The other extensions are: spontaneous transition (2.6.6), non-deterministic choice (2.7.5), internal input and output
symbol in SDL/GR for compatibility with existing diagrams (2.9), a non-deterministic imperative operator any (5.4.4.6),
non-delaying channel (2.5.1), remote procedure call (4.14) and value returning procedure (5.4.5), input of variable
field (2.6.4), operator definition (5.3.2), combination with external data descriptions (5.4.6), extended addressing
capabilities in output (2.7.4), free action in transition (2.6.7), continuous transitions in same state with same
priority (4.11), m:n connections of channels and signal routes at structure boundaries (2.5.3). In addition, a number of
minor relaxations to the syntax have been introduced.

In a few cases, it has been necessary to make changes to SDL-88. These have been introduced solely where the
definition of SDL-88 is not consistent. The restrictions and changes introduced can be overcome by an automatic
translation procedure. This procedure is also necessary, if an SDL-88 document contains names consisting of words
which are keywords of SDL-92.

For the output construct the semantics have been simplified, and this may invalidate some special usage of output
(when no to clause is given and there exist several possible paths for the signal) in SDL-88 specifications. Also, some
properties of the equality property of sorts have been changed.

For the export/import construct an optional remote variable definition has been introduced, in order to align export of
variables with the introduced export of procedures (remote procedure). This necessitates a change to SDL-88 documents,
which contain qualifiers in import expressions or introduce several imported names in the same scope with different
sorts. In the (rare) cases where it is necessary to qualify import variables to resolve resolution by context, the correction
is to introduce <remote variable definition>s and to qualify with the identifier of the introduced remote variable name.

For the view construct, the view definition has been made local to the viewing process or service. This necessitates a
change to SDL-88 documents, which contain qualifiers in view definitions or in view expressions. The correction is to
remove these qualifiers. This will not change the semantics of the view expressions, since these are decided by their
(unchanged) PId-expressions.

The service construct has been defined as a primitive concept, instead of being a shorthand, without extending its
properties. The use of service is not affected by this change, since it has been used anyway as if it were a primitive
concept. The reason for the change is to simplify the language definition and align it with the actual use, and to reduce
the number of restrictions on service, caused by the transformation rules in SDL-88. As a consequence of this change the
service signal route construct has been deleted, signal routes can be used instead. This is only a minor conceptual

Superseded by a more recent version

12 Recommendation Z.100 (03/93) Superseded by a more recent version

change, and has no implications for concrete use (the syntax of SDL-88 service signal route and SDL-92 signal route are
the same).

The priority output construct has been removed from the language. This construct can be replaced by output to self
with an automatic translation procedure.

Some of the definitions of basic SDL may appear to have been extended considerably, e.g. signal definition. But it
should be noted that the extensions are optional and need only be used for utilising the power introduced by the object
oriented extensions, e.g. to use parameterization and specialization for signals.

Keywords of SDL-92 which are not keywords of SDL-88 are:

any, as, atleast, connection, endconnection, endoperator, endpackage, finalized, gate, interface, nodelay,
noequality, none, package, redefined, remote, returns, this, use, virtual.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 13

2 Basic SDL

2.1 Introduction

An SDL system has a set of blocks. Blocks are connected to each other and to the environment by channels. Within each
block there are one or more processes. These processes communicate with one another by signals and are assumed to
execute concurrently.

Clause 2 is divided into nine main topics:

a) General rules

 Basic concepts such as lexical rules and identifiers, visibility rules, informal text, partitioning of diagrams,
drawing rules, comments, text extensions, text symbols.

b) Basic data concepts

 Basic data concepts such as values, variables, expressions.

c) System structure

 Contains concepts dealing with the general structuring concepts of the language. Such concepts are
system, block, process, service, procedure.

d) Communication

 Contains communication mechanisms such as channel, signal route, signal.

e) Behaviour

 The constructs that are relevant to the behaviour of a process: general connectivity rules of a process or
procedure graph, variable definition, start, state, input, save, spontaneous transition, label, transition.

f) Action

 Active constructs such as task, process create, procedure call, output, decision.

g) Timer

 Timer definition and timer primitives.

h) Internal Input and Output

 Shorthands for compatibility with older versions of SDL.

i) Examples

 Examples referred to from the other topics.

2.2 General rules

2.2.1 Lexical rules

Lexical rules define lexical units. Lexical units are the terminal symbols of the Concrete textual syntax.

Superseded by a more recent version

14 Recommendation Z.100 (03/93) Superseded by a more recent version

<lexical unit> ::=
 <word>
 | <character string>
 | <special>
 | <composite special>
 | <note>
 | <keyword>

<word> ::=
 {<alphanumeric> | <full stop>}*
 <alphanumeric>
 {<alphanumeric> | <full stop>}*

<alphanumeric> ::=
 <letter>
 | <decimal digit>
 | <national>

<letter> ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M
 | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
 | a | b | c | d | e | f | g | h | i | j | k | l | m
 | n | o | p | q | r | s | t | u | v | w | x | y | z

<decimal digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<national> ::=
 # | ‘ | ¤ | @ | \
 | <left square bracket>
 | <right square bracket>
 | <left curly bracket>
 | <vertical line>
 | <right curly bracket>
 | <overline>
 | <upward arrow head>

<left square bracket> ::= [

<right square bracket> ::=]

<left curly bracket> ::= {

<vertical line> ::= |

<right curly bracket> ::= }

<overline> ::= ~

<upward arrow head> ::= ^

<full stop> ::= .

<underline> ::= _

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 15

<character string> ::=
 <apostrophe> {<alphanumeric>
 | <other character> | <special>
 | <full stop> | <underline>
 | <space>
 | <apostrophe><apostrophe>}* <apostrophe>

<apostrophe> <apostrophe> represents an <apostrophe> within a <character string>.
<text> ::=
 { <alphanumeric>
 | <other character>
 | <special>
 | <full stop>
 | <underline>
 | <space>
 | <apostrophe> }*

<apostrophe> ::= ’

<other character> ::=
 ? | & | %

<special> ::=
 + | - | ! | / | > | * | (|) | " | , | ;
 | < | = | :

<composite special> ::=
 << | >> | == | ==> | /= | <= | >= | // | := | =>
 | -> | (. | .)

<note> ::=
 /* <text> */

<keyword> ::=
 active | adding | all
 | alternative | and | any
 | as | atleast | axioms
 | block | call | channel
 | comment | connect | connection
 | constant | constants | create
 | dcl | decision | default
 | else | endalternative | endblock
 | endchannel | endconnection | enddecision
 | endgenerator | endmacro | endnewtype
 | endoperator | endpackage | endprocedure
 | endprocess | endrefinement | endselect
 | endservice | endstate | endsubstructure
 | endsyntype | endsystem | env
 | error | export | exported
 | external | fi | finalized
 | for | fpar | from
 | gate | generator | if
 | import | imported | in
 | inherits | input | interface
 | join | literal | literals
 | macro | macrodefinition | macroid
 | map | mod | nameclass
 | newtype | nextstate | nodelay
 | noequality | none | not
 | now | offspring | operator

Superseded by a more recent version

16 Recommendation Z.100 (03/93) Superseded by a more recent version

 | operators | or | ordering
 | out | output | package
 | parent | priority | procedure
 | process | provided | redefined
 | referenced | refinement | rem
 | remote | reset | return
 | returns | revealed | reverse
 | save | select | self
 | sender | service | set
 | signal | signallist | signalroute
 | signalset | spelling | start
 | state | stop | struct
 | substructure | synonym | syntype
 | system | task | then
 | this | timer | to
 | type | use | via
 | view | viewed | virtual
 | with | xor

The <national> characters are represented above as in the International Reference Version of CCITT Alphabet No. 5
(Recommendation T.50). The responsibility for defining the national representations of these characters lies with
national standardisation bodies.

Control characters are defined as in Recommendation T.50. A sequence of control characters may appear where a
<space> may appear, and has the same meaning as a <space>. The <space> represents the CCITT Alphabet No. 5
character for a space.

An occurrence of a control character is not significant in <informal text> and in <note>. A control character cannot
appear in character string literals if its presence is significant. In these cases the operator // and the literals for control
characters must be used.

In all <lexical unit>s except <character string>, <letter>s are always treated as if uppercase. (The treatment of
<national>s may be defined by national standardisation bodies.)

A <lexical unit> is terminated by the first character which cannot be part of the <lexical unit> according to the syntax
specified above. When an <underline> character is followed by one or more <space>s, all of these characters (including
the <underline>) are ignored, e.g. A_ B denotes the same <name> as AB. This use of <underline> allows <lexical unit>s
to be split over more than one line.

When the character / is immediately followed by the character * outside of a <note>, it starts a <note>.The character *
immediately followed by the character / in a <note> always terminates the <note>. A <note> may be inserted before or
after any <lexical unit>.

Special lexical rules apply within a <macro body>.

2.2.2 Visibility rules, names and identifiers

Abstract grammar

Identifier :: Qualifier Name

Qualifier = Path-item +

Path-item = System-qualifier |
 Block-qualifier |
 Block-substructure-qualifier |
 Signal-qualifier |
 Process-qualifier |
 Service-qualifier |
 Procedure-qualifier |
 Sort-qualifier

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 17

System-qualifier :: System-name
Block-qualifier :: Block-name
Block-substructure-qualifier :: Block-substructure-name
Process-qualifier :: Process-name
Service-qualifier :: Service-name
Procedure-qualifier :: Procedure-name
Signal-qualifier :: Signal-name
Sort-qualifier :: Sort-name
Name :: Token

Concrete textual grammar
<name> ::=
 <word> {<underline> <word>}*

<identifier> ::=
 [<qualifier>] <name>

<qualifier> ::=
 <path item> {/<path item>}*
 | << <path item> {/<path item>}* >>

<path item> ::=
 <scope unit kind> {<name> | <quoted operator>}

<scope unit kind> ::=
 package
 | system type
 | system
 | block
 | block type
 | substructure
 | process
 | process type
 | service
 | service type
 | procedure
 | signal
 | operator
 | type

When an <underline> character is followed by a <word> in a <name>, it is allowed to specify one or more control
characters or spaces instead of the <underline> character, as long as one of the <word>s enclosing the <underline>
character does not form a <keyword>, e.g. A B denotes the same <name> as A_B. This rule does not apply to the use of
<underline> and <space> in <character string>.

However, there are some cases where the absence of <underline> in <name>s is ambiguous. The following rules
therefore apply:

1) The <underline>s in the <name> in a <path item> must be specified explicitly.

2) When one or more <name>s or <identifier>s may be followed directly by a <sort> (e.g. <variable
definition>s, <view definition>s) then the <underline>s in these <name>s or <identifier>s must be
specified explicitly.

3) When a <data definition> contains <generator transformations> then the <underline>s in the <sort name>
following the keyword newtype must be specified explicitly.

4) The <underline>s in <process name> of a <process context parameter> with <process constraint> being
<process identifier> only, must be specified explicitly.

Superseded by a more recent version

18 Recommendation Z.100 (03/93) Superseded by a more recent version

5) The <underline>s in the <sort> in <procedure result> must be specified explicitly.

<quoted operator> is only applicable when <scope unit kind> is operator, see 5.3.2.

There is no corresponding abstract syntax for the <scope unit kind> denoted by package, system type, block type,
process type, service type or operator.

Either the <qualifier> refers to a supertype or the <qualifier> reflects the hierarchical structure from the system or
package level to the defining context, such that the system or package level is the leftmost textual part.

It is allowed to omit some of the leftmost <path item>s, or the whole <qualifier>. When the <name> denotes an entity of
the entity kind containing variables, synonyms, literals and operators (see Semantics below), the binding of the <name>
to a definition must be resolvable by the actual context. In other cases, the <identifier> is bound to an entity that has its
defining context in the nearest enclosing scope unit in which the <qualifier> of the <identifier> is the same as the
rightmost part of the full <qualifier> denoting this scope unit. If the <identifier> does not contain a <qualifier>, then the
requirement on matching of <qualifier>s does not apply.

The qualification by supertype makes visible names of virtual types in a supertype otherwise hidden by a redefinition in
the subtype (see 6.3.2). This is, the names in the supertype which can be qualified by supertype.

If a <qualifier> can be understood both as qualifying by an enclosing scope and as qualifying by a supertype, it denotes
an enclosing scope.

A subsignal must be qualified by its parent signal if other visible signals (without context parameters) exist at that place
with the same <name>.

Resolution by context is possible in the following cases:

a) The scope unit in which the <name> is used is not a <partial type definition> and it contains a definition
having that <name>. The <name> will be bound to that definition.

b) The scope unit in which the <name> is used does not contain any definition having that <name> or the
scope unit is a <partial type definition>, and there exists exactly one visible definition of an entity that has
the same <name> and to which the <name> can be bound without violating any static properties (sort
compatibility, etc.) of the construct in which the <name> occurs. The <name> will be bound to that
definition.

Only visible identifiers may be used, except for the <identifier> used in place of a <name> in a referenced definition
(that is a definition taken out from the <system definition>).

Semantics

Scope units are defined by the following schema:

 Concrete textual grammar Concrete graphical grammar
 <package definition> <package diagram>

 <textual system definition> <system diagram>

 <system type definition> <system type diagram>

 <block definition> <block diagram>

 <block type definition> <block type diagram>

 <process definition> <process diagram>

 <process type definition> <process type diagram>

 <service definition> <service diagram>

 <service type definition> <service type diagram>

 <procedure definition> <procedure diagram>

 <block substructure definition> <block substructure diagram>

 <channel substructure definition> <channel substructure diagram>

 <partial type definition>

 <operator definition> <operator diagram>

 <sort context parameter>

 <signal definition>

 <signal context parameter>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 19

A scope unit has a list of definitions attached. Each of the definitions defines an entity belonging to a certain entity kind
and having an associated name. Included in the list are <gate definition>s, <formal context parameter>s, <formal
parameters>s, <formal variable parameters> and substructure definitions contained in the scope unit. For a <partial type
definition>, the attached list of definitions consists of the <operator signature>s, the <literal signature>s and any
<operator signature> and <literal signature>s inherited from a parent sort, from a generator instance, or implied by the
use of shorthand notations such as <specialization> or <ordering>.

Although <quoted operator>s, <operator name>s with an <exclamation> and <character string>s have their own
syntactical notation, they are in fact <name>s that are in the Abstract syntax represented by a Name. In the following,
they are treated as if they were syntactically also <name>s. However, <state name>s, <connector name>s, <gate name>s
occurring in signal route and channel definitions, <generator formal name>s, <value identifier>s in equations, <macro
formal name>s and <macro name>s have special visibility rules and cannot therefore be qualified. <state name>s and
<connector name>s are not visible outside a single <body>. Other special visibility rules are explained in the appropriate
sections.

Each entity is said to have its defining context in the scope unit which defines it. Entities are referenced by means of
<identifier>s.

The <qualifier> within an <identifier> specifies uniquely the defining context of the <name>.

The following entity kinds exist:

a) packages

b) system

c) system types

d) block types

e) blocks

f) channels, signal routes, gates

g) block substructures, channel substructures

h) signals, timers

i) process types

j) processes

k) service types

l) services

m) procedures, remote procedures

n) variables (including formal parameters), synonyms, literals, operators

o) remote variables

p) sorts

q) generators

r) signal lists

s) view

An <identifier> is said to be visible in a scope unit

a) if the name part of the <identifier> has its defining context in that scope unit and the <identifier> either

 1) does not occur in a <gate definition>, an <actual context parameter>, a <parameters of sort>, a
<formal variable parameters> or a <specialization>, or

 2) denotes a <formal context parameter>; or

b) if it is visible in the scope unit which defines that scope unit; or

c) if the scope unit contains a <partial type definition> in which the <identifier> is defined; or

d) if the scope unit contains a <signal definition> in which the <identifier> is defined; or

e) if the scope unit has a <package reference clause> through which the <identifier> is made visible (as
defined in 2.4.1.2).

No two definitions in the same scope unit and belonging to the same entity kind can have the same <name>. The only
exception is operators and literal definitions in the same <partial type definition>. These can have the same <name> with
different <argument sort>s or different <result> sort.

Superseded by a more recent version

20 Recommendation Z.100 (03/93) Superseded by a more recent version

In the concrete textual grammar, the optional name or identifier in a definition after the ending keywords (endsystem,
endblock, etc.) must be syntactically the same as the name or identifier following the corresponding commencing
keyword (system, block, etc., respectively).

2.2.3 Informal text

Abstract grammar

Informal-text :: ...

Concrete textual grammar

<informal text> ::=

 <character string>

Semantics

If informal text is used in an SDL system specification, it means that this text is not formal SDL, i.e. SDL does not
provide any semantics. The semantics of the informal text can be defined by some other means.

2.2.4 Drawing rules

The size of the graphical symbols can be chosen by the user.

Symbol boundaries must not overlay or cross. An exception to this rule applies for line symbols, i.e. <channel symbol>,
<signal route symbol>, <create line symbol>, <flow line symbol>, <solid association symbol> and <dashed association
symbol>, which may cross each other. There is no logical association between symbols which do cross.

The metasymbol is followed by implies a <flow line symbol>.

Line symbols may consist of one or more straight line segments.

An arrowhead is required on a <flow line symbol>, when it enters another <flow line symbol>, an <out-connector
symbol> or a <nextstate area>. In other cases, arrowheads are optional on <flow line symbol>s. The <flow line
symbol>s are horizontal or vertical.

Vertical mirror images of <input symbol>, <output symbol>, <internal input symbol>, <internal output symbol>,
<priority input symbol>, <comment symbol> and <text extension symbol> are allowed.

The right-hand argument of the metasymbol is associated with must be closer to the left-hand argument than to any other
graphical symbol. The syntactical elements of the right-hand argument must be distinguishable from each other.

Text within a graphical symbol must be read from left to right, starting from the upper left corner. The right-hand edge
of the symbol is interpreted as a newline character, indicating that the reading must continue at the leftmost point of the
next line (if any).

2.2.5 Partitioning of diagrams

The following definition of diagram partitioning is not part of the Concrete graphical grammar, but the same
metalanguage is used.

<page> ::=

 <frame symbol> contains

 {<heading area> <page number area>

 {<syntactical unit>}*}

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 21

<heading area> ::=
 <implicit text symbol> contains <heading>

<heading> ::=
 <kernel heading> [<additional heading>]

<kernel heading> ::=
 [<virtuality>] [exported]
 <diagram kind> {<diagram name> | <diagram identifier>}
<page number area> ::=
 <implicit text symbol> contains [<page number>
 [(<number of pages>)]]

<page number> ::=
 <literal name>

<number of pages> ::=
 <Natural literal name>

The <page> is a starting non-terminal, therefore it is not referred to in any production rule. A diagram may be partitioned
into a number of <page>s, in which case the <frame symbol> delimiting the diagram and the diagram <heading> are
replaced by a <frame symbol> and a <heading> for each <page>.

The user may choose <frame symbol>s to be implied by the boundary of the media on which diagrams are reproduced.

The <implicit text symbol> is not shown, but implied, in order to have a clear separation between <heading area> and
<page number area>. The <heading area> is placed at the upper left corner of the <frame symbol>. <page number area>
is placed at the upper right corner of the <frame symbol>. <heading> and <syntactical unit> depend on the type of
diagram.

<additional heading> must be shown on the first page of a diagram, but is optional on the following pages. <heading>
and <diagram kind> are elaborated for the particular diagrams in the individual sections of this Recommendation.
<additional heading> is not defined further by this Recommendation.

<virtuality> denotes the virtuality of the type defined by the diagram (see 6.3.2) and exported whether a procedure is
exported as a remote procedure (see 4.14).

2.2.6 Comment

A comment is a notation to represent comments associated with symbols or text.

In the Concrete textual grammar, two forms of comments are used. The first form is the <note>.

Examples are shown in Figures 2.10.1 to 2.10.4.

The concrete syntax of the second form is:

<end> ::=
 [<comment>] ;

<comment> ::=
 comment <character string>

An example is shown in Figure 2.10.2.

In the Concrete graphical grammar, the following syntax is used:

<comment area> ::=
 <comment symbol> contains <text>
 is connected to <dashed association symbol>

Superseded by a more recent version

22 Recommendation Z.100 (03/93) Superseded by a more recent version

<comment symbol> ::=

<dashed association symbol> ::=

 - - - - - - - - - - -

One end of the <dashed association symbol> must be connected to the middle of the vertical segment of the <comment
symbol>.

A <comment symbol> can be connected to any graphical symbol by means of a <dashed association symbol>. The
<comment symbol> is considered as a closed symbol by completing (in imagination) the rectangle to enclose the text. It
contains comment text related to the graphical symbol.

<text> in Concrete graphical grammar corresponds to <character string> in Concrete textual grammar without the
enclosing <apostrophe>s.

An example is shown in Figure 2.10.4.

2.2.7 Text extension

<text extension area> ::=

 <text extension symbol> contains <text>

 is connected to <solid association symbol>

<text extension symbol> ::=

 <comment symbol>

<solid association symbol> ::=

One end of the <solid association symbol> must be connected to the middle of the vertical segment of the <text
extension symbol>.

A <text extension symbol> can be connected to any graphical symbol by means of a <solid association symbol>. The
<text extension symbol> is considered as a closed symbol by completing (in imagination) the rectangle.

The text contained in the <text extension symbol> is a continuation of the text within the graphical symbol and is
considered to be contained in that symbol.

2.2.8 Text symbol

<text symbol> is used in any <diagram>. The content depends on the diagram.

<text symbol> ::=

2.3 Basic data concepts

The concept of data in SDL is defined in clause 5. This includes the data terminology, the concepts to define new sorts
and the predefined data.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 23

2.3.1 Data type definitions

Data in SDL is principally concerned with sorts. A sort defines sets of values, a set of operators which can be applied to
these values, and a set of algebraic rules (equations) defining the behaviour of these operators when applied to the
values. The values, operators and algebraic rules collectively define the properties of the sort. These properties are
defined by sort definitions.

SDL allows the definition of any needed sort, including composition mechanisms (composite types), subject only to the
requirement that such a definition can be formally specified. By contrast, for programming languages there are
implementation considerations which require that the set of available sorts and, in particular, the composition
mechanisms provided (array, structure, etc.) be limited.

2.3.2 Variable

Variables are objects which can be associated with a value by assignment. When the variable is accessed, the associated
value is returned.

2.3.3 Values and literals

A set of values with certain characteristics is called a sort. Operators are defined from and to values of sorts. For
instance, the application of the operator for summation (“+”) from and to values of the Integer sort is valid, whereas
summation of values of the Boolean sort is not.

Each value belongs to exactly one sort. That is, sorts never have values in common.

For most sorts there are literal forms to denote values of the sort (for example, for Integers “2” is used rather than
“1 + 1”. There may be more than one literal to denote the same value (e.g. 12 and 012 can be used to denote the same
Integer value). The same literal denotation may be used for more than one sort; for example ‘A’ is both a Character and a
Character String of length one. Some sorts may have no literals; for example, a composite value often has no literals of
its own but has its values defined by composition operations on values of its components.

2.3.4 Expressions

An expression denotes a value. If an expression does not contain a variable or an imperative operator, e.g. if it is a literal
of a given sort, each occurrence of the expression will always denote the same value. An expression which contains
variables or imperative operators may be interpreted as having different values during the interpretation of an SDL
system depending on the value associated with the variables.

2.4 System structure

2.4.1 Organisation of SDL specifications

2.4.1.1 Framework

An <sdl specification> can be described as a monolithic <system definition> or as a collection of <package>s and
<referenced definition>s. A <package> allows definitions to be used in different contexts by “using” the package in
these contexts, i.e. in systems or packages which may be independent. A <referenced definition> is a definition that has
been removed from its defining context to gain overview within one system description. It is similar to a macro
definition (see 4.2), but it is “inserted” into exactly one place (the defining context) using a reference.

Concrete grammar

<sdl specification> ::=

 <package list> [<system definition> {<referenced definition>}*]

Superseded by a more recent version

24 Recommendation Z.100 (03/93) Superseded by a more recent version

2.4.1.2 Package

In order for a type definition to be used in different systems it has to be defined as part of a package.

Definitions as parts of a package define types, data generators, signal lists, remote specifications and synonyms.

Definitions within a package are made visible to a system or other packages by a package reference clause.

Concrete textual grammar

<package list> ::=
 { <package> {<referenced definition>}* }*

<package> ::=
 <package definition> | <package diagram>

<package definition> ::=
 {<package reference clause>}*
 package <package name>
 [<interface>] <end>
 {<entity in package>}*
 endpackage [<package name>] <end>

<entity in package> ::=
 <system type definition>
 | <textual system type reference>
 | <block type definition>
 | <textual block type reference>
 | <process type definition>
 | <textual process type reference>
 | <procedure definition>
 | <remote procedure definition>
 | <textual procedure reference>
 | <signal definition>
 | <signal list definition>
 | <service type definition>
 | <textual service type reference>
 | <select definition>
 | <remote variable definition>
 | <data definition>
 | <macro definition>

<package reference clause> ::=
 use <package name> [/ <definition selection list>] <end>

<definition selection list> ::=
 <definition selection> {, <definition selection>}*

<definition selection> ::=
 [<entity kind>] <name>

<entity kind> ::=
 system type
 | block type
 | process type
 | service type
 | signal
 | procedure
 | newtype
 | signallist

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 25

 | generator
 | synonym
 | remote

<interface> ::=
 interface <definition selection list>

newtype is also used for selection of a syntype name in a package. The <entity kind> remote is used for selection of a
remote variable definition.

Concrete graphical grammar

<package diagram> ::=
 <package reference area>
 is associated with
 <frame symbol> contains
 { <package heading>
 {{<package text area>}*
 {<diagram in package> }*} set }

<package reference area> ::=
 <text symbol> contains {<package reference clause>}*

<package heading> ::=
 package <package name> [<interface>]

<package text area> ::=
 <text symbol> contains
 { <entity in package>}*

<diagram in package> ::=
 <system type diagram>
 | <system type reference>
 | <type in system area>
 | <macro diagram>
 | <option area>

The <package reference area> must be placed on the top of the <frame symbol>.

Semantics

For each <package name> mentioned in a <package reference clause>, there must exist a corresponding <package>. If
this <package> is not part of <package list>, there must exist a mechanism for accessing the referenced <package>, just
as if it were a textual part of the <package list>. This mechanism is not defined in this Recommendation.

Likewise, if the <system definition> is omitted in an <sdl specification>, there must exist a mechanism for using the
<package>s in the <package list> in other <sdl specification>s. Before the <package list> is used in other <sdl
specification>s, the model for macros and referenced definitions is applied. The mechanism is not otherwise defined in
this Recommendation.

The name of an entity defined within a <package> is visible in another <package> or the <system definition> if and
only if:

1) the <package> or <system definition> has a <package reference clause> mentioning the <package> and
the <package reference clause> either has the <definition selection list> omitted or the name is mentioned
in a <definition selection>; and

2) the <package> defining the name either has the <interface> omitted or the name is mentioned in the
<interface>.

Superseded by a more recent version

26 Recommendation Z.100 (03/93) Superseded by a more recent version

Resolution by context in expressions will take into account also those sorts in packages which are not made visible in a
<package reference clause>. Signals which are not made visible in a use clause, can be part of a signal list via a <signal
list identifier> made visible in a use clause and these signals can thereby affect the complete valid input signal set of a
process or service.

If a name in a <definition selection> denotes a <sort>, the <definition selection> also implicitly denotes all the literals
and operators defined for the <sort> or <parent sort identifier> in case of a syntype.

If a name in a <definition selection> denotes a signal, the <definition selection> also implicitly denotes all the subsignals
of that signal.

Names having their defining occurrence in a <package> are referred to by means of <identifier>s having package
<package name> as the leftmost <path item>. However, the <path item> may be omitted if either the <package name>
denotes the enclosing package, if (name, entity kind) is visible only from one package or if resolution by context applies.

The <entity kind> in <definition selection> denotes the entity kind of the <name>. Any pair of (<entity kind>,<name>)
must be distinct within a <definition selection list>. For a <definition selection> in an <interface>, the <entity kind> may
be omitted only if there is no other name having its defining occurrence directly in the <package>. For a <definition
selection> in a <package reference clause>, <entity kind> may be omitted if and only if either exactly one entity of that
name is mentioned in any <definition selection list> for the package or the package has no <definition selection list> and
directly contains a unique definition of that name.

A <system definition> and every <package definition> has an implicit <package reference clause>:

use Predefined;

where Predefined denotes a package containing the predefined data as defined in Annex D.

Model

If a package is mentioned in several <package reference clause>s of a <package definition>, this corresponds to one
<package reference clause> which selects the union of the definitions selected in the <package reference clause>s.

An <sdl specification> with <system definition> and a non-empty <package list> corresponds to a <system definition>,
where

1) all occurrences of the same name (including the defining occurrence) of any entity defined within a
<package> have been renamed to the same, unique anonymous name;

2) all definitions within the <package>s have been included on the system level;

3) all occurrences of package <package name> in qualifiers have been replaced by system <system name>,
where <system name> is the name for <system definition>.

The transformation is detailed in clause 7. The relation of <system definition> to Abstract Grammar is defined in 2.4.2.

2.4.1.3 Referenced definition

Concrete grammar

<referenced definition> ::=

 <definition> | <diagram>

<system definition> ::=

 {<textual system definition> | <system diagram>}

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 27

<definition> ::=

 <system type definition>

 | <block definition>

 | <block type definition>

 | <process definition>

 | <process type definition>

 | <service definition>

 | <service type definition>

 | <procedure definition>

 | <block substructure definition>

 | <channel substructure definition>

 | <macro definition>

 | <operator definition>

<diagram> ::=

 <system type diagram>

 | <block diagram>

 | <block type diagram>

 | <process diagram>

 | <process type diagram>

 | <service diagram>

 | <service type diagram>

 | <procedure diagram>

 | <block substructure diagram>

 | <channel substructure diagram>

 | <macro diagram>

 | <operator diagram>

For each <referenced definition>, except for <macro definition> and <macro diagram>, there must be a reference in the
associated <package> or <system definition>.

An <identifier> is present in a <referenced definition> after the initial keyword(s). For each reference there must exist a
<referenced definition> with the same entity kind as the reference, and whose <qualifier>, if present, denotes a path,
from a scope unit enclosing the reference, to the reference. If two <referenced definition>s of the same entity kind have
the same name, then the <qualifier> of one of the <identifier>s must not constitute the leftmost part of the other
<qualifier>.

It is not allowed to specify a <qualifier> in the <identifier> after the initial keyword(s) for definitions which are not
<referenced definition>s (i.e. a <name> must be specified for normal definitions).

Semantics

Before the properties of a <system definition> are derived, each reference is replaced by the corresponding <referenced
definition>. In this replacement, the <identifier> of the <referenced definition> is replaced by the <name> in the
reference.

Model

The relation of <referenced definition> to Abstract grammar is given in clause 7.

Superseded by a more recent version

28 Recommendation Z.100 (03/93) Superseded by a more recent version

2.4.2 System

Abstract grammar

System-definition :: System-name

 Block-definition-set

 Channel-definition-set

 Signal-definition-set

 Data-type-definition

 Syntype-definition-set

System-name = Name

A System-definition has a name which can be used in qualifiers.

There must be at least one Block-definition contained in the System-definition.

The definitions of all signals, channels, sorts and syntypes, used in the interface with the environment and between
blocks of the system are contained in the System-definition.

Concrete textual grammar

<textual system definition> ::=

 {<package reference clause>}*

 { system <system name><end>

 {<entity in system>}+

 endsystem [<system name>] <end>

 | <textual typebased system definition> }

<entity in system> ::=

 <block definition>

 | <textual block reference>

 | <textual typebased block definition>

 | <channel definition>

 | <signal definition>

 | <signal list definition>

 | <select definition>

 | <macro definition>

 | <remote variable definition>

 | <data definition>

 | <textual block type reference>

 | <block type definition>

 | <process type definition>

 | <textual process type reference>

 | <procedure definition>

 | <textual procedure reference>

 | <remote procedure definition>

 | <service type definition>

 | <textual service type reference>

<textual block reference> ::=

 block <block name> referenced <end>

An example of <textual system definition> is shown in Figure 2.10.5.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 29

Concrete graphical grammar

<system diagram> ::=
 [<package reference area>]
 is associated with
 {<frame symbol> contains
 {<system heading>
 {{<system text area>}*
 {<macro diagram>}*
 <block interaction area>
 {<type in system area>}*} set }
 | <graphical typebased system definition>}

<frame symbol> ::=

<system heading> ::=
 system <system name>

<system text area> ::=
 <text symbol> contains
 { <signal definition>
 | <signal list definition>
 | <remote variable definition>
 | <data definition>
 | <remote procedure definition>
 | <macro definition>
 | <select definition>}*

<block interaction area> ::=
 { <block area> | <channel definition area>}+

<block area> ::=
 <graphical block reference>
 | <block diagram>
 | <graphical typebased block definition>
 | <existing typebased block definition>

<graphical block reference> ::=
 <block symbol> contains <block name>

<block symbol> ::=

The <package reference area> must be placed on the top of the system frame symbol.

The Block-definition-set in the Abstract grammar corresponds to the <block area>s, and the Channel-definition-set
corresponds to the <channel definition area>s.

An example of a <system diagram> is shown in Figure 2.10.6.

Superseded by a more recent version

30 Recommendation Z.100 (03/93) Superseded by a more recent version

Semantics

A System-definition is the SDL representation of a specification or description of a system.

A system is separated from its environment by a system boundary and contains a set of blocks. Communication between
the system and the environment or between blocks within the system can only take place using signals. Within a system,
these signals are conveyed on channels. The channels connect blocks to one another or to the system boundary.

Before interpreting a System-definition, a consistent subset (see 3.2.1) is chosen. This subset is called an instance of the
System-definition. A system instance is an instantiation of a system type defined by a System-definition. The
interpretation of an instance of a System-definition is performed by an abstract SDL machine which thereby gives
semantics to the SDL concepts. To interpret an instance of a System-definition is to:

a) initiate the system time;

b) interpret the blocks and their connected channels which are contained in the consistent partitioning subset
selected.

2.4.3 Block

Abstract grammar

Block-definition :: Block-name
 Process-definition-set
 Signal-definition-set
 Channel-to-route-connection-set
 Signal-route-definition-set
 Data-type-definition
 Syntype-definition-set
 [Block-substructure-definition]
Block-name = Name

Unless a Block-definition contains a Block-substructure-definition, there must be at least one Process-definition within
the block.

It is possible to perform partitioning activities on the blocks specifying Block-substructure-definition; this feature of the
language is treated in 3.2.2.

Concrete textual grammar

<block definition> ::=
 block {<block name>|<block identifier>} <end>
 {<channel to route connection> | <entity in block>}*
 [<block substructure definition>
 | <textual block substructure reference>]
 endblock [<block name> | <block identifier>] <end>

<entity in block> ::=
 <signal definition>
 | <signal list definition>
 | <process definition>
 | <textual process reference>
 | <textual typebased process definition>
 | <signal route definition>
 | <macro definition>
 | <remote variable definition>
 | <data definition>
 | <select definition>
 | <process type definition>
 | <textual process type reference>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 31

 | <block type definition>
 | <textual block type reference>
 | <textual procedure reference>
 | <procedure definition>
 | <remote procedure definition>
 | <service type definition>
 | <textual service type reference>

<textual process reference> ::=
 process <process name> [<number of process instances>] referenced <end>

An example of <block definition> is shown in Figure 2.10.7.

Concrete graphical grammar

<block diagram> ::=
 <frame symbol>
 contains {<block heading>
 { {<block text area>}* {<macro diagram>}*
 { <type in block area> }*
 [<process interaction area>] [<block substructure area>]}set }
 is associated with {<channel identifiers>}*

The <channel identifiers> identify channels connected to signal routes in the <block diagram>. Channel identifier(s) are
placed outside the <frame symbol> close to the endpoint of the signal route at the <frame symbol>. If the <block
diagram> does not contain a <process interaction area>, then it must contain a <block substructure area>.

<block heading> ::=
 block {<block name> | <block identifier>}

<block text area> ::=
 <system text area>

<process interaction area> ::=
 { <process area>
 | <create line area>
 | <signal route definition area>}+

<process area> ::=
 <graphical process reference>
 | <process diagram>
 | <graphical typebased process definition>
 | <existing typebased process definition>

<graphical process reference> ::=
 <process symbol> contains
 {<process name> [<number of process instances>]}

<process symbol> ::=

<create line area> ::=
 <create line symbol>
 is connected to {<process area> <process area>}

<create line symbol> ::=

Superseded by a more recent version

32 Recommendation Z.100 (03/93) Superseded by a more recent version

The arrowhead on the <create line symbol> indicates the <process area> of a process upon which a create action is
performed. <create line symbol>s are optional, but if used then there must in the process at the originating end of the
<create line symbol> be a create request for the process at the arrowhead end of the <create line symbol>. This rule
applies after transformation of <option area>.

NOTE – This rule can be independently applied before or after transformation of <transition option>.

If a <block definition> or a <block type definition>, which is used in a <textual typebased block definition>, contains
<signal route definition>s and <textual typebased process definition>s, then each gate of the <process type definition>s
of the <textual typebased process definition>s must be connected to a signal route.

The same rule applies for <process definition>s and <process type definition>s containing <signal route definition>s and
<textual typebased service definition>s.

An example of <block diagram> is shown in Figure 2.10.8.

Semantics

A block definition is a container for one or more process definitions of a system and/or a block substructure.

A block provides a static communication interface by which its processes can communicate with other processes. In
addition it provides the scope for process definitions.

To interpret a block is to create the initial process instances in the block.

2.4.4 Process

A process definition defines a arbitrarily, large set of process instances.

Abstract grammar

Process-definition :: Process-name

 Number-of-instances

 Process-formal-parameter *

 Procedure-definition-set
 Signal-definition-set
 Data-type-definition

 Syntype-definition-set
 Variable-definition-set
 View-definition-set
 Timer-definition-set
 Process-graph | Service-decomposition

Number-of-instances :: Intg [Intg]

Process-name = Name

Process-graph :: Process-start-node

 State-node-set

Process-formal-parameter :: Variable-name

 Sort-reference-identifier

Service-decomposition :: Service-definition-set
 Signal-route-definition-set
 Signal-route-to-route-connection-set

If Process-definition has a Service-decomposition, there must be no Timer-definitions. Service-decomposition must
contain at least one Service-definition.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 33

Concrete textual grammar

<process definition> ::=
 process {<process name> | <process identifier> }
 [<number of process instances>] <end>
 [<formal parameters> <end>] [<valid input signal set>]
 { <entity in process>
 | <signal route to route connection> }*
 [<process body>]
 endprocess [<process name> | <process identifier>] <end>

<entity in process> ::=
 <signal definition>
 | <signal list definition>
 | <textual procedure reference>
 | <procedure definition>
 | <remote procedure definition>
 | <imported procedure specification>
 | <macro definition>
 | <remote variable definition>
 | <data definition>
 | <variable definition>
 | <view definition>
 | <select definition>
 | <imported variable specification>
 | <timer definition>
 | <signal route definition>
 | <service definition>
 | <textual service reference>
 | <textual typebased service definition>
 | <service type definition>
 | <textual service type reference>

<textual procedure reference> ::=
 <procedure preamble>
 procedure <procedure name> referenced <end>

<textual service reference> ::=
 service <service name> referenced <end>

<valid input signal set> ::=
 signalset [<signal list>] <end>

<process body> ::=
 <start> {<state> | <free action>} *

<formal parameters> ::=
 fpar <parameters of sort> {, <parameters of sort>}*

<parameters of sort> ::=
 <variable name> {, <variable name>}* <sort>

<number of process instances> ::=
 ([<initial number>][,[<maximum number>]])

<initial number> ::=
 <Natural simple expression>

<maximum number> ::=
 <Natural simple expression>

Superseded by a more recent version

34 Recommendation Z.100 (03/93) Superseded by a more recent version

<service definition>, <textual service reference> or <textual typebased service definition> may be present only if
<process body> is omitted.

A <process definition> may contain <signal route definition>s only if the enclosing <block definition> or <textual
typebased block definition> contains <signal route definition>s.

The initial number of instances and maximum number of instances contained in Number-of-instances are derived from
<number of process instances>. If <initial number> is omitted, then <initial number> is 1. If <maximum number> is
omitted, then <maximum number> is unbounded.

The <number of process instances> used in the derivation is the following:

a) If there is no <textual process reference> for the process, then the <number of process instances> in the
<process definition> or in the <textual typebased process definition> is used. If it does not contain a
<number of process instances>, then the <number of process instances> where both <initial number> and
<maximum number> are omitted is used.

b) If both the <number of process instances> in <process definition> and the <number of process instances>
in a <textual process reference> are omitted, then the <number of process instances> where both <initial
number> and <maximum number> are omitted is used.

c) If either the <number of process instances> in <process definition> or the <number of process instances>
in a <textual process reference> are omitted, then the <number of process instances> is the one which is
present.

d) If both the <number of process instances> in <process definition> and the <number of process instances>
in a <textual process reference> are specified, then the two <number of process instances> must be equal
lexically and this <number of process instances> is used.

Similar relations apply for <number of process instances> specified in <process diagram> and in <graphical process
reference> as defined below.

The <initial number> of instances must be less than or equal to <maximum number> and <maximum number> must be
greater than zero.

The use of <valid input signal set> is defined in 2.5.2 Model.

An example of <process definition> is shown in Figure 2.10.9.

Concrete graphical grammar

<process diagram> ::=

 <frame symbol>

 contains {<process heading>

 { {<process text area>}*

 {<macro diagram>}*

 {<type in process area>}*

 {<process graph area> | <service interaction area> } }set }

 [is associated with {<signal route identifiers>}*]

The <signal route identifiers> identify external signal routes connected to signal routes in the <process diagram>. It is
placed outside the <frame symbol> close to the endpoint of the signal routes at the <frame symbol>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 35

<process text area> ::=
 <text symbol> contains {
 [<valid input signal set>]
 {<signal definition>
 | <signal list definition>
 | <variable definition>
 | <view definition>
 | <imported variable specification>
 | <imported procedure specification>
 | <remote procedure definition>
 | <remote variable definition>
 | <data definition>
 | <macro definition>
 | <timer definition>
 | <select definition> }* }
<process heading> ::=
 process {<process name> | <process identifier>}
 [<number of process instances> [<end>]]
 [<formal parameters>]

<process graph area> ::=
 <start area> { <state area> | <in-connector area> }*

<service interaction area> ::=
 { <service area>
 | <signal route definition area> }+

<service area> ::=
 <graphical service reference>
 | <service diagram>
 | <graphical typebased service definition>
 | <existing typebased service definition>

<graphical service reference> ::=
 <service symbol> contains <service name>

<service symbol> ::=

An example of <process diagram> is shown in Figure 2.10.10.

Semantics

The following is applicable when the Process-definition contains a Process-graph. The additional semantics for the case
when the Process-definition contains Service-definitions are treated in 2.4.5.

A process definition defines a set of processes. Several instances of the same process set may exist at the same time and
execute asynchronously and in parallel with each other and with instances of other process sets in the system.

The first value in the Number-of-instances represents the number of instances of the process which exist when the
system is created, the second value represents the maximum number of simultaneous instances of the process.

A process instance is a communicating extended finite state machine performing a certain sequence of actions, denoted
as a transition, according to the reception of a given signal, whenever it is in a state. The completion of the transition
results in the process instance waiting in another state, which is not necessarily different from the first one.

Superseded by a more recent version

36 Recommendation Z.100 (03/93) Superseded by a more recent version

The concept of finite state machine has been extended in the following respects:

a) Variables and branching: the state resulting after a transition, other than the signal originating the
transition, may be affected by decisions taken upon variables known to the process.

b) Spontaneous transition: it is possible to activate a transition spontaneously without the reception of any
signal. This activation is non-deterministic, and thus makes the state to which it is attached unstable.

c) Save: with the save construct, the consumption order of signals may be specified to be different from their
arrival order in the queue.

When a system is created, the initial processes are created in arbitrary order. The signal communication between the
processes commences only when the initial processes have all been created. The formal parameters of these initial
processes have no associated values; i.e. they are “undefined”.

Process instances exist from the time that a system is created or they can be created by create request actions of
processes being interpreted; their interpretation start when their start action is interpreted; they may cease to exist by
performing stop actions.

Signals received by process instances are denoted as input signals, and signals sent from process instances are denoted as
output signals.

Signals may be consumed by a process instance only when it is in a state. The complete valid input signal set is the union
of the set of signals in all signal routes leading to the set of instances denoted by the process definition, the <valid input
signal set>, the implicit input signals introduced by the additional concepts in 4.10 to 4.14 and the timer signals.

Exactly one input port is associated with each process instance. When an input signal arrives at the process, it is put into
the input port of the process instance.

The process is either waiting in a state or active, performing a transition. For each state, there is a save signal set (see
also 2.6.5). When waiting in a state, the first input signal whose identifier is not in the save signal set is taken from the
queue and consumed by the process. A transition may also be initiated as a spontaneous transition independent of any
signals being present in the queue.

The input port may retain any number of input signals, so that several input signals are queued for the process instance.
The set of retained signals are ordered in the queue according to their arrival time. If two or more signals arrive on
different paths “simultaneously”, they are arbitrarily ordered.

When the process is created, it is given an empty input port, and local variables are created.

The formal parameters are variables which are created either when the system is created (but no actual parameters are
passed to them and therefore they are “undefined”) or when the process instance is dynamically created.

To all process instances four expressions yielding a PId (see Annex D, D.10) value may be used: self, parent, offspring
and sender. They give a result for:

a) the process instance (self);

b) the creating process instance (parent);

c) the most recent process instance created by the process instance (offspring);

d) the process instance from which the last input signal has been consumed (sender) (see also 2.6.4).

These expressions are further explained in 5.4.4.3.

self, parent, offspring and sender can be used in expressions inside the process instances.

For all process instances present at system initialization, the predefined parent expression always has the value Null.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 37

For all newly created process instances, the predefined expressions, sender and offspring have the value Null.

2.4.5 Service

The service concept offers an alternative to the process graph through a set of services. In many situations, service
definitions can reduce the overall complexity and increase the readability as compared to the use of a process body. In
addition, each service definition may define a partial behaviour of the process, which may be useful in some
applications.

Abstract grammar

Service-definition :: Service-name
 Procedure-definition-set
 Data-type-definition
 Syntype-definition-set
 Variable-definition-set
 View-definition-set
 Timer-definition-set
 Service-graph

Service-name = Name

Service-graph :: Service-start-node
 State-node-set

Service-start-node :: Transition

Concrete textual grammar

<service definition> ::=
 service {<service name> | <service identifier>} <end>
 [<valid input signal set>]
 {<entity in service>}*
 <service body>
 endservice [{<service name> | <service identifier>}] <end>

<entity in service> ::=
 <variable definition>
 | <data definition>
 | <view definition>
 | <imported variable specification>
 | <imported procedure specification>
 | <select definition>
 | <macro definition>
 | <procedure definition>
 | <textual procedure reference>
 | <timer definition>

<service body> ::=
 <process body>

Different <service definition>s or <textual typebased service definition>s in a <process definition> must neither reveal
the same variable name of the same sort, export or import the same variable name, nor export or import the same remote
procedure.

If an exported variable or procedure is defined in the enclosing process or an imported variable or procedure is specified
in the enclosing process, the defined/specified variable/procedure must not be defined/specified with same name as the
corresponding <remote variable name> or <remote procedure name> in one of the <service definition>s or <textual
typebased service definition>s, and it may only be used as exported/imported in one service. The implicit signals for an

Superseded by a more recent version

38 Recommendation Z.100 (03/93) Superseded by a more recent version

exported variable are added to an arbitrary service if it is not used in any service. An exported procedure defined in the
enclosing process must be mentioned as exported in exactly one service.

The complete valid input signal sets of the services within a process must be disjoint. The complete valid input signal set
of a service is the union of the <valid input signal set> of its <service definition> and the set of signals conveyed on
incoming signal routes to the service including the implicit input signals introduced by the additional concepts in 4.10
to 4.14 and the timer signals.

Concrete graphical grammar

<service diagram> ::=

 <frame symbol> contains

 {<service heading>

 { {<service text area> }*

 {<graphical procedure reference>}*

 {<procedure diagram>}*

 {<macro diagram>}*

 <service graph area> } set }

<service heading> ::=

 service {<service name> | <service identifier>}

<service text area> ::=

 <text symbol> contains
 { <variable definition>

 | <data definition>

 | <timer definition>

 | <view definition>

 | <imported variable specification>

 | <imported procedure specification>

 | <select definition>

 | <macro definition> }*

<service graph area> ::=

 <process graph area>

Semantics

Within a process instance there is a service instance for each Service-definition in the Process-definition. Service
instances are components of the process instance, and cannot be addressed as separate objects. They share the input port
and the expressions self, parent, offspring and sender of the process instance.

A service instance is a state machine.

When the process instance is created, the Service-start-nodes are executed in arbitrary order. No state of any service is
interpreted before all Service-start-nodes have been completed. A Service-start-node is considered completed when the
service instance for the first time enters a State-node (possibly inside a called procedure) or interprets a Stop-node.

Only one service at a time is executing a Transition. When the executing service reaches a state, the next signal in the
input port (which is not saved by the service, otherwise capable of consuming it) is given to the service that is capable of
consuming it.

When a service ceases to exist, the input signals for that service are discarded. When all services have ceased to exist,
the process instance ceases to exist.

Example

See 2.10.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 39

2.4.6 Procedure

Procedures are defined by means of procedure definitions. The procedure is invoked by means of a procedure call
identifying the procedure definition. Parameters are associated with a procedure call. Which variables are affected by the
interpretation of a procedure is controlled by the parameter passing mechanism. Procedure calls may be actions or part of
expressions (value returning procedures only).

Abstract grammar

Procedure-definition :: Procedure-name
 Procedure-formal-parameter*
 Procedure-definition-set
 Data-type-definition
 Syntype-definition-set
 Variable-definition-set
 Procedure-graph

Procedure-name = Name

Procedure-formal-parameter = In-parameter |
 Inout-parameter

In-parameter :: Variable-name
 Sort-reference-identifier

Inout-parameter :: Variable-name
 Sort-reference-identifier

Procedure-graph :: Procedure-start-node
 State-node-set

Procedure-start-node :: Transition

Concrete textual grammar

<procedure definition> ::=
 <procedure preamble>
 procedure { <procedure name> | <procedure identifier>}
 [<formal context parameters>]
 [<virtuality constraint>]
 [<specialization>] <end>
 [<procedure formal parameters> <end>]
 [<procedure result> <end>]
 { <entity in procedure>
 | <select definition>
 | <macro definition> }*
 [<procedure body>]
 endprocedure [<procedure name> | <procedure identifier>] <end>

<procedure preamble> ::=
 [<virtuality>][exported [as <remote procedure identifier>]]

<procedure formal parameters> ::=
 fpar <formal variable parameters>
 {, <formal variable parameters> }*
<formal variable parameters> ::=
 <parameter kind> <parameters of sort>

Superseded by a more recent version

40 Recommendation Z.100 (03/93) Superseded by a more recent version

<parameter kind> ::=
 [in/out | in]

 <procedure result> ::=
 returns [<variable name>] <sort>

<entity in procedure> ::=
 <data definition>
 | <variable definition>
 | <textual procedure reference>
 | <procedure definition>

<procedure body> ::=
 <start> {<state> | <free action>}*
 | {<state> | <free action>}+

An exported procedure cannot have formal context parameters and its enclosing scope must be a process type, process
definition, service type or service definition.

<variable definition> in a <procedure definition>, cannot contain revealed, exported, revealed exported, exported
revealed <variable name>s (see 2.6.1).

The exported attribute is inherited by any subtype of a procedure. A virtual exported procedure must contain exported in
all redefinitions. Virtual type including procedure is described in 6.3.2. The optional as-clause in a redefinition must
denote the same <remote procedure identifier> as in the supertype. If omitted in a redefinition, the <remote procedure
identifier> of the supertype is implied.

Two exported procedures in a process, including possible services, cannot mention the same <remote procedure
identifier>.

An example of <procedure definition> is shown in Figure 2.10.11.

Concrete graphical grammar

<procedure diagram> ::=
 <frame symbol> contains {<procedure heading>
 { { <procedure text area>
 | <procedure area>
 | <macro diagram> }*
 <procedure graph area> }set }

<procedure area> ::=
 <graphical procedure reference>
 | <procedure diagram>

<procedure text area> ::=
 <text symbol> contains
 { <variable definition>
 | <data definition>
 | <select definition>
 | <macro definition> }*

<graphical procedure reference> ::=
 <procedure symbol> contains
 { <procedure preamble>
 <procedure name> }

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 41

<procedure symbol> ::=

<procedure heading> ::=

 <procedure preamble>

 procedure {<procedure name>| <procedure identifier> }

 [<formal context parameters>]

 [<virtuality constraint>]

 [<specialization>]

 [<procedure formal parameters>]

 [<procedure result>]

<procedure graph area> ::=

 [<procedure start area>]

 {<state area> | <in-connector area> }*

<procedure start area> ::=

 <procedure start symbol>

 contains { [<virtuality>] }

 is followed by <transition area>

<procedure start symbol> ::=

An example of <procedure diagram> is shown in Figure 2.10.12.

Semantics

A procedure is a means of giving a name to an assembly of items and representing this assembly by a single reference.
The rules for procedures impose a discipline upon the way in which the assembly of items is chosen, and limit the scope
of the name of variables defined in the procedure.

exported in a <procedure preamble> implies that the procedure may be called as a remote procedure, according to the
model in 4.14.

A procedure variable is a local variable within the procedure that can neither be revealed nor viewed, nor exported, nor
imported. It is created when the procedure start node is interpreted, and it ceases to exist when the return node of the
procedure graph is interpreted.

The interpretation of a <procedure call> causes the creation of a procedure instance and the interpretation to commence
in the following way:

a) A local variable is created for each In-parameter, having the Name and Sort of the In-parameter. The
variable gets the value of the expression given by the corresponding actual parameter if present.
Otherwise the variable gets no value, i.e. it becomes “undefined”.

b) A formal parameter with no explicit attribute has an implicit in attribute.

c) A local variable is created for each Variable-definition in the Procedure-definition.

d) Each Inout-parameter denotes a variable which is given in the actual parameter expression. The contained
Variable-name is used throughout the interpretation of the Procedure-graph when referring to the value
of the variable or when assigning a new value to the variable.

Superseded by a more recent version

42 Recommendation Z.100 (03/93) Superseded by a more recent version

e) The Transition contained in the Procedure-start-node is interpreted.

The nodes of the procedure graph are interpreted in the same manner as the equivalent nodes of a process or service
graph, i.e. the procedure has the same complete valid input signal set as the enclosing process, and the same input port as
the instance of the enclosing process that has called it, either directly or indirectly.

Model

Specifying <procedure result> results in <procedure formal parameters> with an extra formal variable parameter
appended having the in/out attribute, a distinct new name (unless specified explicitly in <procedure result>) as <variable
name>, and the <sort> of <procedure result> as <sort>.

When a <procedure body> or <procedure graph area> contains <return> or <return area> with an <expression>, the
procedure must have at least one formal parameter with <parameter kind> in/out or a <procedure result>.

Any occurrence of <return> or <return area> with an <expression> inside the <procedure body> or <procedure graph
area> is replaced by a <task> containing an assignment of the contained <expression> to the rightmost in/out variable,
followed by a <return> or <return area> without any <expression>.

The transformations take place after Generic systems (see 4.3) and before <value returning procedure call>.

A <procedure start area> which contains <virtuality> is called a virtual procedure start area. Virtual procedure start area
is further described in 6.3.3.

2.5 Communication

2.5.1 Channel

Abstract grammar

Channel-definition :: Channel-name

 [NODELAY]

 Channel-path

 [Channel-path]

Channel-path :: Originating-block

 Destination-block

 Signal-identifier-set

Originating-block = Block-identifier |

 ENVIRONMENT

Destination-block = Block-identifier |

 ENVIRONMENT

Block-identifier = Identifier

Signal-identifier = Identifier

Channel-name = Name

At least one of the end points of the channel must be a block. If both end points are blocks, the Block-identifiers must be
different.

The block end point(s) must be defined in the same scope unit in which the channel is defined.

NODELAY denotes that the channel has no delay.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 43

Concrete textual grammar

<channel definition> ::=

 channel <channel name> [nodelay]

 <channel path>

 [<channel path>]

 [<channel substructure definition>

 | <textual channel substructure reference>]

 endchannel [<channel name>] <end>

<channel path> ::=

 from <channel endpoint>

 to <channel endpoint> with <signal list><end>

<channel endpoint> ::=

 {<block identifier> | env }[via <gate>]

Where two <channel path>s are defined, one must be in the reverse direction to the other.

<gate> must be specified if and only if:

a) <channel endpoint> denotes a connection to a <textual typebased block definition> in which case the
<gate> must be defined directly in the block type for that block, or

b) env is specified and the channel is defined in a block substructure of a <block type definition> in which
case the <gate> must be defined in this block type.

Concrete graphical grammar

<channel definition area> ::=

 <channel symbol>

 is associated with {<channel name>

 { [{<channel identifiers> | <block identifier> | <gate> }]

 <signal list area> [<signal list area>] }set }

 is connected to { <block area> {<block area> | <frame symbol>}

 [<channel substructure association area>] }set

<channel identifiers> can be specified if and only if the enclosing diagram is a <block substructure diagram> directly
enclosed by a <block definition>. <block identifier> can be specified if and only if the enclosing diagram is a <channel
substructure diagram>. The <channel identifiers> identify external channels connected to the <block substructure
diagram> delimited by the <frame symbol>. The <block identifier> identifies an external block as a channel endpoint for
the <channel substructure diagram> delimited by the <frame symbol>. When the <channel symbol> is connected to a
<frame symbol>, then the <gate> it is associated with is a gate defined for that block type by means of a <gate> or a
<graphical gate constraint> associated with the block type diagram.

<channel symbol> ::=

 <channel symbol 1>

 | <channel symbol 2>

 | <channel symbol 3>

 | <channel symbol 4>

 | <channel symbol 5>

<channel symbol 1> ::=

<channel symbol 2> ::=

Superseded by a more recent version

44 Recommendation Z.100 (03/93) Superseded by a more recent version

<channel symbol 3> ::=

<channel symbol 4> ::=

<channel symbol 5> ::=

For each arrowhead on the <channel symbol>, there must be a <signal list area>. A <signal list area> must be
unambiguously close enough to the arrowhead to which it is associated.

The arrowheads for <channel symbol 4> and <channel symbol 5> are placed at the end(s) of the channel and indicate
that the channel has no delay.

Semantics

A channel represents a transportation route for signals. A channel can be considered as one or two independent
unidirectional channel paths between two blocks or between a block and its environment.

The Signal-identifier-set in each Channel-path in the Channel-definition contains the signals that may be conveyed on
that Channel-path.

Signals conveyed by channels are delivered to the destination endpoint.

Signals are presented at the destination endpoint of a channel in the same order they have been presented at its origin
point. If two or more signals are presented simultaneously to the channel, they are arbitrarily ordered.

A channel with delay may delay the signals conveyed by the channel. That means that a First-In-First-Out (FIFO)
delaying queue is associated with each direction in a channel. When a signal is presented to the channel, it is put into the
delaying queue. After an indeterminant and non-constant time interval, the first signal instance in the queue is released
and given to one of the channels or signal routes which is connected to the channel.

Several channels may exist between the same two endpoints. The same signal type can be conveyed on different
channels.

If one endpoint of a channel is a <textual typebased block definition>, the other endpoint may be the same <textual
typebased block definition>. The <number of block instances> must then be greater than one for the <textual typebased
block definition>.

Model

A channel with both endpoints being gates of one <textual typebased block definition> represents transportation routes
from each of the blocks in the set to all other blocks in the set.

A channel with one endpoint being a gate of a <textual typebased block definition> represents individual channels to or
from each of the blocks in the set. The individual channels will all have the same delaying property as the expanded
channel.

2.5.2 Signal route

Abstract grammar

Signal-route-definition :: Signal-route-name

 Signal-route-path

 [Signal-route-path]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 45

Signal-route-path :: Origin

 Destination

 Signal-identifier-set

Origin = Process-identifier |

 Service-identifier |

 ENVIRONMENT

Destination = Process-identifier |

 Service-identifier |

 ENVIRONMENT

Signal-route-name = Name

Process-identifier = Identifier

Service-identifier = Identifier

At least one of the end points of the signal route must be a Process-identifier or Service-identifier.

If both end points are processes, the Process-identifiers must be different. If both end points are services, the Service-
identifiers must be different.

The process or service end point(s) must be defined in the same scope unit in which the signal route is defined.

Concrete textual grammar

<signal route definition> ::=

 signalroute <signal route name>

 <signal route path>

 [<signal route path>]

<signal route path>::=

 from <signal route endpoint> to <signal route endpoint>

 with <signal list> <end>

<signal route endpoint> ::=

 {<process identifier> | <service identifier> | env }

 [via <gate>]

Where two <signal route path>s are defined, one must be in the reverse direction to the other.

<gate> must be specified if and only if:

a) <signal route endpoint> denotes a connection to a <textual typebased process definition> or a <textual
typebased service definition> in which case the <gate> must be defined directly in the process type or
service type for that process or service respectively, or

b) env is specified and the signal route is defined in a block type or process type in which case the <gate>
must be defined in this block type or process type respectively.

Concrete graphical grammar

Superseded by a more recent version

46 Recommendation Z.100 (03/93) Superseded by a more recent version

<signal route definition area> ::=

 <signal route symbol>

 is associated with {<signal route name>

 {[<channel identifiers> | <external signal route identifiers> |

 <gate>]

 <signal list area> [<signal list area>] }set }

 is connected to

 {{<process area> | <service area>}

 {<process area> | <service area> | <frame symbol>} }set

<signal route symbol> ::=

 <signal route symbol 1> | <signal route symbol 2>

<signal route symbol 1> ::=

<signal route symbol 2> ::=

A signal route symbol includes an arrowhead at one end (one direction) or one arrowhead at each end (bidirectional) to
show the direction of the flow of signals.

For each arrowhead on the <signal route symbol>, there must be a <signal list area>. A <signal list area> must be
unambiguously close enough to the arrowhead to which it is associated.

When the <signal route symbol> is connected to a <frame symbol>, for a <block type diagram>, then the <gate> it is
associated with, is a gate defined for that block type by means of a <gate> or <graphical gate constraint> associated with
the <block type diagram>. When the <signal route symbol> is connected to a <frame symbol>, for a <process type
diagram>, then the <gate> it is associated with, is a gate defined for that process type by means of a <gate> or
<graphical gate constraint> associated with the <process type diagram>.

Semantics

A signal route represents a transportation route for signals. A signal route can be considered as one or two independent
unidirectional signal route paths between two sets of process instances each denoted by a process definition, or between
one set of process instances and the environment of the enclosing block, or between two services, or between a service
and the environment of the enclosing process.

Signals conveyed by signal routes are delivered to the destination endpoint.

A signal route does not introduce any delay in conveying the signals.

When a signal instance is sent to an instance of the same process instance set, interpretation of the Output-node implies
that the signal is put directly in the input port of the destination process.

Several signal routes may exist between the same two endpoints. The same signal type can be conveyed on different
signal routes.

Model

If a <block definition> or <block type definition> contains <signal route definition>s, then the <valid input signal set> in
a <process definition>, if any, need not contain signals in signal routes leading to the set of process instances.

If a <process type definition> or <process definition> contains services, the <valid input signal set> is derived as the
union of the input signals in the gates (in case of a <process type definition>) or the signals in signal routes leading to
the process (in case of a <process definition>), the input signals on signal routes leading to the services and the <valid
input signal set>s for the services. This set is called implicit <valid input signal set>. If the <valid input signal set> of the
process is specified explicitly, it must be a subset of the implicit <valid input signal set>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 47

If a <process definition> or <process type definition> contains <signal route definition>s, then the <valid input signal
set> in a <service definition>, if any, need not contain signals in signal routes leading to the service.

If a <block definition> contains no <signal route definition>s, then all <process definition>s in that scope must
(implicitly or explicitly) contain a <valid input signal set>. In that case the <signal route definition>s and the <channel to
route connection>s are derived from the <valid input signal set>s, <output>s and channels terminating at the block
boundary.

If a <block type definition> contains no <signal route definition>s, then all <process definition>s in that scope must
(implicitly or explicitly) contain a <valid input signal set>. In that case the <signal route definition>s are derived from
the <valid input signal set>s, <output>s and the <signal list>s in the gates of the <block type definition>.

The signals corresponding to a given direction between two sets of process instances in the implied signal route is the
intersection of the signals specified in the <valid input signal set> of the destination process and the signals mentioned in
an output of the originating process. If one of the endpoints is the environment, then the input set/output set for that
endpoint is the signals conveyed by the channel or gate (in case of a block type) in the given direction.

In case of a process definition being a <textual typebased process definition>, the derivation is not based on the <valid
input signal set>s and the <output>s, but on the incoming and outgoing <signal list>s of the gates of the process type.

If a <process definition> or <process type definition> contains no <signal route definition>s, then all <service
definition>s in that scope must contain a <valid input signal set>. In that case the <signal route definition>s and the
<signal route to route connection>s are derived from the <valid input signal set>s, <output>s and external signal routes
terminating at the process boundary or gates of the process type.

The signals corresponding to a given direction between two services in the implied signal route is the intersection of the
signals specified in the <valid input signal set> of the destination service and the signals mentioned in an output of the
originating service. If one of the endpoints is the environment, then the input set/output set for that endpoint is the
signals conveyed by the external signal route or gate (in the case of a process type) in the given direction.

In case of a service definition being a <textual typebased service definition>, the derivation is not based on the <valid
input signal set>s and the <output>s, but on the incoming and outgoing <signal list>s of the gates of the service type.

2.5.3 Connection

Abstract grammar

Channel-to-route-connection :: Channel-identifier-set

 Signal-route-identifier-set

Signal-route-identifier = Identifier

Signal-route-to-route-connection :: External-signal-route-identifier-set

 Signal-route-identifier-set

External-signal-route-identifier = Identifier

Other connect constructs are contained in clause 3.

The Channel-identifiers in a Channel-identifier-set in a Channel-to-route-connection must denote channels connected to
the enclosing block.

Each Channel-identifier connected to the enclosing block must be mentioned in exactly one Channel-to-route-
connection. Each Signal-route-identifier in a Channel-to-route-connection must be defined in the same block in which
the Channel-to-route-connection is defined and it must have the boundary of that block as one of its endpoints. Each

Superseded by a more recent version

48 Recommendation Z.100 (03/93) Superseded by a more recent version

Signal-route-identifier defined in the surrounding block and which has its environment as one of its endpoints, must be
mentioned in exactly one Channel-to-route-connection.

For a given direction, the union of the Signal-identifier sets in the signal routes in a Channel-to-route-connection must
be equal to the union of the Signal-identifier sets conveyed by the Channel-identifiers in the same Channel-to-route-
connection and corresponding to the same direction.

The External-signal-route-identifiers in an External-signal-route-identifier-set in a Signal-route-to-route-connection
must denote signal routes connected to the enclosing process.

Each External-signal-route-identifier connected to the enclosing process must be mentioned in exactly one Signal-route-
to-route-connection. Each Signal-route-identifier in a Signal-route-to-route-connection must be defined in the same
process in which the Signal-route-to-route-connection is defined and it must have the boundary of that process as one of
its endpoints. Each Signal-route-identifier defined in the surrounding process and which has its environment as one of its
endpoints, must be mentioned in exactly one Signal-route-to-route-connection.

For a given direction, the union of the Signal-identifier sets in the signal routes in a Signal-route-to-route-connection
must be equal to the union of the Signal-identifier sets conveyed by the External-signal-route-identifiers in the same
Signal-route-to-route-connection and corresponding to the same direction.

Concrete textual grammar

<channel to route connection> ::=

 connect <channel identifiers>

 and <signal route identifiers> <end>

<channel identifiers> ::=

 <channel identifier> {, <channel identifier>}*

<signal route identifiers> ::=

 <signal route identifier> {, <signal route identifier>}*

<signal route to route connection> ::=

 connect <external signal route identifiers>

 and <signal route identifiers> <end>

<external signal route identifiers> ::=

 <signal route identifier>

 {, <signal route identifier>}*

Concrete graphical grammar

Graphically, the connect construct is represented by the <channel identifiers> and <external signal route identifiers>
associated with the signal routes and contained in the <signal route definition area> (see 2.5.2 Concrete graphical
grammar).

No <signal route identifier> or <channel identifier> may be mentioned more than once, in the connections of a diagram.

2.5.4 Signal

Abstract grammar

Signal-definition :: Signal-name

 Sort-reference-identifier*

 [Signal-refinement]

Signal-name = Name

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 49

Concrete textual grammar

<signal definition>::=

 signal

 <signal definition item>

 {,<signal definition item>}* <end>

<signal definition item> ::=

 <signal name>

 [<formal context parameters>]

 [<specialization>]

 [<sort list>][<signal refinement>]

<sort list> ::=

 (<sort> {, <sort>}*)

<formal context parameter> in <formal context parameters> must be a <sort context parameter>. The <base type> as part
of <specialization> must be a <signal identifier>.

Semantics

A signal instance is a flow of information between processes, and is an instantiation of a signal type defined by a signal
definition. A signal instance can be sent by either the environment or a process and is always directed to either a process
or the environment. A signal instance is created when an Output-node is interpreted and ceases to exist, when an Input-
node is interpreted.

2.5.5 Signal list definition

A <signal list identifier> may be used in <signal list> as a shorthand for a list of signal identifiers and timer signals.

Concrete textual grammar

<signal list definition> ::=

 signallist <signal list name> = <signal list> <end>

<signal list> ::=

 <signal list item> { , <signal list item>}*

<signal list item> ::=

 <signal identifier> | (<signal list identifier>) | <timer identifier>

The <signal list> which is constructed by replacing all <signal list identifier>s in the list by the list of <signal
identifier>s or <timer identifier>s they denote, corresponds to a Signal-identifier-set in the Abstract grammar.

The <signal list> must not contain the <signal list identifier> defined by the <signal list definition> either directly or
indirectly (via another <signal list identifier>).

Concrete graphical grammar

<signal list area> ::=

 <signal list symbol> contains <signal list>

Superseded by a more recent version

50 Recommendation Z.100 (03/93) Superseded by a more recent version

<signal list symbol> ::=

2.6 BehaviourRecommendation Z.100 (03/93)

2.6.1 Variables

A variable has a value of a sort associated, or it is “undefined”.

2.6.1.1 Variable definition

Abstract grammar

Variable-definition :: Variable-name

 Sort-reference-identifier

 [Ground-expression]

 [REVEALED]

Variable-name = Name

If the Ground-expression is present, it must be of the same sort as the Sort-reference-identifier denoted.

Concrete textual grammar

<variable definition> ::=

 dcl

 [revealed | exported | revealed exported | exported revealed]

 <variables of sort> {, <variables of sort> }*<end>

<variables of sort> ::=

 <variable name> [<exported as>] {, <variable name> [<exported as>]}*

 <sort> [:= <ground expression>]

<exported as> ::=

 as <remote variable identifier

<exported as> may only be used for a variable with the exported attribute. Two exported variables in a process,
including possible services, cannot mention the same <remote variable identifier>.

Semantics

When a variable is created and the Ground-expression is present, then the variable is associated with the value of the
Ground-expression. Otherwise, the variable has no value associated, i.e. the variable is “undefined”.

If Sort-reference-identifier is a Syntype-identifier, Ground-expression is present and the value of the Ground-expression
does not comply with the Range-condition, the system is in error and the further behaviour of the system is unspecified.

The revealed attribute allows all other processes of the same block to read the value of a variable, provided they have a
<view definition> with the same name and sort.

The exported attribute allows a variable to be used as an exported variable as elaborated in 4.13.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 51

Model

The Ground-expression is represented by:

a) if a <ground expression> is given in the <variable definition>, then this <ground expression>;

b) else, if the <sort> has a <default initialization>, then the <ground expression> of the <default
initialization>.

Otherwise, the Ground-expression is not present.

2.6.1.2 View definition

Abstract grammar

View-definition :: View-name

 Sort-reference-identifier

In the enclosing Block-definition at least one Process-definition must exist which contains a REVEALED Variable-
definition with same Sort-reference-identifier and same Variable-name as the Name of View-name.

Concrete textual grammar

<view definition> ::=

 viewed

 <view name> {, <view name>}* <sort>

 {,<view name> {, <view name>}*<sort>}* <end>

Semantics

The view mechanism allows a process instance to see the viewed variable value continuously as if it were locally
defined. The viewing process instance however doesn’t have any right to modify it.

2.6.2 Start

Abstract grammar

Process-start-node :: Transition

Concrete textual grammar

<start> ::=

 start [<virtuality>] <end> <transition>

Concrete graphical grammar

<start area> ::=

 <start symbol>

 contains { [<virtuality>] }

 is followed by <transition area>

<start symbol> ::=

Superseded by a more recent version

52 Recommendation Z.100 (03/93) Superseded by a more recent version

Semantics

The Transition of the Process-start-node is interpreted.

Model

A <start> or <start area> which contains <virtuality> is called a virtual start. Virtual start is further described in 6.3.3.

2.6.3 State

Abstract grammar

State-node :: State-name

 Save-signalset

 Input-node-set

 Spontaneous-transition-set

State Name = Name

State-nodes within a Process-graph, Service-graph or Procedure-graph respectively must have different State-names.

For each State-node, all Signal-identifiers (in the complete valid input signal set) appear in either a Save-signalset or an
Input-node.

The Signal-identifiers in the Input-node-set must be distinct.

Concrete textual grammar

<state> ::=

 state <state list> <end>

 { <input part>

 | <priority input>

 | <save part>

 | <spontaneous transition>

 | <continuous signal>}*

 [endstate [<state name>] <end>]

<state list> ::=

 {<state name> { , <state name> }*}

 | <asterisk state list>

When the <state list> contains one <state name> then the <state name> represents a State-node. For each State-node, the
Save-signalset is represented by the <save part> and any implicit signal saves. For each State-node, the Input-node-set is
represented by the <input part> and any implicit input signals. For each State-node, a Spontaneous-transition is
represented by a <spontaneous transition>.

The optional <state name> ending a <state> may be specified only if the <state list> in the <state> consists of a single
<state name> in which case it must be that <state name>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 53

Concrete graphical grammar

<state area> ::=
 <state symbol> contains <state list> is associated with
 { <input association area>
 | <priority input association area>
 | <continuous signal association area>
 | <spontaneous transition association area>
 | <save association area> }*

<state symbol> ::=

<input association area> ::=
 <solid association symbol> is connected to <input area>

<save association area> ::=
 <solid association symbol> is connected to <save area>

<spontaneous transition association area> ::=
 <solid association symbol> is connected to
 <spontaneous transition area>

A <state area> represents one or more State-nodes.

The <solid association symbol>s originating from a <state symbol> may have a common originating path.

A <state area> must contain <state name> if it coincides with a <nextstate area>.

Semantics

A state represents a particular condition in which a process may consume a signal instance resulting in a transition. If the
state has neither spontaneous transitions nor continuous signals, and there are no signal instances in the input port,
otherwise than those mentioned in a save, then the process waits in the state until a signal instance is received.

At any time in a state, which contains Spontaneous-transitions, the process may enter into the Transition of one of the
Spontaneous-transitions.

Model

When the <state list> of a certain <state> contains more than one <state name>, a copy of the <state> is created for each
such <state name>. Then the <state> is replaced by these copies.

2.6.4 Input

Abstract grammar

Input-node :: Signal-identifier
 [Variable-identifier]*
 Transition

Variable-identifier = Identifier

The length of the [Variable-identifier]* must be the same as the number of Sort-reference-identifiers in the Signal-
definition denoted by the Signal-identifier.

Superseded by a more recent version

54 Recommendation Z.100 (03/93) Superseded by a more recent version

The sorts of the variables must correspond by position to the sorts of the values that can be carried by the signal.

Concrete textual grammar

<input part> ::=

 <basic input part>

 | <remote procedure input transition>

<basic input part> ::=

 input [<virtuality>] <input list> <end>

 [<enabling condition>]<transition>

<input list> ::=

 <asterisk input list>

 | <stimulus> { ,<stimulus> }*

<stimulus> ::=
 { <signal identifier> | <timer identifier>}
 [([<variable>] {,[<variable>]}*)]

When the <input list> contains one <stimulus>, then the <input part> represents an Input-node. In the Abstract
grammar, timer signals (<timer identifier>) are also represented by Signal-identifier. Timer signals and ordinary signals
are distinguished only where appropriate, as in many respects they have similar properties. The exact properties of timer
signals are defined in 2.8.

Commas may be omitted after the last <variable> in <stimulus>.

Concrete graphical grammar

<input area> ::=
 <basic input area>
 | <remote procedure input area>

<basic input area> ::=
 <input symbol> contains { [<virtuality>] <input list> }

 is followed by {[<enabling condition area>] <transition area>}

<input symbol> ::=
 <plain input symbol>
 | <internal input symbol>

<plain input symbol> ::=

An <input area> whose <input list> contains one <stimulus> corresponds to one Input-node. Each of the <signal
identifier>s or <timer identifier>s contained in an <input symbol> gives the name of one of the Input-nodes which this
<input symbol> represents.

Semantics

An input allows the consumption of the specified input signal instance. The consumption of the input signal makes the
information conveyed by the signal available to the process. The variables associated with the input are assigned the
values conveyed by the consumed signal.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 55

The values will be assigned to the variables from left to right. If there is no variable associated with the input for a sort
specified in the signal, the value of this sort is discarded. If there is no value associated with a sort specified in the signal,
the corresponding variable becomes “undefined”.

The sender expression of the consuming process is given the PId value of the originating process, carried by the signal
instance.

Signal instances flowing from the environment to a process instance within the system will always carry a PId value
different from any in the system.

Model

When the <stimulus>s list of a certain <input part> contains more than one <stimulus>, a copy of the <input part> is
created for each such <stimulus>. Then the <input part> is replaced by these copies.

When one or more of the <variable>s of a certain <stimulus> are <indexed variable>s or <field variable>s, then all the
<variable>s are replaced by unique, new, implicitly declared, <variable identifier>s. Directly following the <input part>,
a <task> is inserted which in its <task body> contains an <assignment statement> for each of the <variable>s, assigning
the value of the corresponding new variable to the <variable>. The values will be assigned in the order from left to right
of the list of <variable>s. This <task> becomes the first <action> in the <transition>.

A <basic input part> or <basic input area> which contains <virtuality> is called a virtual input transition. Virtual input
transition is further described in 6.3.3.

2.6.5 Save

A save specifies a set of signal identifiers whose instances are not relevant to the process in the state to which the save is
attached, and which need to be saved for future processing.

Abstract grammar

Save-signalset :: Signal-identifier-set

Concrete textual grammar

<save part> ::=

 <basic save part>

 | <remote procedure save>

<basic save part> ::=

 save [<virtuality>] <save list> <end>

<save list> ::=

 {<signal list> | <asterisk save list>}

A <save list> represents the Signal-identifier-set. The <asterisk save list> is a shorthand notation explained in 4.7.

Concrete graphical grammar

<save area> ::=

 <basic save area>

 | <remote procedure save area>

<basic save area> ::=

 <save symbol> contains { [<virtuality>] <save list> }

Superseded by a more recent version

56 Recommendation Z.100 (03/93) Superseded by a more recent version

<save symbol> ::=

Semantics

The saved signals are retained in the input port in the order of their arrival.

The effect of the save is valid only for the state to which the save is attached. In the following state, signal instances that
have been “saved” are treated as normal signal instances.

Model

A <basic save part> or <basic save area> which contains <virtuality> is called a virtual save. Virtual save is further
described in 6.3.3.

2.6.6 Spontaneous transition

A spontaneous transition specifies a state transition without any signal reception.

Abstract grammar

Spontaneous transition :: Transition

Concrete textual grammar

<spontaneous transition> ::=

 input [<virtuality>] <spontaneous designator> <end>

 [<enabling condition>] <transition>

<spontaneous designator> ::=

 none

Concrete graphical grammar

<spontaneous transition area> ::=

 <input symbol> contains

 { [<virtuality>] <spontaneous designator> }

 is followed by

 { [<enabling condition area>] <transition area> }

Semantics

A spontaneous transition allows the activation of a transition without any stimuli being presented to the process. The
activation of a spontaneous transition is independent of the presence of signal instances in the input port of the process.
There is no priority between transitions activated by signal reception and spontaneous transitions.

The sender expression of the process is self after activation of a spontaneous transition.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 57

Model

A <spontaneous transition> or <spontaneous transition area> which contains <virtuality> is called a virtual spontaneous
transition. Virtual spontaneous transition is further described in 6.3.3.

2.6.7 Label

Concrete textual grammar

<label> ::=

 <connector name> :

<free action> ::=

 connection

 <transition>

 [endconnection [<connector name>] <end>]

<body> is used as a convenient non-terminal for rules which apply to processes, services and procedures. <body> is not
part of the concrete textual grammar.

All the <connector name>s defined in a <body> must be distinct.

A label represents the entry point of a transfer of control from the corresponding joins with the same <connector name>s
in the same <body>.

Transfer of control is only allowed to labels within the same <body>. The rule for <body>s of a supertype and its
specializations is stated in 6.3.1.

If the <transition string> of the <transition> in <free action> is non-empty, the first <action statement> must have a
<label> otherwise the <terminator statement> must have a <label>.

If present, the <connector name> ending the <free action> must be the same as the <connector name> in this <label>.

Concrete graphical grammar

<in-connector area> ::=

 <in-connector symbol> contains <connector name> is followed by

 <transition area>

<in-connector symbol> ::=

An <in-connector area> represents the continuation of a <flow line symbol> from a corresponding <out-connector area>
with the same <connector name> in the same <process graph area> or <procedure graph area>.

Semantics

The contained <transition> or <transition area> is in the abstract grammar represented by applying <join> to the
<connector name> (see 2.6.8.2.2)

Superseded by a more recent version

58 Recommendation Z.100 (03/93) Superseded by a more recent version

2.6.8 Transition

2.6.8.1 Transition body

Abstract grammar

Transition :: Graph-node*
 (Terminator | Decision-node)

Graph-node :: Task-node |
 Output-node |
 Create-request-node |
 Call-node |
 Set-node |
 Reset-node

Terminator :: Nextstate-node |
 Stop-node |
 Return-node

Concrete textual grammar

<transition> ::=
 {<transition string> [<terminator statement>] }
 | <terminator statement>

<transition string> ::=
 {<action statement>}+

<action statement> ::=
 [<label>] <action> <end>

<action> ::=
 <task>
 | <output>
 | <create request>
 | <decision>
 | <transition option>
 | <set>
 | <reset>
 | <export>
 | <procedure call>
 | <remote procedure call>

<terminator statement> ::=
 [<label>] <terminator> <end>

<terminator> ::=
 <nextstate>
 | <join>
 | <stop>
 | <return>

If the <terminator> of a <transition> is omitted, then the last action in the <transition> must contain a terminating
<decision> (see 2.7.5) or terminating <transition option>, except when a <transition> is contained in a <decision> or
<transition option>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 59

Concrete graphical grammar

<transition area> ::=
 [<transition string area>] is followed by
 { <state area>
 | <nextstate area>
 | <decision area>
 | <stop symbol>
 | <merge area>
 | <out-connector area>
 | <return area>
 | <transition option area> }

<transition string area> ::=
 { <task area>
 | <output area>
 | <set area>
 | <reset area>
 | <export area>
 | <create request area>
 | <procedure call area>
 | <remote procedure call area>}
 [is followed by <transition string area>]

A transition consists of a sequence of actions to be performed by the process.

The <transition area> corresponds to Transition and <transition string area> corresponds to Graph-node*.

Semantics

A transition performs a sequence of actions. During a transition, the data of a process may be manipulated and signals
may be output. The transition will end with the process entering a state, with a stop, with a return or with the transfer of
control to another transition.

2.6.8.2 Transition terminator

2.6.8.2.1 Nextstate

Abstract grammar

Nextstate-node :: State-name

The State-name specified in a nextstate must be the name of a state within the same Process-graph, Service-graph or
Procedure-graph.

Concrete textual grammar

<nextstate> ::=
 nextstate <nextstate body>

<nextstate body> ::=
 {<state name> | <dash nextstate>}

Concrete graphical grammar

<nextstate area> ::=
 <state symbol> contains <nextstate body>

Superseded by a more recent version

60 Recommendation Z.100 (03/93) Superseded by a more recent version

Semantics

A nextstate represents a terminator of a transition. It specifies the state of the process, service or procedure when
terminating the transition.

2.6.8.2.2 Join

A join alters the flow in a <body> by expressing that the next <action statement> to be interpreted is the one which
contains the same <connector name>.

Concrete textual grammar

<join> ::=

 join <connector name>

There must be exactly one <connector name> corresponding to a <join> within the same <body>. The rule for <process
type body> is stated in 6.3.1.

Concrete graphical grammar

<merge area> ::=

 <merge symbol> is connected to <flow line symbol>

<merge symbol> ::=

 <flow line symbol>

<flow line symbol> ::=

<out-connector area> ::=

 <out-connector symbol> contains <connector name>

<out-connector symbol> ::=

 <in-connector symbol>

For each <out-connector area> in a <process graph area>, there must be exactly one <in-connector area> in that <process
graph area>. The rule for <process type graph area> is stated in 6.3.1.

An <out-connector area> corresponds to a <join> in the Concrete textual grammar. If a <merge area> is included in a
<transition area> it is equivalent to specifying an <out-connector area> in the <transition area> which contains a unique
<connector name> and attaching an <in-connector area>, with the same <connector name> to the <flow line symbol> in
the <merge area>.

Semantics

In the abstract syntax a <join> or <out-connector area> is derived from the <transition string> wherein the first <action
statement> or action area has the same <connector name> attached.

2.6.8.2.3 Stop

Abstract grammar

Stop-node :: ()

A Stop-node must not be contained in a Procedure-graph.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 61

Concrete textual grammar

<stop> ::=
 stop

Concrete graphical grammar

<stop symbol> ::=

Semantics

The stop causes the immediate halting of the process or service interpreting it.

In case of a process, this means that the retained signals in the input port are discarded and that the variables and timers
created for the process, the input port and the process will cease to exist.

In case of a service, this means that the signals for the service will be discarded, until the process instance ceases to exist.

2.6.8.2.4 Return

Abstract grammar

Return-node :: ()

A Return-node must be contained in a Procedure-graph.

Concrete textual grammar

<return> ::=
 return [<expression>]

Concrete graphical grammar

 <return area> ::=

 <return symbol>

 [is associated with <expression>]

<return symbol> ::=

<expression> in <return> or <return area> is allowed if and only if the enclosing scope is an operator or a procedure
that has <procedure result>.

Semantics

A Return-node is interpreted in the following way:

Superseded by a more recent version

62 Recommendation Z.100 (03/93) Superseded by a more recent version

a) All variables created by the interpretation of the Procedure-start-node will cease to exist.

b) The interpretation of the Procedure-graph is completed and the procedure instance ceases to exist.

c) Hereafter, the calling process, service (or procedure) interpretation continues at the node following the
call.

Model

The model for return with an expression is defined in 2.4.6.

2.7 Action

2.7.1 Task

Abstract grammar

Task-node :: Assignment-statement |

 Informal-text

Concrete textual grammar

<task> ::=

 task <task body>

<task body> ::=

 {<assignment statement>{,<assignment statement>}*}
 | {<informal text> {,<informal text>}*}

Concrete graphical grammar

<task area> ::=

 <task symbol> contains <task body>

<task symbol> ::=

Semantics

The interpretation of a Task-node is the interpretation of the Assignment-statement or the interpretation of the Informal-
text.

Model

A <task body> may contain several <assignment statement>s or <informal text>. In that case it is derived syntax for
specifying a sequence of <task>s, one for each <assignment statement> or <informal text> such that the original order in
which they were specified in the <task body> is retained.

This shorthand is expanded before shorthands in the contained expressions are expanded.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 63

2.7.2 Create

Abstract grammar

Create-request-node :: Process-identifier
 [Expression]*

The length of [Expression]* must be the same as the number of Process-formal-parameters in the Process-definition of
the Process-identifier.

Each Expression corresponding by position to a Process-formal-parameter must have the same sort as the
Process-formal-parameter in the Process-definition denoted by Process-identifier.

Concrete textual grammar

<create request> ::=

 create <create body>

<create body> ::=

 { <process identifier> | this } [<actual parameters>]

<actual parameters> ::=

 ([<expression>] {,[<expression>]}*)

Commas after the last <expression> in <actual parameters> may be omitted.

this may only be specified in a <process type definition> and in scopes enclosed by a <process type definition>.

Concrete graphical grammar

<create request area> ::=

 <create request symbol> contains <create body>

<create request symbol> ::=

A <create request area> represents a Create-request-node.

Semantics

The create action causes the creation of a process instance in the same block. The created process parent has the same
PId value as the creating process self. The created process self and the creating process offspring expressions both have
the same unique, new PId value (see Annex D, D.10.1).

When a process instance is created, it is given an empty input port, variables are created and the actual parameter
expressions are interpreted in the order given, and assigned (as defined in 5.4.3) to the corresponding formal parameters.
Then the process starts by interpreting the start node in the process graph.

The created process then executes asynchronously and in parallel with other processes.

If an attempt is made to create more process instances than specified by the maximum number of instances in the process
definition, then no new instance is created, the offspring expression of the creating process has the value Null and
interpretation continues.

Superseded by a more recent version

64 Recommendation Z.100 (03/93) Superseded by a more recent version

If an <expression> in <actual parameters> is omitted, the corresponding formal parameter has no value associated, i.e. it
is “undefined”.

Model

Stating this is derived syntax denoting the implicit <process identifier> for the set of instances of which the process
executing the create is a member.

2.7.3 Procedure call

Abstract grammar

Call-node :: Procedure-identifier

 [Expression]*

Procedure-identifier = Identifier

The length of the [Expression]* must be the same as the number of the Procedure-formal-parameters in the
Procedure-definition of the Procedure-identifier.

Each Expression corresponding by position to an in Procedure-formal-parameter must have the same sort as the
Procedure-formal-parameter.

Each Expression corresponding by position to an in/out Procedure-formal-parameter must be a Variable-identifier with
the same Sort-reference-identifier as the Procedure-formal-parameter.

Concrete textual grammar

<procedure call> ::=
 call <procedure call body>

<procedure call body> ::=
 [this] <procedure identifier> [<actual parameters>]

An example of <procedure call> is given in Figure 2.10.13.

An <expression> in <actual parameters> corresponding to a formal in/out parameter cannot be omitted and must be a
<variable identifier>.

After the Model for this has been applied, the <procedure identifier> must denote a procedure which contains a start
transition.

If this is used, <procedure identifier> must denote an enclosing procedure.

Concrete graphical grammar

<procedure call area> ::=
 <procedure call symbol> contains <procedure call body>

<procedure call symbol> ::=

The <procedure call area> represents the Call-node.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 65

An example of <procedure call area> is shown in Figure 2.10.14.

Semantics

The interpretation of a procedure call node transfers the interpretation to the procedure definition referenced in the call
node, and that procedure graph is interpreted.

The interpretation of the transition containing the procedure call continues when the interpretation of the called
procedure is finished.

The actual parameter expressions are interpreted in the order given.

Special semantics are needed as far as data and parameters interpretation are concerned (the explanation is contained
in 2.4.6).

If an <expression> in <actual parameters> is omitted, the corresponding formal parameter has no value associated, i.e. it
is “undefined”.

Model

If the <procedure identifier> is not defined within the enclosing service or process, the procedure call is transformed into
a call of a local, implicitly created, subtype of the procedure.

this implies that when the procedure is specialized, the <procedure identifier> is replaced by the identifier of the
specialized procedure.

2.7.4 Output

Abstract grammar

Output-node :: Signal-identifier

 [Expression]*

 [Signal-destination]

 Direct-via

Signal-destination = Expression | Process-identifier

Direct-via = (Signal-route-identifier | Channel-identifier)-set

The length of [Expression]* must be the same as the number of Sort-reference-identifiers in the Signal-definition
denoted by the Signal-identifier.

Each Expression must have the same sort as the corresponding (by position) Sort-identifier-reference in the
Signal-definition.

For every possible consistent subset (see clause 3) there must exist at least one communication path (either implicit to
own set of process instances, or explicit via signal routes and possibly channels) to the environment, or to a process
instance set or service having Signal-identifier in its valid input signal set and originating from the process instance set
or service where the Output-node is used.

For each Signal-route-identifier in Direct-via, the Origin in (one of) the Signal-route-path(s) of the signal route must
denote either

a) a set of process instances that contains the process interpreting the Output-node or containing a service
that interprets the Output-node, or

b) a service within the originating process that interprets the Output-node.

Superseded by a more recent version

66 Recommendation Z.100 (03/93) Superseded by a more recent version

Further, the Signal-route-path must include Signal-identifier in its set of Signal-identifiers. If the Origin denotes a set of
process instances and the signal is sent from a service, then there must exist a signal route within the process capable of
conveying the signal from the sending service to the signal route mentioned in Direct-via.

For each Channel-identifier in Direct-via there must exist one or two signal routes and zero or more channels such that
the channel via this path is reachable with the Signal-identifier from the process or service, and the Channel-path in the
direction from the process must include Signal-identifier in its set of Signal-identifiers.

Concrete textual grammar

<output> ::=

 output <output body>

<output body> ::=

 <signal identifier>

 [<actual parameters>]{, <signal identifier> [<actual parameters>]}*

 [to <destination>] [via [all] <via path>]

<destination> ::=

 <PId expression> | <process identifier> | this

<via path> ::=

 <via path element> {, <via path element>}*

<via path element> ::=

 <signal route identifier>

 | <channel identifier>

 | <gate identifier>

The <PId expression> or the <process identifier> in <destination> represents the Signal-destination. There is a syntactic
ambiguity between <PId expression> and <process identifier> in <destination>. If <destination> can be interpreted as a
<PId expression> without violating any static conditions, it is interpreted as <PId expression> otherwise as <process
identifier>. <process identifier> must denote a process, which is reachable from the originating process.

The via construct represents the Direct-via. The <via path> is considered a list of <via path element>s.

via all may only be specified when there is no Signal-destination. via all represents multicast as explained in Model.

this may only be specified in a <process type definition> and in scopes enclosed by a <process type definition>.

Concrete graphical grammar

<output area> ::=

 <output symbol> contains <output body>

<output symbol> ::=

 <plain output symbol>

 | <internal output symbol>

<plain output symbol> ::=

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 67

Semantics

Stating a Process-identifier in Signal-destination indicates Signal-destination as any existing instance of the set of
process instances indicated by Process-identifier. If there exist no instances, the signal is discarded.

If no Signal-route-identifier is specified in Direct-via and no Signal-destination is specified, any process, for which there
exists a communication path, may receive the signal.

The values conveyed by the signal instance are the values of the actual parameters of the output. If an <expression> in
<actual parameters> is omitted, no value is conveyed with the corresponding place of the signal instance, i.e. the
corresponding place is “undefined”.

The PId value of the originating process is also conveyed by the signal instance.

If a syntype is specified in the signal definition and an expression is specified in the output, then the range check defined
in 5.3.1.9.1 is applied to the expression.

The signal instance is then delivered to a communication path able to convey it. The set of communication paths able to
convey the signal instance can be restricted by the via clause to the set of paths mentioned in the Direct-via.

If Signal-destination is Expression, the signal instance is delivered to the process instance denoted by Expression. If this
instance does not exist or is not reachable from the originating process, the signal instance is discarded.

If Signal-destination is Process-identifier, the signal instance is delivered to an arbitrary instance of the process instance
set denoted by Process-identifier. If no such instance exists, the signal instance is discarded.

For example, if Signal-destination is specified as Null in an Output-node, the signal instance will be discarded, when the
Output-node is interpreted.

If no Signal-destination is specified, the receiver is selected in two steps. First, the signal is sent to a process instance set,
which can be reached by the communication paths able to convey the signal instance. This process instance set is
arbitrarily chosen. Second, when the signal instance arrives at the end of the communication path, it is delivered to an
arbitrary instance of the process instance set. The instance is arbitrarily selected. If no instance can be selected, the signal
instance is discarded.

Note that specifying the same Channel-identifier or Signal-route-identifier in the Direct-via of two Output-nodes does
not automatically mean that the signals are queued in the input port in the same order as the Output-nodes are
interpreted. However, order is preserved if the two signals are conveyed by identical delaying channels, or only
conveyed by channels with no delay, or if the originating process or service and the destination process or service are
defined within the same block.

Model

If several pairs of (<signal identifier> <actual parameters>) are specified in an <output body> it is derived syntax for
specifying a sequence of <output>s or <output area>s in the same order specified in the original <output body> each
containing a single pair of (<signal identifier> <actual parameters>). The to clause and the via clause are repeated in
each of the <output>s or <output area>s.

Stating via all is derived syntax for multicasting the signal via the communication paths mentioned in <via path>, so that
signals are sent in the same order as <via path element>s appear in <via path>, one via each <via path element>.
Multicast denotes a sequence of outputs of the same signal. The values conveyed with each of the resulting signal
instances are only evaluated once before interpreting the first output, implicit variables are then used to store the values
for use in each output. If same <via path element> appears several times in a <via path>, one signal is sent for each
appearance.

Stating this is derived syntax for denoting as <process identifier>, the implicit <process identifier> for the set of
instances of which the process executing the output is a member.

Superseded by a more recent version

68 Recommendation Z.100 (03/93) Superseded by a more recent version

2.7.5 Decision

Abstract grammar

Decision-node :: Decision-question

 Decision-answer-set

 [Else-answer]

Decision-question = Expression |

 Informal-text

Decision-answer :: (Range-condition | Informal-text)

 Transition

Else-answer :: Transition

The Range-conditions of the Decision-answers must be mutually exclusive, and the Ground-Expressions of the
Range-conditions must be of the same sort.

If the Decision-question is an Expression, the Range-condition of the Decision-answers must be of the same sort as the
Decision-question.

Concrete textual grammar

<decision> ::=

 decision <question> <end> <decision body> enddecision

<decision body> ::=

 {<answer part> <else part>}

 | {<answer part> {<answer part>}+ [<else part>] }

<answer part> ::=

 ([<answer>]) : [<transition>]

<answer> ::=

 <range condition> | <informal text>

<else part> ::=

 else : [<transition>]

<question> ::=

 <question expression> | <informal text> | any

A <decision> or <transition option> is a terminating decision and terminating option respectively, if each <answer part>
and <else part> in its <decision body> contains a <transition> where a <terminator statement> is specified, or contains a
<transition string> whose last <action statement> contains a terminating decision or option.

The <answer> of <answer part> must be omitted if and only if the <question> consists of the keyword any. In this case,
no <else part> may be present.

There is syntactic ambiguity between <informal text> and <character string> in <question> and <answer>. If the
<question> and all <answer>s are <character string>, then all of these are interpreted as <informal text>. If the
<question> or any <answer> is a <character string> which does not match the context of the decision, then the
<character string> denotes <informal text>.

The context of the decision (i.e. the sort) is determined without regard to <answer>s which are <character string>.

If a <character string> of <question> or any <answer> contain control characters, the string is interpreted as <informal
text>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 69

Concrete graphical grammar

<decision area> ::=

 <decision symbol> contains <question>

 is followed by

 { {<graphical answer part> <graphical else part>} set

 | {<graphical answer part> {<graphical answer part>}+

 [<graphical else part>] } set }

<decision symbol> ::=

<graphical answer> ::=

 [<answer>] | ([<answer>])

<graphical answer part> ::=

 <flow line symbol> is associated with <graphical answer>

 is followed by <transition area>

<graphical else part> ::=

 <flow line symbol> is associated with else

 is followed by <transition area>

The <graphical answer> and else may be placed along the associated <flow line symbol>, or in the broken <flow line
symbol>.

The <flow line symbol>s originating from a <decision symbol> may have a common originating path.

A <decision area> represents a Decision-node.

The <answer> of <graphical answer> must be omitted if and only if the <question> consists of the keyword any. In this
case, no <graphical else part> may be present.

Semantics

A decision transfers the interpretation to the outgoing path whose range condition contains the value given by the
interpretation of the question. A set of possible answers to the question is defined, each of them specifying the set of
actions to be interpreted for that path choice.

One of the answers may be the complement of the others. This is achieved by specifying the Else-answer, which
indicates the set of activities to be performed when the value of the expression on which the question is posed, is not
covered by the values or set of values specified in the other answers.

Whenever the Else-answer is not specified, the value resulting from the evaluation of the question expression must
match one of the answers.

Model

If a <decision> is not terminating then it is derived syntax for a <decision> wherein all the <answer part>s and the <else
part> have inserted in their <transition> a <join> to the first <action statement> following the decision or if the decision
is the last <action statement> in a <transition string> to the following <terminator statement>.

Using only any in a <decision> is a shorthand for using <anyvalue expression> in the decision. Assuming that the
<decision body> is followed by N <answer part>s, any in <decision> is then a shorthand for writing any(data_type_N),
where data_type_N is an anonymous syntype defined as

Superseded by a more recent version

70 Recommendation Z.100 (03/93) Superseded by a more recent version

 syntype data_type_N =
 package Predefined Integer constants 1:N
 endsyntype;

The omitted <answer>s are shorthands for writing the literals 1 through N as the <constant>s of the <range condition>s
in the N <answer>s.

2.8 Timer

Abstract grammar

Timer-definition :: Timer-name
 Sort-reference-identifier*

Timer-name = Name

Set-node :: Time-expression
 Timer-identifier
 Expression*

Reset-node :: Timer-identifier
 Expression*

Timer-identifier = Identifier

Time-expression = Expression

The sorts of the Expression* in the Set-node and Reset-node must correspond by position to the Sort-reference-
identifier* directly following the Timer-name identified by the Timer-identifier.

Concrete textual grammar

<timer definition> ::=
 timer
 <timer definition item> {,<timer definition item>}* <end>

<timer definition item> ::=
 <timer name> [<sort list>] [:= <Duration ground expression>]

<reset> ::=
 reset (<reset statement> { , <reset statement> }*)

<reset statement> ::=
 <timer identifier> [(<expression list>)]

<set> ::=
 set <set statement> { , <set statement> }*
<set statement> ::=
 ([<Time expression> ,] <timer identifier> [(<expression list>)])

A <set statement> may omit <Time expression>, if <timer identifier> denotes a timer which has a <Duration ground
expression> in its definition.

A <reset statement> represents a Reset-node; a <set statement> represents a Set-node.

Concrete graphical grammar

<set area> ::=
 <task symbol> contains <set>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 71

<reset area> ::=

 <task symbol> contains <reset>

Semantics

A timer instance is an object, that can be active or inactive. Two occurrences of a timer identifier followed by an
expression list refer to the same timer instance only if the operator “=” applied to all corresponding expressions in the
lists yields True (i.e. if the two expression lists have the same values).

When an inactive timer is set, a Time value is associated with the timer. Provided there is no reset or other setting of this
timer before the system time reaches this Time value, a signal with the same name as the timer is put in the input port of
the process. The same action is taken if the timer is set to a Time value less than or equal to now. After consumption of a
timer signal the sender expression yields the same value as the self expression. If an expression list is given when the
timer is set, the values of these expression(s) are contained in the timer signal in the same order. A timer is active from
the moment of setting up to the moment of consumption of the timer signal.

If a sort specified in a timer definition is a syntype, then the range check defined in 5.3.19.1 applied to the corresponding
expression in a set or reset must be True, otherwise the system is in error and the further behaviour of the system is
undefined.

When an inactive timer is reset, it remains inactive.

When an active timer is reset, the association with the Time value is lost, if there is a corresponding retained timer signal
in the input port then it is removed, and the timer becomes inactive.

When an active timer is set, this is equivalent to resetting the timer, immediately followed by setting the timer. Between
this reset and set the timer remains active.

Before the first setting of a timer instance it is inactive.

The Expressions in a Set-node or Reset-node are evaluated in the order given.

Model

A <set statement> with no <Time expression> is derived syntax for a <set statement> where <Time expression> is
“now + <Duration ground expression>”, where <Duration ground expression> is derived from the timer definition.

A <reset> or a <set> may contain several <reset statement>s or <set statement>s respectively. This is derived syntax for
specifying a sequence of <reset>s or <set>s, one for each <reset statement> or <set statement> such that the original
order in which they were specified in <reset> or <set> is retained. This shorthand is expanded before shorthands in the
contained expressions are expanded.

2.9 Internal input and output

The symbols defined in this section are introduced for compatibility with existing diagrams. They are not recommended
for new SDL descriptions and they have the same semantics as the <plain input symbol> and <plain output symbol>
respectively.

Concrete graphical grammar

<internal input symbol> ::=

Superseded by a more recent version

72 Recommendation Z.100 (03/93) Superseded by a more recent version

<internal output symbol> ::=

2.10 Examples

task t3 := 0 /*example*/;

FIGURE 2.10.1/Z.100

Example of note (SDL/PR)

 task ’task1’ comment ’example’;

 task ’task2’;

FIGURE 2.10.2/Z.100

Example of comment (SDL/PR)

T1007690-93/d03

T3 := 0
/* example */

FIGURE 2.10.3/Z.100

Same example as Figure 2.10.1 in SDL/GR

FIGURE 2.10.3/Z.100...[D03]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 73

T1007700-93/d04

’task1’

’task2’

example

FIGURE 2.10.4/Z.100

Same example as Figure 2.10.2 in SDL/GR

FIGURE 2.10.4/Z.100...[D04]

system Daemongame;

 signal Newgame, Probe, Result, Endgame, Gameid, Win, Lose,

 Score (Integer);

 channel Gameserver.in

 from env to Game

 with Newgame, Probe, Result, Endgame;

 endchannel Gameserver.in;

 channel Gameserver.out

 from Game to env

 with Gameid, Win, Lose, Score;

 endchannel Gameserver.out;

 block Game referenced;

endsystem Daemongame;

FIGURE 2.10.5/Z.100

Example of a system specification (SDL/PR)

Superseded by a more recent version

74 Recommendation Z.100 (03/93) Superseded by a more recent version

T1007710-93/d05

1(1)

signal
Newgame, Probe, Result,
Endgame, Gameid, Win, Lose,
Score(Integer);

Game

Newgame,
Probe,
Result,
Endgame

Gameid,
Win,
Lose,
Score

G
am

es
er

ve
r.i

n

G
am

es
er

ve
r.

ou
t

FIGURE 2.10.6/Z.100

Example of a system specification (SDL/GR)

system Daemongame

block Game;
 signal Gameover(PId);
 connect Gameserver.in and R1,R2;
 connect Gameserver.out and R3;
 signalroute R1 from env to Monitor with Newgame;
 signalroute R2 from env to Game with Probe, Result, Endgame;
 signalroute R3 from Game to env
 with Gameid, Win, Lose, Score;
 signalroute R4 from Game to Monitor with Gameover;

 process Monitor (1,1) referenced;

 process Game (0,) referenced;
endblock Game;

FIGURE 2.10.7/Z.100

Example of block specification (SDL/PR)

R4

R1 R2

R3

T1007720-93/d06

1(1)

signal
Gameover(PId);

Gameover

Probe,
Result,
Endgame

Gameserver.in Gameserver.out

FIGURE 2.10.8/Z.100

Example of a block specification (SDL/GR)

block Game

Monitor (1,1) Game (0,)

Gameid,
Win,
Lose,
Score

Newgame

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 75

process Game (0,); fpar player Pid;

dcl count Integer := 0 ; /*counter to keep track of score */

start;

 output Gameid to player;

 nextstate even;

state even;

 input none;

 nextstate odd;

 input Probe;

 output Lose to player;

 task count:= count-1;

 nextstate -;

state odd;

 input Probe;

 output Win to player;

 task count:= count+1;

 nextstate -;

 input none;

 nextstate even;

state even, odd;

 input Result;

 output Score(count) to player;

 nextstate -;

 input Endgame;

 output Gameover(player);

 stop;

endprocess Game;

FIGURE 2.10.9/Z.100

Example of process specification (SDL/PR)

Superseded by a more recent version

76 Recommendation Z.100 (03/93) Superseded by a more recent version

T1007730-93/d07

1(1)
process Game
fpar player PId

dcl count Integer := 0;
 /* counter to keep
 /* track of score */

even,odd

Result End_
game

Score(count)
to player

Gameover
(player)

—

Gameid
to player

even

none Probe

odd Lose
to player

Probe none
count :=
count – 1

Win
to player even —

The hyphen means
that the state is
not changed

FIGURE 2.10.10/Z.100

Example of process specification (SDL/GR)

count :=
count + 1

—

procedure Check;
 fpar in/out x, y Integer;
 /* The following signal definitions are assumed:
 signal sig1(Boolean), sig2, sig3(Integer,PId); */
 dcl sum, index Integer,
 nice Boolean;
 start;
 task sum := 0, index := 1;
 nextstate idle;
 state idle;
 input sig1(nice);
 decision nice;
 (True): task ’Calculate sum’;
 output sig3(sum, sender);
 return;
 (False): nextstate problems;
 enddecision;
 input sig2;
 join 1;

endprocedure Check;

FIGURE 2.10.11/Z.100

Example of a fragment of a procedure specification (SDL/PR)

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 77

1

1(3)

T1007740-93/d08

/* The following signal
definitions are assumed
signal sig1(Boolean),
signal sig2, sig3(Integer, PId); */

dcl sum, index Integer,
dcl nice Boolean;

procedure check fpar in/out x, y Integer

sum := 0,
index := 1

idle

sig1(nice) sig2

nice
(True)

(False)

problems ‘Calculate
sum’

sig3
(sum, sender)

FIGURE 2.10.12/Z.100

Example of a fragment of a procedure specification (SDL/GR)

/* The following signal definition is assumed:
signal inquire(Integer,Integer,Integer); */
process alfa;
 dcl a,b,c Integer;

 input inquire (a,b,c);
 call check (a,b);

endprocess;

FIGURE 2.10.13/Z.100

Example of a procedure call in a fragment of a process definition (SDL/PR)

Superseded by a more recent version

78 Recommendation Z.100 (03/93) Superseded by a more recent version

T1007750-93/d09

/* The following signal
definition is assumed:
signal
 inquire (Integer,Integer,
 Integer); */

dcl
a,b,c Integer;

inquire
(a,b,c)

check
(a,b)

process alfa

FIGURE 2.10.14/Z.100

Example of a procedure call in a fragment
of a process definition (SDL/GR)

FIGURE 2.10.14/Z.100...[D09]

An example of a <process definition> containing a <service definition>s is given below in Figures 2.10.15 to 2.10.20
with the corresponding <service definition>s. This process has the same behaviour as the one given in Figures 2.10.9
and 2.10.10.

process Game;

 fpar player Pid;

 signal Proberes (Integer);

 signalroute IR1 from Game_handler to env with Score,Gameid;

 signalroute IR2 from Game_handler to env with Gameover;

 signalroute IR3 from env to Game_handler with Result,Endgame;

 signalroute IR4 from env to Probe_handler with Probe;

 signalroute IR6 from Probe_handler to env with Lose,Win;

 signalroute IR7 from Probe_handler to Game_handler with Proberes;

 connect R2 and IR3,IR4;

 connect R3 and IR1,IR6;

 connect R4 and IR2;

 service Game_handler referenced;

 service Probe_handler referenced;

endprocess Game;

FIGURE 2.10.15/Z.100

Example of process (same as Figure 2.10.9) decomposed as services (SDL/PR)

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 79

T1007760-93/d10

R4

IR2

IR3

IR7

IR6

IR4

R2 R3

IR1

FIGURE 2.10.16/Z.100

Example of process (same as FIGURE 2.10.10)
decomposed as services (SDL/GR)

signal Proberes (Integer);

process Game fpar player Pid

Proberes

Result,
Endgame

Probe_handler Game_handler

Probe Score
Gameid

Lose
Win

Gameover

FIGURE 2.10.16/Z.100...[D10]

service Game_handler;

 /* The service handles a game with actions to start a game, to end

 a game, to keep track of the score and to communicate the score */

 dcl count Integer, /*Counter to keep track of the score*/

 a Integer; /* counter increment */

 start;

 output Subscr;

 output Gameid to player;

 task count:=0;

 nextstate started;

 state started;

 priority input Proberes(a);

 task count:=count+a;

 nextstate -;

 input Result;

 output Score(count) to player;

 nextstate -;

 input Endgame;

 output Gameover;

 stop;

 endstate started;

endservice Game_handler;

FIGURE 2.10.17/Z.100

Example of service (SDL/PR)

Superseded by a more recent version

80 Recommendation Z.100 (03/93) Superseded by a more recent version

1(1)

T1007770-93/d11

service Game_handler

/* The service handles a gamewith
actions to start a game, to end a game,
to keep track of the score and
to communicate the score */
dcl count Integer;
/* Counter to keep track of
the score */
dcl a Integer; /* counter incr */

Subscr

Gameid
to player

Count := 0

started

Proberes
(a)

Result Endgame

Count :=
count + a

Score (count)
to player

Gameover

— —

FIGURE 2.10.18/Z.100

Example of service (same as FIGURE 2.10.17) (SDL/PR)

service Probe_handler;

/* The service has actions to register the bumps and to handle probes from the player.
 The probe result is sent to the player but also to the service Game_handler */
 start;
 nextstate even;
 state even;
 input Probe;
 output Lose to player;
 output Proberes(-1) to self;
 nextstate -;
 input none;
 nextstate Odd;
 endstate even;
 state odd;
 input none;
 nextstate even;
 input Probe;
 output Win to player;
 output Proberes(1) to self;
 nextstate -;
 endstate Odd;
endservice Bump_handler;

FIGURE 2.10.19/Z.100

Example of service (SDL/PR)

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 81

T1007780-93/d12

1(1)service Probe_handler

/* The service has actions to
register the bumps and to
handle probes from the player.
The probe result is sent to the
player but also to the service
Game_handler */

even

Probe

Lose to
player

none

odd

none

even

even

Proberes
(–1)
to self

—

Probe

Win to
player

Proberes
(1)
to self

FIGURE 2.10.20/Z.100

Example of service (same as FIGURE 2.10.19) (SDL/GR)

FIGURE 2.10.20/Z.100...[D12]

Superseded by a more recent version

82 Recommendation Z.100 (03/93) Superseded by a more recent version

3 Structural Decomposition Concepts in SDL

3.1 Introduction

This section defines a number of concepts needed to handle hierarchical structures in SDL. The basis for these concepts
is defined in clause 2. The concepts defined here are strictly additions to those defined in clause 2.

The intention of the concepts introduced in this section is to provide the user with the means to specify large and/or
complex systems. The concepts defined in clause 2 are suitable for specifying relatively small systems which may be
understood and handled at a single level of blocks. When a larger or complex system is specified, there is a need to
partition the system specification into manageable units which may be dealt with and understood independently. It is
often suitable to perform the partitioning in a number of steps, resulting in a hierarchical structure of units specifying the
system. In addition to concepts introduced in this section, the package concept introduced in clause 2 and the structural
typing concepts introduced in clause 6 are particularly useful for describing large systems.

The term partitioning means subdivision of a unit into smaller subunits that are components of the unit. Partitioning does
not affect the static interface of a unit. In addition to partitioning, there is also a need to add new details to the behaviour
of a system when descending to lower levels in the hierarchical structure of the system specification. This is denoted by
the term refinement.

3.2 Partitioning

3.2.1 General

A block may be partitioned into a set of subblocks, channels and subchannels. Similarly, a channel may be partitioned
into a set of blocks, channels and subchannels. In the concrete syntaxes, each block (or block type) definition and
channel definition can have two versions: an unpartitioned version and a partitioned version. However, channel
substructures are transformed when mapping onto the abstract syntax, i.e. a channel with a substructure is never
interpreted, instead the channel substructure is interpreted. A subblock definition is a block definition, and a subchannel
definition is a channel definition.

In a concrete system definition as well as in an abstract system definition, both the unpartitioned and the partitioned
version of a block definition may appear. In such a case, a concrete system definition contains several consistent
partitioning subsets, each subset corresponding to a system instance. A consistent partitioning subset is a selection of the
block definitions in a system definition such that:

a) If it contains a Block-definition, then it must contain the definition of the enclosing scope unit if there is
one.

b) It must contain all the Block-definitions defined on the system level and if it contains a Sub-block-
definition of a Block-definition, then it must also contain all other Sub-block-definitions of that Block-
definition.

c) All “leaf” Block-definitions in the resulting structure must contain Process-definitions.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 83

T1007180-92/d13

Block A

Block
 A1

Block
 A2

Block
 A11

Block
 A12

Block
 A21

Block
 A22

Block
 A23

Block
 A121

Block
 A122

One consistent
partitioning subset

FIGURE 3.2.1/Z.100

Consistent partitioning subset illustrated in an auxiliary diagram

FIGURE 3.2.1/Z100.[D13]

At system interpretation time a consistent partitioning subset is interpreted. The processes in each of the leaf blocks in
the consistent partitioning subset are interpreted. If these leaf blocks also contain substructures, they have no effect. The
substructures in the non-leaf blocks have an effect on visibility, and the processes in these blocks are not interpreted.

3.2.2 Block partitioning

Abstract grammar

Block-substructure-definition :: Block-substructure-name

 Sub-block-definition-set

 Channel-connection-set

 Channel-definition-set

 Signal-definition-set

 Data-type-definition

 Syntype-definition-set

Block-substructure-name = Name

Sub-block-definition = Block-definition

Channel-connection :: Channel-identifier-set

 Sub-channel-identifier-set

Sub-channel-identifier = Channel-identifier

Channel-identifier = Identifier

The Block-substructure-definition must contain at least one Sub-block-definition. Unless stated otherwise, it is
understood in the following that an abstract syntax term is contained in the Block-substructure-definition.

A Block-identifier contained in a Channel-definition must denote a Sub-block-definition. A Channel-definition
connecting a Sub-block-definition to the boundary of the Block-substructure-definition is called a subchannel definition.

Each Channel-definition in the enclosing block definition that is connected to a Block-substructure-definition must be
a member of exactly one Channel-connection. The Channel-identifiers in the Channel-connection must identify

Superseded by a more recent version

84 Recommendation Z.100 (03/93) Superseded by a more recent version

Channel-definitions in the enclosing block definition. Each Sub-channel-identifier must appear in exactly one
Channel-connection.

For signals directed out of the Block-substructure-definition, the union of the Signal-identifier-sets associated with the
Sub-channel-identifier-set contained in a Channel-connection must be identical to the union of the Signal-identifier-sets
associated with the Channel-identifier-set contained in the Channel-connection. The same rule is valid for signals
directed into the Block-substructure-definition. However, this rule is modified in case of signal refinement, see 3.3.

Since a Sub-block-definition is a Block-definition, it may be partitioned. This partitioning may be repeated any number of
times, resulting in a hierarchical tree structure of Block-definitions and their Sub-block-definitions. The Sub-block-
definitions of a Block-definition are said to exist on the next lower level in the block tree, see also Figure 3.2.2 below.

A

A1 A2

A21 A22

T1007190-92/d14

Level n – 1

Level n

Level n + 1

FIGURE 3.2.2/Z.100

A block tree diagram

FIGURE 3.2.1/Z100.[D14]

The block tree diagram is an auxiliary diagram.

Concrete textual grammar

<block substructure definition> ::=

 substructure

 {[<block substructure name>]

 | <block substructure identifier> } <end>

 { <entity in system> | <channel connection> }+

 endsubstructure

 [{<block substructure name> | <block substructure identifier>}] <end>

If the <block substructure name> after the keyword substructure is omitted, it is the same as the name of the enclosing
<block definition> or <block type definition>.

<textual block substructure reference> ::=

 substructure <block substructure name> referenced <end>

<channel connection> ::=

 connect <channel identifiers>

 and <subchannel identifiers> <end>

<subchannel identifiers> ::=

 <channel identifiers>

If a <block substructure definition> contains <channel definition>s and <textual typebased block definition>s, then each
gate of the <block type definition>s of the <textual typebased block definition>s must be connected to a channel.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 85

For a <block substructure definition> in a <block type definition>, <channel connection>s cannot be given. These are
derived for the resulting <textual typebased block definition>s as defined in 6.1.4.

Concrete graphical grammar

<block substructure diagram> ::=

 <frame symbol>

 contains {<block substructure heading>

 { {<block substructure text area>}*

 {<macro diagram>}*

 <block interaction area>

 {<type in system area> }*}set }

 is associated with {<channel identifiers>}*

The <channel identifiers> identify channels connected to subchannels in the <block substructure diagram>. They are
placed outside the <frame symbol> close to the endpoint of the subchannels at the <frame symbol>.

A <channel symbol> within the <frame symbol> and connected to the <frame symbol> indicates a subchannel.

<block substructure heading> ::=

 substructure

 {<block substructure name> | <block substructure identifier>}

<block substructure text area> ::=

 <system text area>

<block substructure area> ::=

 <graphical block substructure reference>

 | <block substructure diagram>

 | <open block substructure diagram>

<graphical block substructure reference> ::=

 <block substructure symbol> contains <block substructure name>

<block substructure symbol> ::=

 <block symbol>

<open block substructure diagram> ::=

 { {<block substructure text area>}*

 {<macro diagram>}*

 <block interaction area>} set

When a <block substructure area> is an <open block substructure diagram>, then the enclosing <block diagram> or
<block type diagram> must not contain other definitions than formal context parameters, gates and the substructure
definition.

Semantics

See 3.2.1.

Model

An <open block substructure diagram> is transformed to a <block substructure diagram> in such a way that, in the
<block substructure heading>, the <block substructure name> is the same as the <name> of the enclosing <block
diagram> or <block type diagram>.

Superseded by a more recent version

86 Recommendation Z.100 (03/93) Superseded by a more recent version

Example

Figure 3.3.1 shows an example of an <open block substructure diagram>.

An example of a <block substructure definition> is given below.

 substructure A ;

 signal s5(nat), s6, s8, s9(min);

 block a1 referenced;

 block a2 referenced;

 block a3 referenced;

 channel c1 from a2 to env with s1, s2; endchannel c1;

 channel c2 from env to a1 with s3;

 from a1 to env with s1; endchannel c2;

 channel d1 from a2 to env with s7; endchannel d1;

 channel d2 from a3 to env with s10; endchannel d2;

 channel e1 from a1 to a2 with s5, s6; endchannel e1;

 channel e2 from a3 to a1 with s8; endchannel e2;

 channel e3 from a2 to a3 with s9; endchannel e3;

 connect c and c1, c2 ;

 connect d and d1, d2 ;

 endsubstructure A;

The <block substructure diagram> for the same example is given in Figure 3.2.3 below.

T1007790-93/d15

c1 [s1,s2]

e1 [s5,s6]

e3 [s9]

e2 [s8]

a1 a2

a3

c d
c2

[s3] [s1]

d2 [s10]

d1 [s7]

substructure A

signal s5(nat), s6, s8, s9(min);

FIGURE 3.2.3/Z.100

Block substructure diagram for block A

FIGURE 3.2.1/Z100.[D15]

 3.2.3 Channel partitioning

All static conditions are stated using concrete textual grammar. Analogous conditions hold for the concrete graphical
grammar.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 87

Concrete textual grammar

<channel substructure definition> ::=
 substructure {[<channel substructure name>]
 | <channel substructure identifier> } <end>
 { <entity in system>
 | <channel endpoint connection> }+
 endsubstructure [{ <channel substructure name>
 | <channel substructure identifier>}] <end>

If the <channel substructure name> after the keyword substructure is omitted, it is the same as the <channel name> of
the enclosing <channel definition>.

<textual channel substructure reference> ::=
 substructure <channel substructure name> referenced <end>

<channel endpoint connection> ::=
 connect {<block identifier> | env}
 and <subchannel identifiers> <end>

The two endpoints of the partitioned <channel definition> must be different, and for each endpoint there must be exactly
one <channel endpoint connection>. The <block identifier> or env in a <channel endpoint connection> must identify
one of the endpoints of the partitioned <channel definition>.

Additional static conditions of a <channel substructure definition> are defined in terms of the <block definition> which
results from the transformation described in Model.

Concrete graphical grammar

<channel substructure diagram> ::=
 <frame symbol>
 contains {<channel substructure heading>
 { {<channel substructure text area>}*
 {<macro diagram>}*
 {<type in system area>}*
 <block interaction area> } set }
 is associated with {<block identifier> | env}+

The <block identifier> or env identifies an endpoint of the partitioned channel. The <block identifier> is placed outside
the <frame symbol> close to the endpoint of the associated subchannel at the <frame symbol>. The <channel symbol>
within the <frame symbol> and connected to this indicates a subchannel.

<channel substructure heading> ::=
 substructure
 { <channel substructure name> | <channel substructure identifier>}

<channel substructure text area> ::=
 <system text area>

<channel substructure association area> ::=
 <dashed association symbol>
 is connected to <channel substructure area>

<channel substructure area> ::=
 <graphical channel substructure reference>
 | <channel substructure diagram>

<graphical channel substructure reference> ::=
 <channel substructure symbol> contains <channel substructure name>

Superseded by a more recent version

88 Recommendation Z.100 (03/93) Superseded by a more recent version

<channel substructure symbol> ::=

 <block symbol>

Model

A <channel definition> which contains a <channel substructure definition> is transformed into a <block definition> and
two <channel definition>s such that:

a) The two <channel definition>s are each connected to the block and to an endpoint of the original channel.
The <channel definition>s have distinct new names and every reference to the original channel in the via
constructs is replaced by a reference to the appropriate new channel. The two implicit channels are
delaying if and only if the substructured channel is delaying.

b) The <block definition> has a distinct new name and it contains only a <block substructure definition>
having the same name and containing the same definitions as the original <channel substructure
definition>. The qualifiers in the new <block definition> are changed to include the block name. The two
<channel endpoint connection>s from the original <channel substructure definition> are represented by
two <channel connection>s wherein the <block identifier> or env is replaced by the appropriate new
channel.

c) <output>s within the channel substructure which mention the channel in a <via path> have its via-clause
mentioning the <channel identifier> replaced by a via-clause containing one or two of the implicit
channels in its <via path>, so that a channel which has the <signal identifier> in its <signal list> for a
direction from the <block definition> is in the <via path>. In case the <channel identifier> is replaced by
two implicit channels in <via path>, these occur in arbitrary order.

Example

An example of a <channel substructure definition> is given below.

channel C from A to B with s1;

 from B to A with s2;

 substructure C;

 signal s3(hel), s4(boo), s5;

 block b1 referenced;

 block b2 referenced;

 channel c1 from env to b1 with s1;

 from b1 to env with s2; endchannel c1;

 channel c2 from b2 to env with s1;

 from env to b2 with s2; endchannel c2;

 channel e1 from b1 to b2 with s3; endchannel e1;

 channel e2 from b2 to b1 with s4, s5; endchannel e2;

 connect A and c1;

 connect B and c2;

 endsubstructure C;

 endchannel C;

The <channel substructure diagram> for the same example is given in Figure 3.2.4 below.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 89

T1007800-93/d16

e1 [s3]

b1 b2A B
c1

[s1] [s2]
e2 [s4,s5]

c2

[s1] [s2]

substructure c

signal s3(hel), s4(boo), s5;

FIGURE 3.2.4/Z.100

Channel substructure diagram for channel C

URE 3.2.1/Z100.[D16]

3.3 Refinement

Refinement is achieved by refining a signal definition into a set of subsignal definitions. A subsignal definition is a
signal definition and may be refined. This refinement can be repeated any number of times, resulting in a hierarchical
structure of signal definitions and their (direct or indirect) subsignal definitions. A subsignal definition of a signal
definition is not a component of the signal definition.

Abstract grammar

Signal-refinement :: Subsignal-definition-set

Subsignal-definition :: [REVERSE] Signal-definition

For each Channel-connection it must hold that for each Signal-identifier associated with each Channel-identifier either
the Signal-identifier is associated with at least one of the Sub-channel-identifiers, or each of its subsignal identifiers is
associated with at least one of the Sub-channel-identifiers. This is a change of the corresponding rules for partitioning.

No two signals in the complete valid input signal set of a set of process instances denoted by a process definition or in
the Output-nodes of a process definition may be on different refinement levels of the same signal.

Concrete textual grammar

<signal refinement> ::=

 refinement

 {<subsignal definition>}+

 endrefinement

<subsignal definition> ::=

 <reverse> <signal definition>

<reverse> ::=

 [reverse]

A <signal definition> in a <subsignal definition> cannot have formal context parameters.

Superseded by a more recent version

90 Recommendation Z.100 (03/93) Superseded by a more recent version

Semantics

When a signal is defined to be carried by a channel, the channel will automatically be the carrier for all the subsignals of
the signal. Refinement may take place when the channel is partitioned or connected to subchannels in a substructure. In
such a case the subchannels will carry the subsignals in place of the refined signal. The direction of a subsignal is
determined by the carrying subchannel. A subsignal may have a direction opposite to the refined signal, which is
indicated by the keyword reverse. Signals can only be refined at <channel connection>s and at <channel endpoint
connection>s.

When a system definition contains signal refinement, the concept of consistent partitioning subset is restricted. Such a
system definition is said to contain several consistent refinement subsets.

A consistent refinement subset is a consistent partitioning subset (as defined in 3.2.1) restricted by the additional rule:

d) When selecting the consistent partitioning subset, signals must be used on same refinement level in
communicating processes. That is, for each process instance set which via communications paths may
convey a signal to another process instance set, the signal must be used on same refinement level in both
sets.

Example

T1007810-93/d17

B11 B21
c1

[s2,a] [s1]

c [s,a] c2

[s2,a] [s1]

system S

block B1 block B2

FIGURE 3.3.1/Z.100

System diagram containing signal refinement

signal S
refinement
signal s2
reverse signal s1;

endrefinement;
signal a;

FIGURE 3.2.1/Z100.[D17]

In the example given in Figure 3.3.1 above, signal s is refined in block definition B1 and B2, but not signal a. On the
highest refinement level, processes in B1 and B2 communicate using signal s and a. On the next lower level, processes in
B11 and B21 communicate using s1, s2 and a.

Refinement in only one of the block definitions B1 and B2 is not allowed, since there is no dynamic transformation
between a signal and its subsignals, only a static relation.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 91

4 Additional Concepts of Basic SDL

4.1 Introduction

This chapter defines a number of additional concepts. They are introduced for the convenience of the users in addition to
shorthand notations defined in other chapters of the Recommendation.

The properties of a shorthand notation are derived from the way it is modelled in terms of (or transformed to) the
primitive concepts. In order to ensure easy and unambiguous use of the shorthand notations, and to reduce side effects
when several shorthand notations are combined, these concepts are transformed in a specified order as defined in
clause 7. The transformation order is also followed when defining the concepts in this section.

4.2 Macro

In the following text the terms macro definition and macro call are used in a general sense, covering both SDL/GR and
SDL/PR. A macro definition contains a collection of graphical symbols and/or lexical units, that can be included in one
or more places in the <sdl specification>. Each such place is indicated by a macro call. Before an <sdl specification> can
be analysed, each macro call must be replaced by the corresponding macro definition.

4.2.1 Lexical rules

<formal name> ::=
 [<name>%] <macro parameter>
 {[%<name>]%<macro parameter>}*
 [%<name>]

4.2.2 Macro definition

Concrete textual grammar

<macro definition> ::=
 macrodefinition <macro name>
 [<macro formal parameters>] <end>
 <macro body>
 endmacro [<macro name>] <end>

<macro formal parameters> ::=
 fpar <macro formal parameter> {, <macro formal parameter>}*

<macro formal parameter> ::=
 <name>

<macro body> ::=
 {<lexical unit> | <formal name>}*

<macro parameter> ::=
 <macro formal parameter>
 | macroid

The <macro formal parameter>s must be distinct. <macro actual parameter>s of a macro call must be matched one to one
with their corresponding <macro formal parameter>s.

The <macro body> must not contain the keyword endmacro and macrodefinition.

Concrete graphical grammar

<macro diagram> ::=
 <frame symbol> contains {<macro heading> <macro body area>}

Superseded by a more recent version

92 Recommendation Z.100 (03/93) Superseded by a more recent version

<macro heading> ::=
 macrodefinition <macro name> [<macro formal parameters>]

<macro body area> ::=
 { {<any area> }*
 <any area> [is connected to <macro body port1>] }set
 | { <any area> is connected to <macro body port2>
 <any area> is connected to <macro body port2>
 { <any area> [is connected to <macro body port2>]}*}set

<macro inlet symbol>::=

<macro outlet symbol> ::=

<macro body port1> ::=
 <outlet symbol> is connected to {<frame symbol>
 [is associated with <macro label>]
 | { <macro inlet symbol> | <macro outlet symbol> }
 [{ contains <macro label>
 | is associated with <macro label> }] }

<macro body port2> ::=
 <outlet symbol> is connected to {<frame symbol>
 is associated with <macro label>
 | { <macro inlet symbol> | <macro outlet symbol> }
 { contains <macro label>
 | is associated with <macro label> }}

<macro label> ::=
 <name>
<outlet symbol> ::=
 <dummy outlet symbol>
 | <flow line symbol>
 | <channel symbol>
 | <signal route symbol>
 | <solid association symbol>
 | <dashed association symbol>
 | <create line symbol>

<dummy outlet symbol> ::=
 <solid association symbol>

<any area> ::=
 <block area>
 | <block interaction area>
 | <block substructure area>
 | <block substructure text area>
 | <block text area>
 | <block type reference>
 | <channel definition area>
 | <channel substructure area>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 93

 | <channel substructure association area>
 | <channel substructure text area>
 | <comment area>
 | <continuous signal area>
 | <continuous signal association area>
 | <create line area>
 | <create request area>
 | <decision area>
 | <enabling condition area>
 | <existing typebased block definition>
 | <export area>
 | <graphical block reference>
 | <graphical typebased block definition>
 | <graphical procedure reference>
 | <graphical process reference>
 | <in-connector area>
 | <input area>
 | <input association area>
 | <macro call area>
 | <merge area>
 | <nextstate area>
 | <operator heading>
 | <operator text area>
 | <option area>
 | <out-connector area>
 | <output area>
 | <package reference area>
 | <package text area>
 | <priority input area>
 | <priority input association area>
 | <procedure area>
 | <procedure call area>
 | <procedure graph area>
 | <procedure start area>
 | <procedure text area>
 | <process area>
 | <process graph area>
 | <process interaction area>
 | <process text area>
 | <process type graph area>
 | <process type reference>
 | <remote procedure call area>
 | <remote procedure input area>
 | <remote procedure save area>
 | <reset area>
 | <return area>
 | <save area>
 | <save association area>
 | <service area>
 | <service interaction area>
 | <service graph area>
 | <service text area>
 | <service type reference>
 | <set area>
 | <signal list area>
 | <signal route definition area>
 | <spontaneous transition association area>
 | <spontaneous transition area>
 | <start area>
 | <state area>
 | <stop symbol>
 | <system text area>
 | <task area>

Superseded by a more recent version

94 Recommendation Z.100 (03/93) Superseded by a more recent version

 | <text extension area>

 | <transition area>

 | <transition option area>

 | <transition string area>

 | <type in system area>

 | <type in block area>

 | <type in process area>

A <dummy outlet symbol> must not have anything associated with it except for <macro label>.

For an <outlet symbol> which is not a <dummy outlet symbol>, the corresponding <inlet symbol> in the macro call must
be a <dummy inlet symbol>.

A <macro body> may appear in any text referred to in <any area>.

Semantics

A <macro definition> contains lexical units, while a <macro diagram> contains syntactical units. Thus, mapping
between macro constructs in textual syntax and graphical syntax is generally not possible. For the same reason, separate
detailed rules apply for textual syntax and graphical syntax, although there are some common rules.

<macro name> is visible in the whole system definition, no matter where the macro definition appears. A macro call may
appear before the corresponding macro definition.

A macro definition may contain macro calls, but a macro definition must not call itself either directly or indirectly
through macro calls in other macro definitions.

The keyword macroid may be used as a pseudo macro formal parameter within each macro definition. No <macro actual
parameter>s can be given to it, and it is replaced by a unique <name> for each expansion of a macro definition (within
an expansion the same <name> is used for each occurrence of macroid).

Example

Below is given an example of a <macro definition>:

macrodefinition Exam

fpar alfa, c, s, a;

 block alfa referenced;

 channel c from a to alfa with s; endchannel c;

endmacro Exam;

The <macro diagram> for the same example is given below. However, the <macro formal parameter>, a, is not required
in this case.

T1007820-93/d18

a c [s]

macrodefinition Exam fpar alfa, c, s

alfa

FIGURE 3.2.1/Z100.[D18]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 95

4.2.3 Macro call

Concrete textual grammar

<macro call> ::=
 macro <macro name> [<macro call body>] <end>

<macro call body> ::=
 (<macro actual parameter> {, <macro actual parameter>}*)

<macro actual parameter> ::=
 {<lexical unit>}*

The <lexical unit> cannot be a comma “,” or right parenthesis “)”. If any of these two characters is required in a <macro
actual parameter>, then the <macro actual parameter> must be a <character string>. If the <macro actual parameter> is a
<character string>, then the value of the <character string> is used when the <macro actual parameter> replaces a
<macro formal parameter>.

A <macro call> may appear at any place where a <lexical unit> is allowed.

Concrete graphical grammar

<macro call area> ::=
 <macro call symbol> contains {<macro name> [<macro call body>]}
 [is connected to
 {<macro call port1> | <macro call port2> {<macro call port2>}+}]

<macro call symbol> ::=

<macro call port1> ::=
 <inlet symbol> [is associated with <macro label>]
 is connected to <any area>

<macro call port2> ::=
 <inlet symbol> is associated with <macro label>
 is connected to <any area>

<inlet symbol> ::=
 <dummy inlet symbol>
 | <flow line symbol>
 | <channel symbol>
 | <signal route symbol>
 | <solid association symbol>
 | <dashed association symbol>
 | <create line symbol>

<dummy inlet symbol> ::=
 <solid association symbol>

A <dummy inlet symbol> must not have anything associated with it except for <macro label>. For each <inlet symbol>
there must be an <outlet symbol> in the corresponding <macro diagram>, associated with the same <macro label>. For
an <inlet symbol> which is not a <dummy inlet symbol>, the corresponding <outlet symbol> must be a <dummy outlet
symbol>.

Except in the case of <dummy inlet symbol>s and <dummy outlet symbol>s, it is possible to have multiple (textual)
<lexical unit>s associated with an <inlet symbol> or <outlet symbol>. In this case the <lexical unit> closest to the

Superseded by a more recent version

96 Recommendation Z.100 (03/93) Superseded by a more recent version

<macro call symbol> or the <frame symbol> of the <macro diagram> is taken to be the <macro label> associated with
the <inlet symbol> or <outlet symbol>.

The <macro call area> may appear at any place where an area is allowed. However, a certain space is required between
the <macro call symbol> and any other closed graphical symbol. If such a space must not be empty according to the
syntax rules, then the <macro call symbol> is connected to the closed graphical symbol with a <dummy inlet symbol>.

Semantics

A system definition may contain macro definitions and macro calls. Before such a system definition can be analysed, all
macro calls must be expanded. The expansion of a macro call means that a copy of the macro definition having the same
<macro name> as that given in the macro call replaces the macro call.

When a macro definition is called, it is expanded. This means that a copy of the macro definition is created, and each
occurrence of the <macro formal parameter>s of the copy is replaced by the corresponding <macro actual parameter>s
of the macro call, then macro calls in the copy, if any, are expanded. All percent characters (%) in <formal name>s are
removed when <macro formal parameter>s are replaced by <macro actual parameter>s.

There must be one to one correspondence between <macro formal parameter> and <macro actual parameter>.

Model

The <macro call area> is replaced by a copy of the <macro diagram> in the following way. All <macro inlet symbol>s
and <macro outlet symbol>s are deleted. A <dummy outlet symbol> is replaced by the <inlet symbol> having the same
<macro label>. A <dummy inlet symbol> is replaced by the <outlet symbol> having the same <macro label>. Then the
<macro label>s attached to <inlet symbol>s and <outlet symbol>s are deleted. <macro body port1> and <macro body
port2> which have no corresponding <macro call port1> or <macro call port2> are also deleted.

Example

Below is given an example of a <macro call>, within a fragment of a <block definition>.

.........

block A referenced;

macro Exam (B, C1, S1, A);

.........

The expansion of this macro call, using the example in 4.2.2, gives the following result.

.........

block A referenced;

block B referenced;

channel C1 from A to B with S1; endchannel C1;

.........

The <macro call area> for the same example, within a fragment of a <block interaction area>, is given below.

A
a

T1007830-93/d19

Exam

(B, C1, S1)

FIGURE 3.2.1/Z100.[D19]

The expansion of this macro call gives the following result.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 97

A

T1007840-93/20

B
C1 [S1]

FIGURE 3.2.1/Z100.[D20]

4.3 Generic system definition

A system specification may have optional parts and system parameters with unspecified values in order to meet various
needs. Such a system specification is called generic. Its generic property is specified by means of external synonyms
(which are analogous to formal parameters of a procedure definition). A generic system specification is tailored by
selecting a suitable subset of it and providing a value for each of the system parameters. The resulting system
specification does not contain external synonyms, and is called a specific system specification.

4.3.1 External synonym

Concrete textual grammar

<external synonym definition> ::=

 synonym <external synonym definition item>

 {, <external synonym definition item> }*

<external synonym definition item> ::=

 <external synonym name> <predefined sort> = external

<external synonym> ::=

 <external synonym identifier>

An <external synonym definition> may appear at any place where a <synonym definition> is allowed, see 5.3.1.13. An
<external synonym> may be used at any place where a <synonym> is allowed, see 5.3.3.3. The predefined sorts are:
Boolean, Character, Charstring, Integer, Natural, Real, PId, Duration and Time.

Semantics

An <external synonym> is a <synonym> whose value is not specified in the system definition. This is indicated by the
keyword external which is used instead of a <simple expression>.

A generic system definition is a system definition that contains <external synonym>s, or <informal text> in a transition
option (see 4.3.4). A specific system definition is created from a generic system definition by providing values for the
<external synonym>s, and transforming <informal text> to formal constructs. How this is accomplished, and the relation
to the abstract grammar, is not part of the language definition.

4.3.2 Simple expression

Concrete textual grammar

<simple expression> ::=

 <ground expression>

The Ground-expression represented by a <simple expression> must only contain operators and literals defined within the
package Predefined, as defined in Annex D.

Superseded by a more recent version

98 Recommendation Z.100 (03/93) Superseded by a more recent version

Semantics

A simple expression is a Ground-expression.

4.3.3 Optional definition

Concrete textual grammar

<select definition> ::=

 select if (<Boolean simple expression>) <end>

 { <system type definition>

 | <textual system type reference>

 | <block type definition>

 | <textual block type reference>

 | <block definition>

 | <textual block reference>

 | <textual typebased block definition>

 | <channel definition>

 | <signal definition>

 | <signal list definition>

 | <remote variable definition>

 | <remote procedure definition>

 | <data definition>

 | <process type definition>

 | <textual process type reference>

 | <process definition>

 | <textual process reference>

 | <textual typebased process definition>

 | <service type definition>

 | <textual service type reference>

 | <service definition>

 | <textual service reference>

 | <textual typebased service definition>

 | <timer definition>

 | <channel connection>

 | <channel endpoint connection>

 | <variable definition>

 | <view definition>

 | <imported variable specification>

 | <procedure definition>

 | <textual procedure reference>

 | <imported procedure specification>

 | <signal route definition>

 | <channel to route connection>

 | <signal route to route connection>

 | <select definition>

 | <macro definition> }+

 endselect <end>

The only visible names in a <Boolean simple expression> of a <select definition> are names of external synonyms
defined outside of any <select definition>s or <option area>s and literals and operators of the sorts defined within the
package Predefined as defined in Annex D.

A <select definition> may contain only those definitions that are syntactically allowed at that place.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 99

Concrete graphical grammar

<option area> ::=
 <option symbol> contains
 { select if (<Boolean simple expression>)

 { <system type diagram>
 | <system type reference>
 | <block type diagram>
 | <block type reference>
 | <block area>
 | <channel definition area>
 | <system text area>
 | <block text area>
 | <process text area>
 | <procedure text area>
 | <block substructure text area>
 | <channel substructure text area>
 | <service text area>
 | <macro diagram>
 | <process type diagram>
 | <process type reference>
 | <process area>
 | <service type diagram>
 | <service type reference>
 | <service area>
 | <procedure area>
 | <signal route definition area>
 | <create line area>
 | <option area> } + }

The <option symbol> is a dashed polygon having solid corners, for example:

T1007680-93/d21
FIGURE ..[D21] = 1 CM

An <option symbol> logically contains the whole of any one-dimensional graphical symbol cut by its boundary (i.e. with
one end point outside).

An <option area> may appear anywhere, except within <process graph area> and <process type graph area>. An <option
area> may contain only those areas and diagrams that are syntactically allowed at that place.

Semantics

If the value of the <Boolean simple expression> is False, then the constructs contained in the <select definition> or
<option symbol> are not selected. In the other case the constructs are selected.

Model

The <select definition> and the <option area> are deleted at transformation and are replaced by the contained selected
constructs, if any. Any connectors connected to an area within non-selected <option area>s are removed too.

Example

In system Alfa there are three blocks: B1, B2 and B3. Block B1 and the channels connected to it are optional, dependent
on the values of the external synonyms p and extension. In SDL/PR this example is represented as follows:

Superseded by a more recent version

100 Recommendation Z.100 (03/93) Superseded by a more recent version

system Alfa;

 synonym p Integer = external;

 synonym extension Boolean = external;

 signal s1,s2,s3,s4,s5,s6,s7;

 select if (p = 3 and extension);

 block B1 referenced;

 channel C1 from env to B1 with s1 ; endchannel C1;

 channel C2 from B1 to B2 with s2 ; endchannel C2;

 channel C6 from B3 to B1 with s6; endchannel C6;

 endselect;

 channel C3 from B2 to env with s3 ; endchannel C3;

 channel C4 from B3 to B2 with s4 ; endchannel C4;

 channel C5 from B2 to B3 with s5; endchannel C5;

 channel C7 from env to B3 with s7 ; endchannel C7;

 block B2 referenced;

 block B3 referenced;

endsystem Alfa;

The same example is in SDL/GR syntax represented as shown below.

T1007850-93/d22

[s6]

C1

[s1]

C5 [s5]

C3 [s3]

C6
C4 [s4]

B3

C2 [s2]
B1 B2

C7 [s7]

system Alfa

synonym p Integer = external ;
synonym extension Boolean = external ;
signal s1, s2, s3, s4, s5, s6, s7;

select if (p = 3 and extension)

FIGURE ...[D22] = 8CM

4.3.4 Optional transition string

Concrete textual grammar

<transition option> ::=

 alternative <alternative question> <end>

 { <answer part> <else part>

 | <answer part> { <answer part> }+ [<else part>] }

 endalternative

<alternative question> ::=

 <simple expression>

 | <informal text>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 101

Every <ground expression> in <answer> must be a <simple expression>. The <answer>s in a <transition option> must
be mutually exclusive. If the <alternative question> is an <expression>, the Range-condition of the <answer>s must be
of the same sort as of the <alternative question>.

No <answer> in <answer part>s of a <transition option> can be omitted.

Concrete graphical grammar

<transition option area> ::=

 <transition option symbol> contains {<alternative question>}

 is followed by {<option outlet1>

 {<option outlet1> | <option outlet2> }

 {<option outlet1> }* } set

<transition option symbol> ::=

<option outlet1> ::=

 <flow line symbol> is associated with <graphical answer>

 is followed by <transition area>

<option outlet2> ::=

 <flow line symbol> is associated with else

 is followed by <transition area>

The <flow line symbol> in <option outlet1> and <option outlet2> is connected to the bottom of the <transition option
symbol>. The <flow line symbol>s originating from a <transition option symbol> may have a common originating path.
The <graphical answer> and else may be placed along the associated <flow line symbol>, or in the broken <flow line
symbol>.

 The <graphical answer>s in a <transition option area> must be mutually exclusive.

Semantics

Constructs in an <option outlet1> are selected if the <answer> contains the value of the <alternative question>. If none
of the <answer>s contains the value of the <alternative question>, then the constructs in the <option outlet2> are
selected.

If no <option outlet2> is provided and none of the outgoing paths is selected, then the selection is invalid.

Model

If a <transition option> is not terminating, then it is derived syntax for a <transition option> wherein all the <answer
part>s and the <else part> have inserted in their <transition>

a) if the transition option is the last <action statement> in a <transition string>, a <join> to the following
<terminator statement>, or

b) else a <join> to the first <action statement> following the transition option.

Terminating <transition option> is defined in 2.7.5.

The <transition option> and <transition option area> are deleted at transformation and replaced by the contained selected
constructs.

Superseded by a more recent version

102 Recommendation Z.100 (03/93) Superseded by a more recent version

Example

A fragment of a <process definition> containing a <transition option> is shown below. p and s are synonyms.

............

alternative p + s;

 (>2) : task ’Do what you want’;

 nextstate -;

 else: task ’Do nothing’;

 nextstate Hum;

endalternative;

............

The same example in concrete graphical syntax is shown below.

T1007860-93/d23

p + s

(>2) else

’Do what
you want’

’Do nothing’

— Hum

FIGURE 3.2.1/Z100.[D23]

 4.4 Asterisk state

Concrete textual grammar

<asterisk state list> ::=

 <asterisk> [(<state name> {, <state name>}*)]

<asterisk> ::=

 *

The <state name>s in an <asterisk state list> must be distinct and must be contained in other <state list>s in the enclosing
<body> or in the <body> of a supertype.

Model

A <state> with an <asterisk state list> is transformed to a list of <state>s, one for each <state name> of the <body> in
question, except for those <state name>s contained in the <asterisk state list>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 103

4.5 Multiple appearance of state

Concrete textual grammar

A <state name> may appear in more than one <state> of a <body>.

Model

When several <state>s contain the same <state name>, these <state>s are concatenated into one <state> having that
<state name>.

4.6 Asterisk input

Concrete textual grammar

<asterisk input list> ::=

 <asterisk>

A <state> may contain at most one <asterisk input list>. A <state> must not contain both <asterisk input list> and
<asterisk save list>.

Model

An <asterisk input list> is transformed to a list of <input part>s one for each member of the complete valid input signal
set of the enclosing <process definition> or <service definition>, except for <signal identifier>s of implicit input signals
introduced by the additional concepts in 4.10 to 4.14 and for <signal identifier>s contained in the other <input list>s and
<save list>s of the <state>.

4.7 Asterisk save

Concrete textual grammar

<asterisk save list> ::=

 <asterisk>

A <state> may contain at most one <asterisk save list>. A <state> must not contain both <asterisk input list> and
<asterisk save list>.

Model

An <asterisk save list> is transformed to a list of <stimulus>s containing the complete valid input signal set of the
enclosing <process definition> or <service definition>, except for <signal identifier>s of implicit input signals
introduced by the additional concepts in 4.10 to 4.14 and for <signal identifier>s contained in the other <input list>s and
<save list>s of the <state>.

4.8 Implicit transition

Concrete textual grammar

A <signal identifier> contained in the complete valid input signal set of a <process definition> or <service definition>
may be omitted in the set of <signal identifier>s contained in the <input list>s, <priority input list>s and the <save list>
of a <state>.

Superseded by a more recent version

104 Recommendation Z.100 (03/93) Superseded by a more recent version

Model

For each <state> there is an implicit <input part> containing a <transition> which only contains a <nextstate> leading
back to the same <state>.

4.9 Dash nextstate

Concrete textual grammar

<dash nextstate> ::=

 <hyphen>

<hyphen>::=

 -

The <transition> contained in a <start> must not lead, directly or indirectly, to a <dash nextstate>.

Model

In each <nextstate> of a <state> the <dash nextstate> is replaced by the <state name> of the <state>.

4.10 Priority Input

In some cases it is convenient to express that reception of a signal takes priority over reception of other signals. This can
be expressed by means of priority input.

Concrete textual grammar

<priority input> ::=

 priority input [<virtuality>]

 <priority input list> <end> <transition>

<priority input list> ::=

 <stimulus> {, <stimulus>}*

Concrete textual grammar

<priority input association area> ::=

 <solid association symbol> is connected to <priority input area>

<priority input area> ::=

 <priority input symbol> contains

 { [<virtuality>] <priority input list> }

 is followed by <transition area>

<priority input symbol> ::=

Model

A <priority input> or <priority input area> which contains <virtuality> is called a virtual priority input. Virtual priority
input is further described in 6.3.3.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 105

The priority input is transformed as follows.

A state with the name state_name containing <priority input>s is split into two states. The transformation requires two
implicit variables, n and newn. The variable n is initialized to 0. Furthermore an implicit signal X_cont conveying an
Integer value is required. A unique X_cont is required for each service, if the process contains services. Priority inputs to
the original state are connected to the first state, while all other inputs are connected to the second state (State2) and
saved in the first state. Spontaneous transitions, remote procedure inputs and remote procedure saves of the original state
are connected to both states. The transition string leading to the original state is now leading to the first state (State1). To
the transition string is added the following action string:

1) all <nextstate>s which mention the state_name are replaced by join l;

2) The following transition is inserted:

 l: task n := n+1;

 output X_cont(n) to self;

 nextstate State1;

3) To the first state is added:

 input X_cont(newn);

 decision (newn = n);

 (True): nextstate State2;

 (False): nextstate - ;

 enddecision;

4.11 Continuous signal

In describing systems, the situation may arise where a user would like to show that a transition is caused directly by a
True value of a Boolean expression. The model of achieving this is to evaluate the expression while in the state, and
initiate the transition if the expression evaluates to True. A shorthand for this is called Continuous signal, which allows a
transition to be initiated directly when a certain condition is fulfilled.

Concrete textual grammar

<continuous signal> ::=

 provided [<virtuality>]

 <Boolean expression> <end>

 [priority <Integer literal name> <end>] <transition>

Concrete graphical grammar

<continuous signal association area> ::=

 <solid association symbol> is connected to <continuous signal area>

<continuous signal area> ::=

 <enabling condition symbol>

 contains{ [<virtuality>] <Boolean expression>

 [[<end>] priority <Integer literal name>]}

 is followed by <transition area>

Semantics

The <Boolean expression> in the <continuous signal> is evaluated upon entering the state to which it is associated, and
while waiting in the state, any time no <stimulus> of an attached <input list> is found in the input port. If the value of
the <Boolean expression> is True, the transition is initiated. When the value of the <Boolean expression> is True in
more than one <continuous signal>s, then the transition to be initiated is determined by the <continuous signal> having
the highest priority, that is the lowest value for the <Integer literal name>. If more <continuous signal>s have the same
priority, a non-deterministic choice is made between these. If the value is False for all <continuous signal>s with an

Superseded by a more recent version

106 Recommendation Z.100 (03/93) Superseded by a more recent version

explicit priority, the <Boolean expression>s of <continuous signal>s without priority are considered in an arbitrary
order.

Model

A <continuous signal> or <continuous signal area> which contains <virtuality> is called a virtual continuous signal.
Virtual continuous transition is further described in 6.3.3.

The state with the name state_name containing <continuous signal>s is transformed as indicated below. This
transformation requires two implicit variables n and newn. The variable n is initialized to 0. Furthermore, an implicit
signal sx.emptyQ conveying an Integer value is required. Here, sx denotes a service, if any, containing the state.

1) All <nextstate>s which mention the state_name are replaced by join 1;

2) The following transition is inserted:

 1: task n:= n+1;

 output sx.emptyQ(n) to self;

 nextstate state_name;

3) The following <input part> is added to the <state> state_name:

 input sx.emptyQ (newn);

 and a <decision> containing the <question>

 (newn=n)

4a) The False <answer part> contains

 nextstate state_name;

4b) The True <answer part> contains a sequence of <decision>s corresponding to the <continuous signal>s in
priority order (higher priority is indicated by lower value of the <Integer literal name>). If more
<continuous signal>s have the same priority they are all evaluated in an arbitrary order before the next
priority level. When all <continuous signal>s with explicit priority have been evaluated, the <continuous
signal>s without priority are evaluated in an arbitrary order.

 The False <answer part> contains the next <decision>, except for the last <decision> for which this
<answer part> contains: join 1;

 Each True <answer part> of these <decision>s leads to the <transition> of the corresponding <continuous
signal>.

 The arbitrary order of evaluating a number of <continuous signal>s can be obtained by using the
non-deterministic decision shorthand, i.e. a non-deterministic choice between evaluation of the possible
<continuous signal>s is made, and if a <continuous signal> is evaluated to False, it is marked so that it
will not be evaluated in case of a new non-deterministic choice of it. It is recorded for each round,
whether more <continuous signal>s remain to be evaluated.

Example

See 4.12.

4.12 Enabling condition

In SDL, the reception of a signal or a spontaneous transition in a state immediately initiates a transition. The concept of
Enabling condition makes it possible to impose an additional condition for the initiation of a transition.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 107

Concrete textual grammar

<enabling condition> ::=

 provided <Boolean expression> <end>

Concrete graphical grammar

<enabling condition area> ::=

 <enabling condition symbol> contains <Boolean expression>

<enabling condition symbol> ::=

Semantics

The <Boolean expression> in the <enabling condition> is evaluated before entering the state in question, and any time
the state is reentered through the arrival of a <stimulus>. In the case of multiple enabling conditions, these are evaluated
sequentially in an arbitrary order before entering the state. The transformation model guarantees repeated evaluation of
the expression by sending additional <stimulus>s through the input port. A signal denoted in the <input list> which
precedes the <enabling condition> can start a transition only if the value of the corresponding <Boolean expression> is
True. If this value is False, the signal is saved instead. A <spontaneous transition> preceded by an <enabling condition>
can be activated only if the value of the corresponding <Boolean expression> is True.

Model

The state with the name state_name containing <enabling condition>s is transformed as indicated below. This
transformation requires two implicit variables n and newn. The variable n is initialized to 0. Furthermore an implicit
signal sx.emptyQ conveying an Integer value is required. Here, sx denotes a service, if any, containing the state.

1) All <nextstate>s which mention the state_name are replaced by join 1;

2) The following transition is inserted:

 1: task n:= n+1;

 output sx.emptyQ (n) to self;

 A number of decisions, each containing only one <Boolean expression> corresponding to some <enabling
condition> attached to the state, are added hierarchically in an arbitrary order such that all combination of
truth values may be evaluated for all enabling conditions attached to the state. Each such combination
leads to a distinct new state.

3) Each of these new states has a set of <input part>s consisting of a copy of the <input part>s of the state
without enabling conditions plus the <input part>s for which the <enabling condition>’s <Boolean
expression>s evaluated to True for this state and a set of <spontaneous transition>s whose <enabling
condition>’s <Boolean expression>s evaluated to True for this state.

 The <stimulus>s and the <remote procedure identifier list>s for the remaining <input part>s constitute the
<save list> and <remote procedure save> for a new <save part> attached to this state. The <save part>s
and <spontaneous transition>s of the original state are also copied to this new state.

Superseded by a more recent version

108 Recommendation Z.100 (03/93) Superseded by a more recent version

4) Add to each of the new states:

 input sx.emptyQ (newn);

 A <decision> containing the <question>

 (newn=n);

5a) The False <answer part> contains a <nextstate> back to this same new state.

5b) The True <answer part> contains a join 1.

6) If <continuous signal>s and <enabling condition>s are used in the same <state>, evaluations of the
<Boolean expression>s from <continuous signal>s are done by replacing step 5b of the model for
<enabling condition> with step 4b of the model for <continuous signal>.

Example

An example illustrating the transformation of continuous signal and enabling condition appearing in a state is given in
Figure 4.12.1.

Note in the example that the connector ec has been introduced for convenience. It is not part of the transformation
model.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 109

s1 s2 s3 c_s

t3t2t1

e_c

s1

t1

s2,s3

ec

s1 s2 s3

t1 t2

ec

T1007870-93/d24

e1

e_c

ec

c_s

t3 e1

state 1

is transformed into

n:=n+1
state 1_

false

sx.emptyQ
(newn)

sx.emptyQ(n)
to self

(false) (true) (false) (true)
n=newn

state 1_
false

state 1_
false

state 1_
true

state 1_
true

(true)

(false)

(false) (true)

sx.emptyQ
(newn)

n=newn

state 1_
true

FIGURE 4.12.1/Z.100

Transformation of continuous signal and enabling condition in the same state

FIGURE 3.2.1/Z100.[D24]

4.13 Imported and Exported value

In SDL, a variable is always owned by, and local to, a process instance. Normally the variable is visible only to the
process instance which owns it, though it may be declared as a revealed value (see 2.6.1.1) which allows other process
instances in the same block to have access to the value of the variable. If a process instance in another block needs to
access the value of a variable, a signal interchange with the process instance owning the variable is needed.

Superseded by a more recent version

110 Recommendation Z.100 (03/93) Superseded by a more recent version

This can be achieved by the following shorthand notation, called imported and exported value. The shorthand notation
may also be used to export values to other process instances within the same block, in which case it provides an
alternative to the use of revealed values.

Concrete textual grammar

<remote variable definition> ::=

 remote

 <remote variable name> {,<remote variable name>}* <sort> [nodelay]

 {, <remote variable name> {,<remote variable name>}* <sort> [nodelay]}*

 <end>

<imported variable specification> ::=

 imported

 <remote variable identifier> {, <remote variable identifier> }* <sort>

 {, <remote variable identifier> {, <remote variable identifier> }* <sort>}* <end>

<import expression> ::=

 import (<remote variable identifier> [, <destination>])

<export> ::=

 export (<variable identifier> {, <variable identifier> }*)

nodelay denotes non-delaying implicit channels for the signal interchange resulting from the transformation described in
Model.

The identifier of an <imported variable specification> must denote a possibly implicit (see below) <remote variable
definition> of the same sort.

The <remote variable identifier> following as in an exported variable definition must denote a <remote variable
definition> of the same sort as the exported variable definition. In case of no as clause the remote variable definition in
the nearest enclosing scope unit with the same name and sort as the exported variable definition is denoted.

For each <import expression> there must exist an <imported variable specification> of the remote variable identifier in
an enclosing process type, process definition, service type or service definition.

For each imported variable in a process there must exist at least one exporting process.

Remote variable definitions may be omitted and in that case, there is an implicit remote variable definition for each
exported variable. The remote variable definition has the same name and sort as the exported variable and it is inserted in
the scope unit where the sort is defined. The implicit remote variable definition does not have the nodelay property.

The <variable identifier> in <export> must denote a variable defined with exported.

Concrete graphical grammar

<export area> ::=

 <task symbol> contains <export>

Semantics

A <remote variable definition> introduces the name and sort for imported and exported variables.

An exported variable definition is a variable definition with the keyword exported.

The association between an <imported variable specification> and an <exported variable definition> is established by
both referring to the same <remote variable definition>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 111

The process instance which owns a variable whose values are exported to other process instances is called the exporter
of the variable. Other process instances which use these values are known as importers of the variable. The variable is
called exported variable.

A process instance may be both importer and exporter, but it cannot import from or export to the environment.

a) Export operation

 Exported variables have the keyword exported in their <variable definition>s, and have an implicit copy
to be used in import operations.

 An export operation is the execution of an <export> by which an exporter discloses the current value of
an exported variable. An export operation causes the storing of the current value of the exported variable
into its implicit copy.

b) Import operation

 For each <imported variable specification> in an importer there is a set of implicit variables, all having a
unique name and the sort given in the <imported variable specification>. These implicit variables are used
for the storage of imported values.

 An import operation is the execution of an <import expression> by which an importer accesses the value
of an exported variable. The value is stored in an implicit variable denoted by the <import identifier> in
the <import expression>. The exporter containing the exported variable is specified by the <destination>
in the <import expression>. If no <destination> is specified then the import is from an arbitrary process
instance exporting the same remote variable. The association between the exported variable in the
exporter and the implicit variable in the importer is specified by both referring to the same remote variable
in the export variable definition and in the <imported variable specification>.

Model

An import operation is modelled by exchange of signals. These signals are implicit and are conveyed on implicit
channels and signal routes. The importer sends a signal to the exporter, and waits for the reply. In response to this signal
the exporter sends a signal back to the importer with the value contained in the implicit copy of the exported variable.

If a default initialization is attached to the export variable or if the export variable is initialized when it is defined, then
the implicit copy is also initialized with the same value as the export variable.

There are two implicit <signal definition>s for each <remote variable definition> in a system definition. The <signal
name>s in these <signal definition>s are denoted by xQUERY and xREPLY respectively, where x denotes the <name> of
the <remote variable definition>. The signals are defined in the same scope unit as the <remote variable definition>. The
implicit copy of the exported variable is denoted by imcx.

a) Importer

 The <import expression> ’import (x, destination)’ is transformed to the following, where the to clause is
omitted, if destination is not given:

 output xQUERY to destination;
Wait in state xWAIT, saving all other signals;
input xREPLY (x);

 In all other states, xREPLY is saved.

 Replace the <import expression> by x, (the <name> of the implicit variable);

Superseded by a more recent version

112 Recommendation Z.100 (03/93) Superseded by a more recent version

b) Exporter

 To all <state>s of the exporter, excluding implicit states derived from import, the following <input part>
is added:

 input xQUERY;
 output xREPLY (imcx) to sender/* next state the same */

 The <export> ’export (x)’ is transformed to the following:

task imcx := x,

NOTES

1 There is a possibility of deadlock using the import construct, especially if no <destination> is given, or if
<destination> does not denote a <PId expression> of a process which is guaranteed by the specification to exist at the time of
receiving the xQUERY signal.

2 The optionality of remote variable definitions is introduced for compatibility with SDL-88, and is not recommended
for new SDL descriptions.

4.14 Remote procedures

A client process may call a procedure defined in another process, by a request to the server process through a remote
procedure call of a procedure in the server process.

Concrete textual grammar

<remote procedure definition> ::=

 remote procedure <remote procedure name> [nodelay] <end>

 [<procedure signature> <end>]

<imported procedure specification> ::=

 imported procedure <remote procedure identifier> <end>

 [<procedure signature> <end>]

<remote procedure call> ::=

 call <remote procedure call body>

<remote procedure call body> ::=

 <remote procedure identifier> [<actual parameters>]

 [to <destination>]

<remote procedure input transition> ::=

 input [<virtuality>] procedure

 <remote procedure identifier list> <end>

 [<enabling condition>]

 <transition>

<remote procedure save> ::=

 save [<virtuality>] procedure

 <remote procedure identifier list> <end>

<remote procedure identifier list> ::=

 <remote procedure identifier> {,<remote procedure identifier>}*

nodelay denotes non-delaying implicit channels for the signal interchange resulting from the transformation described in
Model.

The signature of <imported procedure specification> must be the same signature as the signature in the <remote
procedure definition> identified by <remote procedure identifier>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 113

The <remote procedure identifier> following as in an exported procedure definition must denote a <remote procedure
definition> with the same signature as the exported procedure. In an exported procedure definition with no as clause, the
name of the exported procedure is implied and the <remote procedure definition> in the nearest surrounding scope with
same name is implied.

For each <remote procedure call> there must exist an <imported procedure specification> of the remote procedure
identifier in an enclosing process type, process definition, service type or service definition having the same <remote
procedure name>.

For each imported procedure specification in a process there must exist at least one exported procedure in some process.

Concrete graphical grammar

<remote procedure call area> ::=

 <procedure call symbol> contains <remote procedure call body>

<remote procedure input area> ::=

 <input symbol> contains

 { [<virtuality>] procedure <remote procedure identifier list> }

 is followed by { [<enabling condition area>] <transition area> }

<remote procedure save area> ::=

 <save symbol> contains

 {[<virtuality>] procedure <remote procedure identifier list> <end> }

Semantics

A <remote procedure definition> introduces the name and signature for imported and exported procedures.

An exported procedure is a procedure with the keyword exported.

The association between an <imported procedure specification> and an exported procedure is established by both
referring to the same <remote procedure definition>.

A remote procedure call by a requesting process causes the requesting process to wait until the server process has
executed the procedure. Signals sent to the requesting process while waiting are saved. The server process will execute
the requested procedure in the next state where save of the procedure is not specified, subject to the normal ordering of
reception of signals. If neither <remote procedure save> nor <remote procedure input transition> is specified for a state,
an implicit transition consisting of the procedure call only and leading back to the same state is added. If a <remote
procedure input transition> is specified for a state, an implicit transition consisting of the procedure call followed by
<transition> is added. If a <remote procedure save> is specified for a state, an implicit save of the signal for the
requested procedure is added.

Model

Remote procedure call is modelled by an exchange of signals. These signals are implicit and are conveyed on implicit
channels and signal routes. The requesting process sends a signal containing the actual parameters of the procedure call,
to the server process and waits for the reply. In response to this signal, the server process executes the corresponding
remote procedure, sends a signal back to the requesting process with the value of all in/out -parameters, and then
executes the transition.

There are two implicit <signal definition>s for each <remote procedure definition>s in a <system definition>. The
<signal name>s in these <signal definition>s are denoted by pCALL and pREPLY respectively, where p is uniquely
determined. The signals are defined in the same scope unit as the <remote procedure definition>.

Superseded by a more recent version

114 Recommendation Z.100 (03/93) Superseded by a more recent version

a) Requesting process

 The <remote procedure call> ’call Proc(apar) to destination’ where apar is the list of actual parameters, is
transformed to the following, where the to clause is omitted, if destination is not given:

 output pCALL(apar) to destination;

 Wait in state pWAITe, saving all other signals;

 input pREPLY (aINOUTpar);

 where aINOUTpar is the modified list of actual in/out -parameters.

 In all other states, pREPLY is saved.

b) Server process

 There is a declaration of an implicit variable, called ivar of sort PId.

 To all <state>s with a remote procedure input transition the following <input part> is added:

 input pCALL(fpar);

 ivar := sender

 call Proc(fpar);

 output pREPLY (fINOUTpar) to ivar;

 <transition>

 where fpar and fINOUTpar are analogous to apar and aINOUT above.

 To all <state>s, with a remote procedure save, the following <save part> is added:

 save pCALL;

 To all other <state>s excluding implicit states derived from input, the following <input part> is added:

 input pCALL(fpar);

 ivar := sender

 call Proc(fpar);

 output pREPLY (fINOUTpar) to ivar;

 /* next state the same */

A <remote procedure input transition> or <remote procedure input area> which contains <virtuality> is called a virtual
remote procedure input transition. A <remote procedure save> or <remote procedure save area> which contains
<virtuality> is called a virtual remote procedure save. Virtual remote procedure input transition and save are further
described in 6.3.3.

NOTE – There is a possibility of deadlock using the remote procedure construct, especially if no <destination> is given, or
if <destination> does not denote a <PId expression> of a process which is guaranteed by the specification to exist at the time of
receiving the pCALL signal.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 115

5 Data in SDL

5.1 Introduction

This introduction gives an outline of the formal model used to define data types and information on how the rest of
clause 5 is structured.

In a specification language, it is essential to allow data types to be formally described in terms of their behaviour, rather
than by composing them from provided primitives, as in some programming languages. The latter approach invariably
involves a particular implementation of the data type, and hence restricts the freedom available to the implementor to
choose appropriate representations of the data type. The abstract data type approach allows any implementation
providing that it is feasible and correct with respect to the specification.

5.1.1 Abstraction in data types

All data used in SDL is based on abstract data types which are defined in terms of their abstract properties rather than in
terms of some concrete implementation. Examples of defining abstract data types are given in Annex D which defines
the predefined data facilities of the language.

Although all data types are abstract, and the predefined data facilities may even be overridden by the user, SDL attempts
to provide a set of predefined data facilities which are familiar in both their behaviour and syntax. The following are
predefined:

a) Boolean

b) Character

c) String

d) Charstring

e) Integer

f) Natural

g) Real

h) Array

i) Powerset

j) PId

k) Duration

l) Time.

The structured sort concept (struct) can be used to form composite objects.

5.1.2 Outline of formalisms used to model data

Data is modelled by an initial algebra. The algebra has designated sorts, and a set of operators mapping between the
sorts. Each sort defines the collection of all the possible values which can be generated by the related set of operators.
Each value can be denoted by at least one term in the language containing only literals and operators. Literals are a
special case of operators without arguments.

The sorts and operators, together with the behaviour of the data type, form the properties of the data type. A data type is
introduced in a number of partial type definitions, each of which defines a sort and operators and algebraic rules
associated with that sort.

The keyword newtype introduces a partial data type definition which defines a distinct new sort. A sort can be created
with properties inherited from another sort, but with different identifiers for the sort and operators.

Introduction of a syntype nominates a subset of the values of a sort.

A generator is an incomplete newtype description: before it assumes the status of a sort, it must be transformed into a
partial type definition by providing the missing information.

Some of the operators introduced by the partial type definition map onto the sort, and so produce (possibly new) values
of the sort. Other operators give meaning to the sort by mapping onto other defined sorts. Many operators map onto the
Boolean sort from other sorts, but it is strictly prohibited for these operators to extend the Boolean sort.

Superseded by a more recent version

116 Recommendation Z.100 (03/93) Superseded by a more recent version

5.1.3 Terminology

The terminology used in clause 5 is chosen to be in harmony with published work on initial algebras. In particular “data
type” is used to refer to a collection of sorts plus a collection of operators associated with these sorts and the definition
of properties of these sorts and operators by algebraic equations. A “sort” is a set of values with common characteristics.
An “operator” is a relation between sorts. An “equation” is a definition of equivalence between terms of a sort. A
“value” is a set of equivalent terms. An “axiom” is an equation which defines a Boolean “term” to be equivalent to True.
However, “axioms” is used to refer to a set of “axiom”s or “equation”s.

5.1.4 Division of text on data

The initial algebra model used for data in SDL is described in a way which allows most of the data concepts to be
defined in terms of a data kernel of the SDL abstract data language.

The text of 5 is divided into this introduction (5.1), the data kernel language (5.2), passive use of data (5.3) and active
use of data (5.4).

The data kernel language defines the part of data in SDL which corresponds directly with the underlying initial algebra
approach. The text on initial algebra in Annex C gives a more detailed introduction to the mathematical basis of this
approach. This is formulated in a more precise mathematical way in appendix I of Annex C.

The passive use of data includes the implicit and shorthand features of SDL data which allow its use for the definition of
abstract data types. It also includes the interpretation of expressions which do not involve values assigned to variables.
These “passive” expressions correspond to functional use of the language.

The active use of data extends the language to include assignment. This includes assignment to, use of and initialization
of variables. When SDL is used to assign to variables or to access the values in variables, it is said to be used actively.
The difference between active and passive expressions is that the value of a passive expression is independent of when it
is interpreted, whereas an active expression may be interpreted as having different values depending on the current
values associated with variables or the current system state.

The predefined data of SDL are defined in Annex D, which defines the sorts listed in 5.1.1.

5.2 The data kernel language

The data kernel can be used to define abstract data types.

5.2.1 Data type definitions

At any point in an SDL specification there is an applicable data type definition. The data type definition defines the
validity of expressions and the relationship between expressions. The definition introduces operators and sets of values
(sorts).

There is not a simple correspondence between the concrete and abstract syntax for data type definitions since the
concrete syntax introduces the data type definition incrementally with emphasis on the sorts (see also Annex C).

The definitions in the concrete syntax are often interdependent and cannot be separated into different scope units.
For example:

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 117

 newtype even literals 0;
 operators
 plusee : even, even -> even;
 plusoo : odd, odd -> even;
 axioms
 plusee(a,0) == a;
 plusee(a,b) == plusee(b,a);
 plusoo(a,b) == plusoo(b,a);
 endnewtype even; /* even "numbers" with plus–depends on odd */

 newtype odd literals 1;
 operators
 plusoe : odd, even -> odd;
 pluseo : even, odd -> odd;
 axioms
 plusoe(a,0) == a;
 pluseo(a,b) == plusoe(b,a);
 endnewtype odd; /*odd "numbers" with plus - depends on even*/

Each data type definition is complete; there are no references to sorts or operators which are not included in the data type
definition which applies at a given point. Also a data type definition must not invalidate the semantics of the data type
definition in the immediately surrounding scope unit. A data type in an enclosed scope unit only enriches operators of
sorts defined in the outer scope unit. A value of a sort defined in a scope unit may be freely used and passed between or
from hierarchically lower scope units. Since predefined data is defined in a predefined and implicitly used package, the
predefined sorts (for example Boolean and Integer) may be freely used throughout the system.

Abstract grammar

Data-type-definition :: Sorts

 Signature-set
 Equations

Sorts = Sort-name-set

Sort-name = Name

Equations = Equation-set

A data type definition must not add new values to any sort of the data type of the enclosing <scope unit kind>.

If one term (see 5.2.3) is non-equivalent to another term according to the data type which applies in the surrounding
<scope unit kind>, then these terms must not be defined to be equivalent by the data type definition.

Concrete textual grammar

<partial type definition> ::=
 newtype <sort name>

 [<formal context parameters>]
 [<extended properties>] <properties expression>
 endnewtype [<sort name>]

<properties expression> ::=
 <operators>
 { <internal properties>
 | <external properties> }
 [<default initialization>]

<internal properties> ::=
 [<operator definitions>]
 [axioms <axioms>] [<literal mapping>]

Superseded by a more recent version

118 Recommendation Z.100 (03/93) Superseded by a more recent version

A <formal context parameter> of <formal context parameters> must be either a <sort context parameter> or a <synonym
context parameter>.

<formal context parameters>, <extended properties>, <operator definitions>, <external properties>, <literal mapping>
and <default initialization> are not part of the data kernel.

The data type definition is represented by the collection of all the <partial type definition>s in the current <scope unit
kind> combined with the data type definition of the surrounding <scope unit kind>.

The following <scope unit kind>s each represent an item in the abstract syntax which contains a data type definition :
<system definition>, <block definition>, <process definition>, <service definition>, <procedure definition>, <channel
substructure definition> or <block substructure definition> or the corresponding diagrams in graphical syntax. The
<partial type definition> in a <system type definition>, <block type definition>, <process type definition> or <service
type definition> is transformed to a <partial type definition> in the resulting (set of) instance(s), when the type is
instantiated.

The sorts for a <scope unit kind> are represented by the set of <sort name>s introduced by the set of <partial type
definition>s of the <scope unit kind>.

The signature set and equations for a <scope unit kind> are represented by the <properties expression>s of the <partial
type definition>s of the <scope unit kind>.

The <operators> of a <properties expression> represents part of the signature set in the abstract syntax. The complete
signature set is the union of the signature sets defined by the <partial type definition>s in the <scope unit kind>.

The <axioms> of a <properties expression> represents part of the equation set in the abstract syntax. The equations is
the union of the equation sets defined by the <partial type definition>s in the <scope unit kind>.

The predefined data sorts have their implicit <partial type definition>s in the package Predefined as defined in Annex D.

Semantics

The data type definition defines a data type. A data type has a set of type properties, that is: a set of sorts, a set of
operators and a set of equations.

The properties of data types are defined in the concrete syntax by partial type definitions. A partial type definition does
not introduce all the properties of a data type but only partially defines some of the properties. The complete properties
of a data type are found by considering the combination of all partial type definitions which apply within the scope unit
containing the data type definition.

A sort is a set of data values. Two different sorts have no values in common.

The data type definition is formed from the data type definition of the scope unit defining the current scope unit taken in
conjunction with the sorts, operators and equations defined in the current scope unit.

Except within a <partial type definition> or a <signal refinement>, the data type definition which applies at any point is
the data type defined for the scope unit immediately enclosing that point. Within a <partial type definition> or a <signal
refinement> the data type definition which applies is the data type definition of the scope unit enclosing the <partial type
definition> or <signal refinement> respectively.

The set of sorts of a data type is the union of the set of sorts introduced in the current scope unit and the set of sorts of
the data type which applies in the surrounding <scope unit kind>. The set of operators of a data type is the union of the
set of operators introduced in the current scope unit and the set of operators of the data type which applies in the
surrounding <scope unit kind>. The set of equations of a data type is the union of the set of equations introduced in the
current scope unit and the set of equations of the data type which applies in the surrounding <scope unit kind>.

Each sort introduced in a data type definition has an identifier which is the name introduced by a partial type definition
in the scope unit qualified by the identifier of the scope unit.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 119

5.2.2 Literals and parameterised operators

Abstract grammar

Signature = Literal-signature |
 Operator-signature

Literal-signature :: Literal-operator-name
 Result

Operator-signature :: Operator-name
 Argument-list
 Result

Argument-list = Sort-reference-identifier +

Result = Sort-reference-identifier

Sort-reference-identifier = Sort-identifier |
 Syntype-identifier

Literal-operator-name = Name

Operator-name = Name

Sort-identifier = Identifier

Syntypes and syntype identifiers are not part of the kernel (see 5.3.1.9).

Concrete textual grammar

<operators> ::=
 [<literal list>] [<operator list>]

<literal list> ::=
 literals <literal signature> {, <literal signature> }* [<end>]

<literal signature> ::=
 <literal operator name>
 | <extended literal name>

<operator list> ::=
 operators
 <operator signature> { <end> <operator signature> }* [<end>]

<operator signature> ::=
 <operator name> : <argument list> -> <result>
 | <ordering>
 | <noequality>

<operator name> ::=
 <operator name>
 | <extended operator name>

<argument list> ::=
 <argument sort> { , <argument sort> }*

<argument sort> ::=
 <extended sort>

Superseded by a more recent version

120 Recommendation Z.100 (03/93) Superseded by a more recent version

<result> ::=

 <extended sort>

<extended sort> ::=

 <sort>

 | <generator sort>

<sort> ::=

 <sort identifier>

 | <syntype>

The alternatives <extended operator name>, <extended literal name>, <ordering>, <generator sort>, <syntype> and
<noequality> are not part of the data kernel.

Literals are introduced by <literal signature>s listed after the keyword literals. The result of a literal signature is the sort
introduced by the <partial type definition> defining the literal.

Each <operator signature> in the list of <operator signature>s after the keyword operators represents an operator
signature with an operator name, an argument list and a result.

The <operator name> corresponds to an operator name in the abstract syntax which is unique within the defining scope
unit even though the name may not be unique in the concrete syntax.

The unique Operator-name or Literal-operator-name in the abstract syntax is derived from

a) the <operator name> (or <literal operator name>); plus

b) the list of argument sort identifiers; plus

c) the result sort identifier; plus

d) the sort identifier of the partial type definition in which the <operator name> (or <literal operator name>)
is defined.

Whenever an <operator identifier> is specified, then the unique Operator-name in Operator-identifier is derived in the
same way with the list of argument sorts and the result sort derived from context. Two operators with the same <name>
which differ by one or more of the argument or result sorts have different names.

Each <argument sort> in an <argument list> represents a Sort-reference-identifier in an Argument-list. A <result>
represents the Sort-reference-identifier of a Result.

Wherever a <qualifier> of an <operator identifier> (or <literal operator identifier>) contains a <path item> with the
keyword type, then the <sort name> after this keyword does not form part of the Qualifier of the Operator-identifier (or
Literal-operator-identifier) but is used to derive the unique Name of the Identifier. In this case the Qualifier is formed
from the list of <path item>s preceding the keyword type.

Semantics

An operator is “total” which means that application of the operator to any list of values of the argument sorts denotes a
value of the result sort.

An operator signature defines how the operator may be used in expressions. The operator signature is the operator
identity plus the list of sorts of the arguments and the sort of the result. It is the operator signature which determines
whether an expression is a valid expression in the language according to the rules required for matching the sorts of
argument expressions.

An operator with no argument is called a literal.

A literal represents a fixed value belonging to the result sort of the operator.

An operator has a result sort which is the sort identified by the result.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 121

NOTE – Guideline: an <operator signature> should mention the sort introduced by the enclosing <partial type definition>
as either an <argument sort> or a <result>.

Example 1

 literals free, busy ;

Example 2

 operators
 findstate: Telephone -> Availability;

Example 3

 literals
 empty_list
 operators
 add_to_list: list_of_telephones, Telephone -> list_of_telephones;
 sub_list: list_of_telephones, Telephone -> list_of_telephones

5.2.3 Axioms

The axioms determine which terms represent the same value. From the axioms in a data type definition the relationship
between argument values and result values of operators is determined and hence meaning is given to the operators.
Axioms are either given as Boolean axioms or in the form of algebraic equivalence equations.

Abstract grammar

Equation = Unquantified-equation |
 Quantified-equations |
 Conditional-equation |
 Informal-text

Unquantified-equation :: Term Term

Quantified-equations :: Value-name-set
 Sort-identifier
 Equations

Value-name = Name

Term = Ground-term |
 Composite-term |
 Error-term

Composite-term :: Value-identifier |
 Operator-identifier Term+ |
 Conditional-composite-term

Value-identifier = Identifier

Operator-identifier = Identifier

Ground-term :: Literal-operator-identifier |
 Operator-identifier Ground-term+ |
 Conditional-ground-term

Literal-operator-identifier = Identifier

The alternatives Conditional-composite-term and Conditional-ground-term in the rules Composite-term and Ground-
term respectively are not part of the data kernel, although the equations containing these terms may be replaced by

Superseded by a more recent version

122 Recommendation Z.100 (03/93) Superseded by a more recent version

semantically equivalent equations written in the kernel language (see 5.3.1.6). The alternative Error-term in the rule
Term is not part of the data kernel.

The definitions of informal text and conditional equations are given in 2.2.3 and 5.2.4 respectively.

Each term (or ground term) in the list of terms after an operator identifier must have the same sort as the corresponding
(by position) sort in the argument list of the operator signature.

The two terms in an unquantified equation must be of the same sort.

Concrete textual grammar

<axioms> ::=
 <equation> { <end> <equation>}* [<end>]

<equation> ::=
 <unquantified equation>
 | <quantified equations>
 | <conditional equation>
 | <informal text>

<quantified equations> ::=
 <quantification> (<axioms>)

<quantification> ::=
 for all <value name> { , <value name> }*
 in <extended sort>

<unquantified equation> ::=
 <term> == <term>
 | <Boolean axiom>

<term> ::=
 <ground term>
 | <composite term>
 | <error term>
 | <spelling term>

<composite term> ::=
 <value identifier>
 | <operator identifier> (<composite term list>)
 | (<composite term>)
 | <extended composite term>

<composite term list> ::=
 <composite term> { , <term> }*
 | <term> , <composite term list>

<ground term> ::=
 <literal identifier>
 | <operator identifier> (<ground term> { , <ground term> }*)
 | (<ground term>)
 | <extended ground term>

<literal identifier> ::=
 <literal operator identifier>
 | <extended literal identifier>

The alternatives <Boolean axiom> of rule <unquantified equation>, <error term> and <spelling term> of rule <term>,
<extended composite term> of rule <composite term>, <extended ground term> of rule <ground term>, and <extended
literal identifier> of rule <literal identifier> are not part of the data kernel.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 123

The <sort> in a <quantification> represents the sort identifier in quantified equations. The <value name>s in a
<quantification> represents the value name set in quantified equations.

A <composite term list> represents a term list. An operator identifier followed by a term list is only a composite term if
the term list contains at least one value identifier.

An <identifier> which is an unqualified name appearing in a <term> represents

a) an operator identifier if it precedes an open round bracket (or it is an <operator name> which is an
<extended operator name>, see 5.3.1); otherwise

b) a value identifier if there is a definition of that name in a <quantification> of <quantified equations>
enclosing the <term>, which then must have a suitable sort for the context; otherwise

c) a literal operator identifier if there is a visible literal with that name, which then must have a suitable sort
for the context, otherwise

d) a value identifier which has an implied quantified equation in the abstract syntax for the <unquantified
equation>.

Two or more occurrences of the same unbound value identifier within one <unquantified equation>, or in case the
<unquantified equation> is contained in a <conditional equation> then within the <conditional equation> , imply one
quantification.

An operator identifier is derived from the context so that if the <operator name> is overloaded (that is the same <name>
is used for more than one operator) then it is the operator name which identifies a visible operator with the same name
and the argument sorts and result sort consistent with the operator application. If the <operator name> is overloaded then
it may be necessary to derive the argument sorts from the arguments and the result sort from context in order to
determine the operator name.

Within one <unquantified equation>, or in case the <unquantified equation> is contained in a <conditional equation>
then within the <conditional equation>, there must be exactly one sort for each implicitly quantified value identifier
which is consistent with all its uses.

It must be possible to bind each unqualified <operator identifier> or <literal operator identifier> to exactly one defined
operator identifier or literal operator identifier which satisfies the conditions in the construct in which the <identifier> is
used. That is, the binding shall be unique.

NOTE – Guideline: an axiom should be relevant to the sort of the enclosing partial type definition by mentioning an
operator or literal with a result of this sort or an operator which has an argument of this sort; an axiom should be defined only once.

Semantics

Each equation is a statement about the algebraic equivalence of terms. The left-hand side term and right-hand side term
are stated to be equivalent so that where one term appears, the other term may be substituted. When a value identifier
appears in an equation, then it may be simultaneously substituted in that equation by the same term for every occurrence
of the value identifier. For this substitution the term may be any ground term of the same sort as the value identifier.

Value identifiers are introduced by the value names in quantified equations. A value identifier is used to represent any
data values belonging to the sort of the quantification. An equation will hold if the same value is simultaneously
substituted for every occurrence of the value identifier in the equation regardless of the value chosen for the substitution.

A ground term is a term which does not contain any value identifiers. A ground term represents a particular, known
value. For each value in a sort there exists at least one ground term which represents that value.

If any axioms contain informal text, then the interpretation of expressions is not formally defined by SDL but may be
determined from the informal text by the interpreter. It is assumed that if informal text is specified the equation set is
known to be incomplete, therefore complete formal specification has not been given in SDL.

Superseded by a more recent version

124 Recommendation Z.100 (03/93) Superseded by a more recent version

A value name is always introduced by quantified equations in the abstract syntax, and the corresponding value has a
value identifier which is the value name qualified by the sort identifier of the enclosing quantified equations. For
example:

 for all z,z in X (for all z in X ...)

introduces only one value identifier named z of sort X.

In the concrete syntax it is not allowed to specify a qualifier for value identifiers.

Each value identifier introduced by quantified equations has a sort which is the sort identified in the quantified equations
by the sort reference identifier. The sort of the implied quantifications is the sort required by the context(s) of the
occurrence of the unbound identifier. If the contexts of a value identifier which has implied quantification allow different
sorts then the identifier is bound to a sort which is consistent with all its uses in the equation.

A term has a sort which is the sort of the value identifier or the result sort of the (literal) operator.

Unless it can be deduced from the equations that two terms denote the same value, each term denotes a different value.

Example 1

for all b in logical (eq(b,b)==T)

Example 2

neq(T, F)== T; neq(T, T) == F;

neq(F, T)== T; neq(F, F) == F;

Example 3

eq(b, b) == T;

eq(F, eq(T, F)) == T;

eq(eq(b, a),eq(a, b)) == T;

5.2.4 Conditional equations

A conditional equation allows the specification of equations which only hold when certain restrictions hold. The
restrictions are written in the form of simple equations.

Abstract grammar

Conditional-equation :: Restriction-set
 Restricted-equation

Restriction = Unquantified-equation

Restricted-equation = Unquantified-equation

Concrete textual grammar

<conditional equation> ::=

 <restriction> { , <restriction> }* ==> <restricted equation>

<restricted equation> ::=

 <unquantified equation>

<restriction> ::=

 <unquantified equation>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 125

Semantics

A conditional equation defines that terms denote the same value only when any value identifier in the restricted equation
denotes a value which can be shown from other equations to satisfy the restrictions.

The semantics of a set of equations for a data type which includes conditional equations are derived as follows:

a) Quantification is removed by generating every possible ground term equation which can be derived from
the quantified equations. As this is applied to both explicit and implicit quantification a set of
unquantified equations in ground terms only is generated.

b) Let a conditional equation be called a provable conditional equation if all the restrictions (in ground terms
only) can be proved to hold from unquantified equations which are not restricted equations. If there exists
a provable conditional equation, then it is replaced by the restricted equation of the provable conditional
equation.

c) If there are conditional equations remaining in the set of equations and none of these conditional
equations are a provable conditional equation, then these conditional equations are deleted, otherwise
return to step (b).

d) The remaining set of unquantified equations defines the semantics of the data type.

Example

z /= 0 == True ==> (x/z)*z==x

5.3 Passive use of SDL data

Extensions to the data definition constructs in 5.2 are defined in 5.3.1. How to interpret the use of the abstract data types
in expressions is defined in 5.3.3 if the expression is “passive” (that is does not depend on the system state). How to
interpret expressions which are not passive (that is “active” expressions) is defined in 5.4.

5.3.1 Extended data definition constructs

The constructs defined in 5.2 are the basis of more concise forms explained below.

Abstract grammar

There is no additional abstract syntax for most of these constructs. In 5.3.1 and all subsections of 5.3.1 the relevant
abstract syntax is usually to be found in 5.2.

Concrete textual grammar

<extended properties> ::=

 <inheritance rule>

 | <generator transformations>

 | <structure definition>

<extended composite term> ::=

 <extended operator identifier> (<composite term list>)

 | <composite term> <infix operator> <term>

 | <term> <infix operator> <composite term>

 | <monadic operator> <composite term>

 | <conditional composite term>

Superseded by a more recent version

126 Recommendation Z.100 (03/93) Superseded by a more recent version

<extended ground term> ::=

 <extended operator identifier>

 (<ground term> {, <ground term> }*)

 | <ground term> <infix operator> <ground term>

 | <monadic operator> <ground term>

 | <conditional ground term>

<extended operator identifier> ::=

 <operator identifier> <exclamation>

 | <generator formal name>

 | [<qualifier>] <quoted operator>

<extended operator name> ::=

 <operator name> <exclamation>

 | <generator formal name>

 | <quoted operator>

<exclamation> ::=

 !

<extended literal name> ::=

 <character string literal>

 | <generator formal name>

 | <name class literal>

<extended literal identifier> ::=

 <character string literal identifier>

 | <generator formal name>

Alternatives with <generator formal name>s are only valid in a <properties expression> in a <generator text>
(see 5.3.1.12) which has that name defined as a formal parameter.

Alternatives with <exclamation> are not valid in <operator definitions>.

The alternatives of <extended composite term> and <extended ground term> with a <generator formal name> preceding
a “(” are only valid if the <generator formal name> is defined to be of the operator class (see 5.3.1.12).

The alternative of <extended literal name> with a <generator formal name> is only valid if the <generator formal name>
is defined to be of the literal class (see 5.3.1.12).

The alternative of <extended literal identifier> with a <generator formal name> is only valid if the <generator formal
name> is defined to be of the literal class or the constant class (see 5.3.1.12).

If an operator name is defined with an <exclamation>, then the <exclamation> is semantically part of the name.

The forms <operator name> <exclamation> or <operator identifier> <exclamation> represent operator name (5.2.2) and
operator identifier (5.2.3) respectively.

Semantics

An operator name defined with an <exclamation> has the normal semantics of an operator, but the operator name is only
visible in axioms and in <inheritance list>s.

5.3.1.1 Special operators

These are operator names which have special syntactic forms. The special syntax is introduced so that arithmetic
operators and Boolean operators can have their usual syntactic form. That is the user can write “(1 + 1) = 2” rather than
being forced to use for example equal(add(1,1),2). Which sorts are valid for each operator will depend on the data type
definition.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 127

Concrete textual grammar

<quoted operator> ::=

 <quote> <infix operator> <quote>

 | <quote> <monadic operator> <quote>

<quote> ::=

 "

<infix operator> ::=

 => | or | xor | and | in | /= | = | > | < | <=

 | >= | + | / | * | // | mod | rem | -

<monadic operator> ::=

 - | not

Semantics

 An infix operator in a term has the normal semantics of an operator but with infix or quoted prefix syntax as above.

 A monadic operator in a term has the normal semantics of an operator but with the prefix or quoted prefix syntax as
above.

 The quoted forms of infix or monadic operators are valid names for operators.

Infix operators have an order of precedence which determines the binding of operators. The binding is the same as the
binding in <expression>s as specified in 5.3.3.1.

When the binding is ambiguous such as in

 a or b xor c ;

then binding is from left to right so that the above term is equivalent to

 (a or b) xor c ;

Model

A term of the form <term1> <infix operator> <term2> is derived syntax for "<infix operator>" (<term1>, <term2>) with
"<infix operator>" as a legal name. "<infix operator>" represents an operator name.

Similarly <monadic operator> <term> is derived syntax for "<monadic operator>" (<term>) with "<monadic
operator>" as a legal name and representing an operator name.

NOTE – The equal operator (=) should not be confused with the term equivalence symbol (==).

5.3.1.2 Character string literals

Concrete textual grammar

<character string literal identifier> ::=

 [<qualifier>] <character string literal>

<character string literal> ::=

 <character string>

A <character string> is a lexical unit.

A <character string literal identifier> represents a Literal-operator-identifier in the abstract syntax.

Superseded by a more recent version

128 Recommendation Z.100 (03/93) Superseded by a more recent version

A <character string literal> represents a unique Literal-operator-name (5.2.2) in the abstract syntax derived from the
<character string>.

Semantics

Character string literal identifiers are the identifiers formed from character string literals in terms and expressions.

Character string literals are used for the predefined data sorts Charstring and Character (see Annex D). They also have a
special relationship with name class literals (see 5.3.1.14) and literal mappings (see 5.3.1.15). These literals may also be
defined to have other uses.

A <character string literal> has a length which is the number of <alphanumeric>s plus <other character>s plus
<special>s plus <full stop>s plus <underline>s plus <space>s plus <apostrophe> <apostrophe> pairs in the <character
string> (see 2.2.1).

A <character string literal> which

a) has a length greater than one; and

b) has a substring formed by deleting the last character (<alphanumeric> or <other character> or <special>
or <full stop> or <underline> or <space> or <apostrophe> <apostrophe> pair) from the <character
string>; and

c) has a substring defined as a literal such that

 substring // deleted_character_in_apostrophes

 is a valid term with the same sort as the <character string literal>, where the concatenation operator and
its arguments are qualified with the enclosing sort

has an implied equation given by the concrete syntax that the <character string literal> is equivalent to the substring
followed by the same "//" infix operator followed by the deleted character with apostrophes to form a <character string>.

For example the literals ’ABC’, ’AB’’’, and ’AB’ in

 newtype s

 literals ’ABC’, ’AB’’’, ’AB’, ’A’, ’B’, ’C’, ’’’’;

 operators "//": s, s -> s;

have implied equations

 ’ABC’ == ’AB’ // ’C’ ;

 ’AB’’’ == ’AB’ // ’’’’ ;

 ’AB’ == ’A’ // ’B’;

5.3.1.3 Predefined data

The predefined data including the Boolean sort which defines properties for two literals True and False, are defined in
Annex D. The semantics of Equality (5.3.1.4), Boolean axioms (5.3.1.5), Conditional terms (5.3.1.6), Ordering (5.3.1.8),
and Syntypes (5.3.1.9) rely on the definition of the Boolean sort (Annex D, D.1). The semantics of Name Class Literals
(if <regular interval>s are used, 5.3.1.14) and Literal Mapping (5.3.1.15) also rely on the definition of Character (Annex
D, D.2) and Charstring (Annex D, D.4) respectively.

In addition, the two Boolean terms True and False must not be (directly or indirectly) defined to be equivalent. Every
Boolean ground expression which is used outside data type definitions must be interpreted as either True or False. If it is
not possible to reduce such an expression to True or False, then the specification is incomplete and allows more than one
interpretation of the data type.

It is also not allowed to reduce the number of values for the predefined sort PId.

Predefined data is defined in an implicitly used package Predefined (see 2.4.1.2). This package is defined in Annex D.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 129

5.3.1.4 Equality and noequality

Concrete textual grammar

<noequality> ::=

 noequality

Semantics

The symbols = and /= in the concrete syntax represent the names of the operators which are called the equal and not
equal operators.

Model

Any <partial type definition> introducing some sort named S without <inheritance rule> has an implied operator
signature pair equivalent to

 "=" : S, S -> << package Predefined >> Boolean;

 "/=": S, S -> << package Predefined >> Boolean;

where Boolean is the predefined Boolean sort.

Any <partial type definition> introducing a sort named S, unless

a) it has the keyword noequality in its <operator list>; or

b) it is based on inheritance without the keyword noequality in its <inheritance list>

has an implied equation set:

 for all a,b,c in S (

 a = a == True;

 a = b == b = a;

 ((a = b) and (b = c)) ==> a = c == True;

 a /= b == not(a = b);

 a = b == True ==> a == b;)

and an implied <literal equation>:

 for all L1,L2 in S literals (

 Spelling(L1) /= Spelling(L2) ==> L1 = L2 == False;)

5.3.1.5 Boolean axioms

Concrete textual grammar

<Boolean axiom> ::=

 <Boolean term>

Semantics

A Boolean axiom is a statement of truth which holds under all conditions for the data type being defined, and thus can be
used to specify the behaviour of the data type.

Superseded by a more recent version

130 Recommendation Z.100 (03/93) Superseded by a more recent version

Model

An axiom of the form

terme <Boolean term>;

is derived syntax for the concrete syntax equation

<Boolean term> == << package Predefined/type Boolean >> True;

which has the normal relationship of an equation with the abstract syntax.

5.3.1.6 Conditional terms

In the following, the equation containing the conditional term is called a conditional term equation.

Abstract grammar

Conditional-composite-term = Conditional-term

Conditional-ground-term = Conditional-term

Conditional-term :: Condition

 Consequence

 Alternative

Condition = Term

Consequence = Term

Alternative = Term

The sort of the Condition must be the predefined Boolean sort and the Condition must not be the Error-term.
The Consequence and the Alternative must have the same sort.

A Conditional term is a Conditional composite term if and only if one or more of the terms in the condition, the
Consequence or Alternative is a Composite-term.

A conditional term is a conditional ground term if and only if all the terms in the condition, the consequence or
alternative are ground terms.

Concrete textual grammar

<conditional composite term> ::=
 <conditional term>

<conditional ground term> ::=
 <conditional term>

<conditional term> ::=
 if <condition> then <consequence> else <alternative> fi

<condition> ::=
 <Boolean term>

<consequence> ::=
 <term>

<alternative> ::=
 <term>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 131

Semantics

An equation containing a conditional term is semantically equivalent to a set of equations where all the quantified value
identifiers in the Boolean term have been eliminated. This set of equations can be formed by simultaneously substituting
throughout the conditional term equation each value identifier in the condition by each ground term of the appropriate
sort. In this set of equations the condition will always have been replaced by a Boolean ground term. In the following,
this set of equations is referred to as the expanded ground set.

A conditional term equation is equivalent to the equation set which contains

a) for every equation in the expanded ground set for which the condition is equivalent to True, that equation
from the expanded ground set with the conditional term replaced by the (ground) consequence, and

b) for every equation in the expanded ground set for which the condition is equivalent to False, that equation
from the expanded ground set with the conditional term replaced by the (ground) alternative.

Note that in the special case of an equation of the form

 ex1 == if a then b else c fi;

this is equivalent to the pair of conditional equations

 a == True ==> ex1 == b;

 a == False ==> ex1 == c.

Example

 if i = j * j then posroot(i) else abs(j) fi ==

 if positive(j) then j else -j fi;

NOTE – There are better ways of specifying these properties – this is only an example.

5.3.1.7 Errors

Errors are used to allow the properties of a data type to be fully defined even for cases when no specific meaning can be
given to the result of an operator.

Abstract grammar

Error-term :: ()

An error term must not be used as an argument term for an operator identifier in a composite term.

An error term must not be used as part of a restriction.

It must not be possible to derive from Equations that a literal operator identifier is equal to error term.

Concrete textual grammar

<error term> ::=

 error <exclamation>

Semantics

A term may be an error so that it is possible to specify the circumstances under which an operator produces an error.
If these circumstances arise during interpretation, then the further behaviour of the system is undefined.

Superseded by a more recent version

132 Recommendation Z.100 (03/93) Superseded by a more recent version

5.3.1.8 Ordering

Concrete textual grammar

<ordering> ::=
 ordering

Semantics

The ordering keyword is a shorthand for explicitly specifying ordering operators and a set of ordering equations for a
partial type definition.

Model

A <partial type definition> introducing a sort named S with the keyword ordering implies an operator signature set
equivalent to the explicit definitions:

 "<" : S,S -> package Predefined Boolean;
 ">" : S,S -> package Predefined Boolean;
 "<=" : S,S -> package Predefined Boolean;
 ">=" : S,S -> package Predefined Boolean;

where Boolean is the predefined Boolean sort, and also implies the Boolean axioms:

 for all a, b, c, d in S
 (a = b ==> a < b == False;
 a < b == b > a;
 a <= b == a < b or a = b;
 a >= b == a > b or a = b;
 a < b == True ==> b < a == False;

 a < b and b = c and c < d == True ==> a < d == True;);

When a <partial type definition> includes both <literal list> and the keyword ordering the <literal signature>s are
nominated in ascending order, that is

 literals A,B,C;
 operators ordering;

implique A<B, B<C.

5.3.1.9 Syntypes

A syntype specifies a set of values of a sort. A syntype used as a sort has the same semantics as the sort referenced by the
syntype except for checks that values are within the value set of the sort.

Abstract grammar

Syntype-identifier = Identifier

Syntype-definition :: Syntype-name
 Parent-sort-identifier
 Range-condition

Syntype-name = Name

Parent-sort-identifier = Sort-identifier

Concrete textual grammar

<syntype> ::=
 <syntype identifier>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 133

<syntype definition> ::=

 syntype

 <syntype name> = <parent sort identifier>

 [<default initialization>] [constants <range condition>]

 endsyntype [<syntype name>]

 | newtype <syntype name> [<extended properties>]

 <properties expression> constants <range condition>

 endnewtype [<syntype name>]

<parent sort identifier> ::=

 <sort>

A <syntype> is an alternative for a <sort>.

A <syntype definition> with the keyword syntype and "= <syntype identifier>" is derived syntax defined below.

A <syntype definition> with the keyword syntype in the concrete syntax corresponds to a Syntype-definition in the
abstract syntax.

When a <syntype identifier> is used as an <argument sort> in an <argument list> defining an operator, the sort for the
argument in an argument list is the parent sort identifier of the syntype.

When a <syntype identifier> is used as a result of an operator, the sort of the result is the parent sort identifier of the
syntype.

When a <syntype identifier> is used as a qualifier for a name, the qualifier is the parent sort identifier of the syntype.

If the keyword syntype is used and the <range condition> is omitted, then all the values of the sort are in the range
condition.

Semantics

A syntype definition defines a syntype which references a sort identifier and range condition. Specifying a syntype
identifier is the same as specifying the parent sort identifier of the syntype except for the following cases:

a) assignment to a variable declared with a syntype (see 5.4.3);

b) output of a signal if one of the sorts specified for the signal is a syntype (see 2.5.4 and 2.7.4);

c) calling a procedure when one of the sorts specified for the procedure in parameter variables is a syntype
(see 2.7.3 and 2.4.6);

d) creating a process when one of the sorts specified for the process parameters is a syntype (see 2.7.2
and 2.4.4);

e) input of a signal and one of the variables which is associated with the input, has a sort which is a syntype
(see 2.6.4);

f) use in an expression of an operator which has a syntype defined as either an argument sort or a result sort
(see 5.3.3.2 and 5.4.2.4);

g) set or reset statement or active expression on a timer and one of the sorts in the timer definition is a
syntype (see 2.8);

h) remote variable or remote procedure definition if one of the sorts for derivation of implicit signals is a
syntype (see 4.13 and 4.14);

Superseded by a more recent version

134 Recommendation Z.100 (03/93) Superseded by a more recent version

i) procedure formal context parameter with an in/out parameter in <procedure signature> matched with an
actual context parameter where the corresponding formal parameter or the in/out parameter in the
<procedure signature> is a syntype;

j) any value expression, where the value returned will be within the range (see 5.4.4.6).

For example, a <syntype definition> with the keyword syntype and "= <syntype identifier>" is equivalent to substituting
its <parent sort identifier> by the <parent sort identifier> of the <syntype definition> of the <syntype identifier>. That is

 syntype s2 = n1 constants a1:a3 endsyntype s2;
 syntype s3 = s2 constants a1:a2 endsyntype s3;

is equivalent to

 syntype s2 = n1 constants a1:a3 endsyntype s2;
 syntype s3 = n1 constants a1:a2 endsyntype s3;

When a syntype is specified in terms of <syntype identifier> then the two syntypes must not be mutually defined.

A syntype has a sort which is the sort identified by the parent sort identifier given in the syntype definition.

A syntype has a range which is the set of values specified by the constants of the syntype definition.

Model

A <syntype definition> with the keyword newtype can be distinguished from a <partial type definition> by the inclusion
of constants <range condition>. Such a <syntype definition> is a shorthand for introducing a <partial type definition>
with an anonymous name followed by a <syntype definition> with the keyword syntype based on this anonymously
named sort. That is

 newtype X /* details */
 constants /* constant list */
 endnewtype X;

is equivalent to

 newtype anon /* details */
 endnewtype anon;

followed by

 syntype X = anon
 constants /* constant list */
 endsyntype X;

5.3.1.9.1 Range condition

Abstract grammar

Range-condition :: Or-operator-identifier

 Condition-item-set

Condition-item = Open-range | Closed-range

Open-range :: Operator-identifier

 Ground-expression

Closed-range :: And-operator-identifier

 Open-range

 Open-range

Or-operator-identifier = Identifier

And-operator-identifier = Identifier

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 135

Concrete textual grammar

<range condition> ::=

 { <closed range> | <open range> }

 { , { <closed range> | <open range> } }*

<closed range> ::=

 <constant> : <constant>

<open range> ::=

 <constant>

 | { = | /= | < | > | <= | >= } <constant>

<constant> ::=

 <ground expression>

The symbol "<" ("<=", ">", ">=" respectively) must only be used in the concrete syntax of the <range condition> if that
symbol has been defined with an <operator signature>

 P, P -> package Predefined Boolean;

where P is the sort of the syntype. These symbols represent operator identifier.

A <closed range> must only be used if the symbol "<=" is defined with an <operator signature>

 P, P -> package Predefined Boolean;

where P is the sort of the syntype.

A <constant> in a <range condition> must have the same sort as the sort of the syntype.

Semantics

A range condition defines a range check. A range check is used when a syntype has additional semantics to the sort of
the syntype (see 2.6.1.1, 5.3.1.9 and the cases where syntypes have different semantics – see the sections referenced in
items a) to j) in 5.3.1.9, Semantics). A range check is also used to determine the interpretation of a decision (see 2.7.5).

The range check is the application of the operator formed from the range condition. For syntype range checks, the
application of this operator must be equivalent to True otherwise the further behaviour of the system is undefined. The
range check is derived as follows:

a) Each element (<open range> or <closed range>) in the <range condition> has a corresponding open range
or closed range in the condition item.

b) An <open range> of the form <constant> is equivalent to an <open range> of the form = <constant>.

c) For a given term, A, then

i) an <open range> of the form = <constant>, /= <constant>, < <constant>, <= <constant>, >
<constant>, and >= <constant>, has sub-terms in the range check of the form A = <constant>, A /=
<constant>, A < <constant>, A <= <constant>, A > <constant>, and A >= <constant> respectively.

ii) a <closed range> of the form <first constant> : <second constant> has a sub-term in the range check
of the form <first constant> <= A and A <= <second constant> where and corresponds to the
predefined Boolean and operator and corresponds to the And-operator-identifier in the abstract
syntax.

d) There is an Or-operator-identifier for the distributed operator over all the elements in the condition-item-
set which is a predefined Boolean or of all the elements. The range check is the term formed from the
predefined Boolean or of all the sub-terms derived from the <range condition>.

If a syntype is specified without a <range condition> then the range check is True.

Superseded by a more recent version

136 Recommendation Z.100 (03/93) Superseded by a more recent version

5.3.1.10 Structure sorts

Concrete textual grammar

<structure definition> ::=

 struct <field list> [<end>] [adding]

<field list> ::=

 <fields> { <end> <fields> }*

<fields> ::=

 <field name> { , <field name> }* <field sort>

<field sort> ::=

 <sort>

Each <field name> of a structure sort must be different from every other <field name> of the same <structure
definition>.

Semantics

A structure definition defines a structure sort whose values are composed from a list of field values of sorts.

The length of the list of values is determined by the structure definition and the sort of a value is determined by its
position in the list of values.

Model

A structure definition is derived syntax for the definition of

a) an operator, Make!, to create structure values, and

b) operators both to modify structure values and to extract field values from structure values.

The name of the implied operator for modifying a field is the field name concatenated with “Modify!”.

The name of the implied operator for extracting a field is the field name concatenated with “Extract!”.

The <argument list> for the Make! operator is the list of <field sort>s occurring in the field list in the order in which they
occur.

The <result> for the Make! operator is the sort identifier of the structure.

The <argument list> for the field modify operator is the sort identifier of the structure followed by the <field sort> of
that field. The <result> for a field modify operator is the sort identifier of the structure.

The <argument list> for a field extract operator is the sort identifier of the structure. The <result> for a field extract
operator is the <field sort> of that field.

There is an implied equation for each field which defines that modifying a field of a structure to a value is the same as
constructing a structure value with that value for the field.

There is an implied equation for each field which defines that extracting a field of a structure value will return the value
associated with that field when the structure value was constructed.

Unless noequality is specified in the <operator list>, there is an implied equation which defines the equality of structure
values by elementwise equality.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 137

For example

 newtype s struct
 b Boolean;
 i Integer;
 c Character;
 endnewtype s;

implies

 newtype s
 operators
 Make! : Boolean, Integer, Character -> s;
 bModify! : s, Boolean -> s;
 iModify! : s, Integer -> s;
 cModify! : s, Character -> s;
 bExtract! : s -> Boolean;
 iExtract! : s -> Integer;
 cExtract! : s -> Character;
 axioms
 bModify! (Make!(x,y,z),b) == Make!(b,y,z);
 iModify! (Make!(x,y,z),i) == Make!(x,i,z);
 cModify! (Make!(x,y,z),c) == Make!(x,y,c);
 bExtract! (Make!(x,y,z)) == x;
 iExtract! (Make!(x,y,z)) == y;
 cExtract! (Make!(x,y,z)) == z;
 Make!(x1,y1,z1) = Make!(x2,y2,z2) == (x1=x2) and (y1=y2) and (z1=z2);
 endnewtype s;

5.3.1.11 Inheritance

Concrete textual grammar

<inheritance rule> ::=
 inherits <sort type expression>
 [<literal renaming>]
 [[operators] { all | (<inheritance list>) }
 [<end>]] [adding]

<inheritance list> ::=
 <inherited operator> { , <inherited operator> }*
 [, noequality]

<inherited operator> ::=
 [<operator name> =] <inherited operator name>

<inherited operator name> ::=
 <base type operator name>

<literal renaming> ::=
 literals <literal rename list> <end>

<literal rename list> ::=
 <literal rename pair> { , <literal rename pair> }*

<literal rename pair> ::=
 <literal rename signature> = <base type literal rename signature>

<literal rename signature> ::=
 <literal operator name>
 | <character string literal>

If the <sort type expression> contains <actual context parameters> then the <inheritance rule> cannot contain <literal
renaming> or <inheritance list> and the keyword all is implied if omitted. In this case, all literals, operators and axioms
of the <base type> are inherited, including the equal and the not equal operators and their associated axioms (if any).

Superseded by a more recent version

138 Recommendation Z.100 (03/93) Superseded by a more recent version

All <literal rename signature>s in a <literal rename list> must be distinct. All the <base type literal rename signature>s
in a <literal rename list> must be different.

All <inherited operator name>s in an <inheritance list> must be distinct. All <operator name>s in an <inheritance list>
must be distinct.

An <inherited operator name> specified in an <inheritance list> must be an operator of the <base type> defined in the
<partial type definition> defining the <base type>.

The operator names "=" and "/=" are implicitly contained in <inheritance list> without any renaming.

When several operators of the <base type> have the same name as the <inherited operator name>, then all of these
operators are inherited.

Model

If the <sort type expression> contains <actual context parameters> then the model for specialization in 6.3 is used,
otherwise the following model is used. When the below model is applied, <operator definition>s, <operator diagram>s
and <default initialization> are not inherited.

One sort (S) may be based on another (base) sort (BS) by using newtype in combination with an inheritance rule. The
sort defined using the inheritance rule is disjoint from the base type.

If the base type has literals defined, the literal names are inherited as names for literals of the sort being defined unless
literal renaming has taken place for that literal. Literal renaming has taken place for a literal if the base type literal name
appears as the second name in a literal renaming pair in which case the literal is renamed to the first name in that pair.

There is an implied type conversion operator which takes one argument of the base type sort and has a result of the new
sort. The name of this operator is the name of the sort being defined concatenated with "!".

There are inherited operators as specified by all or the inheritance list. The name of an inherited operator

a) is the same as the base type operator name if all is specified and the name is explicitly or implicitly
defined as an operator name in the partial type definition or syntype definition defining the base type;
otherwise

b) if the base type operator name is given in the inheritance list and an operator name followed by the "=" is
given for the inherited operator, is renamed to this name; otherwise

c) if the base type operator name is given in the inheritance list and an operator name followed by "=" is not
given for the inherited operator, is the same name as the base type operator name.

If neither all nor inheritance list is specified, the inherited operators are the equal and the not equal operators only
(see 5.3.1.4).

The argument sorts and result of an inherited operator are the same as those of the corresponding operator of the base
type sort, except that every occurrence of the base type in the inherited operators is changed to the new sort.

For each inherited operator (except for the "=" and "/=" operators if noequality is specified in <inheritance list>), there
is an implied equation

 IO(t1,...,tn) == S!(BTO(v1,..., vn)); if the result is the new sort

 IO(t1,...,tn) == BTO(v1,...,vn); otherwise

where IO is the Inherited Operator, BTO is the corresponding Base Type Operator, S! is the implied type conversion
operator. The vi are disjoint value identifiers. If the sort of vi is the base type then ti = S!(vi), otherwise ti = vi.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 139

For each literal rename pair ili = bli there is an implied equation

 ili == S!(bli);

There is an implied literal equation

 for all ilv in S literals(
 for all blv in BS literals(
 Spelling(ilv) /= Spelling(il1),.., Spelling(ilv) /= Spelling(iln),
 Spelling(ilv) == Spelling(blv) ==> ilv == S!(blv);))

where the ili are the literals mentioned in literal rename pairs ili = bli.
NOTE – From point of view of the user there is no difference in the semantics in the models since all properties for sorts

with context parameters are described locally. However, the following differences exist for base sorts with and without context
parameters:

 context parameter no context parameter

Operator/literal renaming allowed no yes

Operator definition inherited yes no

Match in atleast (see 6.2.9) no yes, but only if no operator/literal
renaming

Example

 newtype bit
 inherits Boolean
 literals 1 = True, 0 = False;
 operators ("not", "and", "or")
 adding
 operators
 Exor: bit,bit -> bit;
 axioms
 Exor(a,b) == (a and (not b)) or ((not a) and b));
 endnewtype bit;

5.3.1.12 Generators

A generator allows a parameterized text template to be defined which is expanded by transformation before the
semantics of data types are considered.

5.3.1.12.1 Generator definition

Concrete textual grammar

<generator definition> ::=
 generator <generator name> (<generator parameter list>)
 <generator text>
 endgenerator [<generator name>]

<generator text> ::=
 [<generator transformations>] <properties expression>

<generator parameter list> ::=
 <generator parameter> { , <generator parameter> }*

<generator parameter> ::=
 { type | literal | operator | constant }
 <generator formal name> {, <generator formal name> }*

<generator formal name> ::=
 <generator formal name>

Superseded by a more recent version

140 Recommendation Z.100 (03/93) Superseded by a more recent version

<generator sort> ::=

 <generator formal name>

 | <generator name>

A <generator name> or <generator formal name> must only be used in a <properties expression> if the <properties
expression> is in a <generator text>.

In a <generator definition> all <generator formal name>s of the same class (type, literal, operator or constant) must be
distinct. A name of the class literal must be distinct from every name of the class constant in the same <generator
definition>.

The <generator name> after the keyword generator must be distinct from all sort names in the <generator definition>
and also distinct from all type <generator parameter>s of that <generator definition>.

A <generator sort> is only valid if it appears as an <extended sort> in a <generator text> and the name is either the
<generator name> of that <generator definition> or a <generator formal name> defined by that definition.

If a <generator sort> is a <generator formal name> it must be a name defined to be of the type class.

The optional <generator name> after endgenerator must be the same as the <generator name> given after generator.

A <generator formal name> must not be used in a <qualifier>. A <generator name> or <generator formal name> must
not:

a) be qualified; or

b) be followed by an <exclamation>; or

c) be used in a <default initialization>.

Semantics

A generator names a piece of text which can be used in generator transformations.

The texts of generator transformations within a generator text are considered to be expanded at the point of definition of
the generator text.

Each generator parameter has a class (type, literal, operator or constant) specified by the keyword type, literal,
operator or constant respectively.

Model

The text defined by a generator definition is only related to the abstract syntax if the generator is transformed. There is
no corresponding abstract syntax for the generator definition at the point of definition.

Example

 generator bag(type item)

 literals empty;

 operators

 put : item, bag -> bag;

 count : item, bag -> Integer;

 take : item, bag -> bag;

 axioms

 take (i,put(i,b)) == b;

 take (i,empty) == error!;

 count(i,empty) == 0;

 count(i,put(j,b)) == count(i,b) + if i=j then 1 else 0 fi;

 put(i,put(j,b)) == put(j,put(i,b));

 endgenerator bag;

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 141

5.3.1.12.2 Generator transformation

Concrete textual grammar

<generator transformations> ::=

 { <generator transformation> [<end>] [adding] }+

<generator transformation> ::=

 <generator identifier> (<generator actual list>)

<generator actual list> ::=

 <generator actual> { , <generator actual> }*

<generator actual> ::=

 <extended sort>

 | <literal signature>

 | <operator name>

 | <ground term>

If the class of a <generator parameter> is type then the corresponding <generator actual> must be an <extended sort>.

If the class of a <generator parameter> is literal then the corresponding <generator actual> must be a <literal signature>.

A <literal signature> which is a <name class literal> may be used as a <generator actual> if and only if the
corresponding <generator formal name> does not occur in the <axioms>, or <literal mapping> of the <properties
expression> in the <generator text>.

If the class of a <generator parameter> is operator then the corresponding <generator actual> must be an <operator
name>.

If the class of a <generator parameter> is constant then the corresponding <generator actual> must be a <ground term>.

If the <generator actual> is a <generator formal name> then the class of the <generator formal name> must be the same
as the class for the <generator actual>.

Semantics

Use of a generator transformation in extended properties or in a generator text denotes transformation of the text
identified by the generator identifier. A transformed text for literals, operators and axioms is formed from the generator
text with

a) the generator actual parameters substituted for the generator parameters, and

b) the name of the generator substituted by

i) if the generator transformation is in a partial type definition or syntype definition, the identity of the
sort of the partial type definition or syntype definition, otherwise

ii) in the case of generator transformation within a generator, the name of that generator.

The transformed text for literals is the text transformed from the literals in the properties expression of the generator text
omitting the keyword literals.

The transformed text for operators is the text transformed from the operator list in the properties expression of the
generator text omitting the keyword operators.

The transformed text for axioms is the text transformed from the axioms in the properties expression of the generator
text omitting the keyword axioms.

Superseded by a more recent version

142 Recommendation Z.100 (03/93) Superseded by a more recent version

When there is more than one generator transformation in the list of generator transformations, the transformed texts for
literals (operators and axioms) are formed by concatenating the transformed text for the literals (operators, axioms
respectively) of all the generators in the order they appear in the list.

The transformed text for literals is a list of literals for the properties expression of the enclosing partial type definition,
syntype definition or generator definition occurring before any literal list explicitly mentioned in the properties
expression. That is if ordering has been specified, literals defined by generator transformations will be in the order they
are transformed and before any other literals.

The transformed text for operators and axioms is added to the operator list and axioms respectively of the enclosing
partial type definition, syntype definition or generator definition.

When transformed text is added to a properties expression, the keywords literals, operators and axioms are considered
to be added to create correct concrete syntax if necessary.

Model

The abstract syntax corresponding to a generator transformation is determined after transformation. The relationship is
determined from the transformed text in the context where the <generator transformation> appears.

Example

 newtype boolbag bag(Boolean)

 adding

 operators

 yesvote : boolbag -> Boolean;

 axioms

 yesvote(b) == count(True,b) > count(False,b);

 endnewtype boolbag;

5.3.1.13 Synonyms

A synonym gives a name to a ground expression which represents one of the values of a sort.

Concrete textual grammar

<synonym definition> ::=

 <internal synonym definition>

 | <external synonym definition>

<internal synonym definition> ::=

 synonym <synonym definition item>

 {, <synonym definition item> }*

<synonym definition item> ::=

 <synonym name> [<sort>] = <ground expression>

The <ground expression> in the concrete syntax denotes a ground term in the abstract syntax as defined in 5.3.3.2.

If a <sort> is specified, the result of the <ground expression> is bound to that sort. The <ground expression> denotes the
corresponding ground term in the abstract syntax.

If the sort of the <ground expression> cannot be uniquely determined, then a sort must be specified in the <synonym
definition>.

The sort identified by the <sort> must be one of the sorts to which the <ground expression> can be bound.

The <ground expression> must not refer to the synonym defined by the <synonym definition> either directly or
indirectly (via another synonym).

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 143

Semantics

The value which the synonym represents is determined by the context in which the synonym definition appears.

If the sort of the ground expression cannot be uniquely determined in the context of the synonym, then the sort is given
by the <sort>.

A synonym has a value which is the value of the ground term in the synonym definition.

A synonym has a sort which is the sort of the ground term in the synonym definition.

5.3.1.14 Name class literals

A name class literal is a shorthand for writing a (possibly infinite) set of literal names defined by a regular expression.

Concrete textual grammar

<name class literal> ::=

 nameclass <regular expression>

<regular expression> ::=

 <partial regular expression>

 { [or] <partial regular expression> }*

<partial regular expression> ::=

 <regular element> [<Natural literal name> | + | *]

<regular element> ::=

 (<regular expression>)

 | <character string literal>

 | <regular interval>

<regular interval> ::=

 <character string literal> : <character string literal>

The names formed by the <name class literal> must satisfy the normal static conditions for literals (see 5.2.2) and either
the lexical rules for names (see 2.2.1) or the concrete syntax for <character string literal>.

The <character string literal>s in a <regular interval> must both be of length one, and must both be literals defined by
the Character sort (see Annex D, D.2).

Semantics

A name class literal is an alternative way of specifying literal signatures.

Model

The equivalent set of names of a name class literal is defined as the set of names which satisfy the syntax specified by
the <regular expression>. The name class literal is equivalent to this set of names in the abstract syntax.

A <regular expression> which is a list of <partial regular expression>s without an or specifies that the names can be
formed from the characters defined by the first <partial regular expression> followed by the characters defined by the
second <partial regular expression>.

When an or is specified between two <partial regular expression>s, then the names are formed from either the first or the
second of these <partial regular expression>s. Note that or is more tightly binding than simple sequencing so that

Superseded by a more recent version

144 Recommendation Z.100 (03/93) Superseded by a more recent version

 nameclass ’A’ ’0’ or ’1’ ’2’;

is equivalent to

 nameclass ’A’ (’0’ or ’1’) ’2’;

and defines the literals A02, A12.

If a <regular element> is followed by <Natural literal name>, the <partial regular expression> is equivalent to the
<regular element> being repeated the number of times specified by the <Natural literal name>.

For example

 nameclass ’A’ (’A’ or ’B’) 2

defines names AAA, AAB, ABA and ABB.

If a <regular element> is followed by ’*’ the <partial regular expression> is equivalent to the <regular element> being
repeated zero or more times.

For example

 nameclass ’A’ (’A’ or ’B’)*

defines names A, AA, AB, AAA, AAB, ABA, ABB, AAAA, ... etc.

If a <regular element> is followed by ’+’ the <partial regular expression> is equivalent to the <regular element> being
repeated one or more times.

For example

 nameclass ’A’ (’A’ or ’B’) +

defines names AA, AB, AAA, AAB, ABA, ABB, AAAA, ... etc.

A <regular element> which is a bracketed <regular expression> defines the character sequences defined by the <regular
expression>.

A <regular element> which is a <character string literal> defines the character sequence given in the character string
literal (omitting the quotes).

A <regular element> which is a <regular interval> defines all the characters specified by the <regular interval> as
alternative character sequences. The characters defined by the <regular interval> are all the characters greater than or
equal to the first character and less than or equal to the second character according to the definition of the Character sort
(see Annex D, D.2). For example

 ’a’:’ f ’

defines the alternatives ’a’ or ’b’ or ’c’ or ’d’ or ’e’ or ’f’.

If the sequence of definition of the names is important (for instance if ordering is specified), then the names are
considered to be defined in the order so that they are alphabetically sorted according to the ordering of the character sort.
The characters are considered as in uppercase, and a true prefix of a word is considered less than the whole word.

5.3.1.15 Literal mapping

Literal mappings are shorthands used to define the mapping of literals to values.

Concrete textual grammar

<literal mapping> ::=

 map <literal equation> { <end> <literal equation> }* [<end>]

<literal equation> ::=

 <literal quantification>

 (<literal axioms> { <end> <literal axioms> }* [<end>])

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 145

<literal axioms> ::=

 <equation>

 | <literal equation>

<literal quantification> ::=

 for all <value name> { , <value name> }* in <extended sort> literals

<spelling term> ::=

 spelling (<value identifier>)

The rules <literal mapping> and <spelling term> are not part of the data kernel but occur in the rules <properties
expression> and <ground term> respectively.

Semantics

Literal mapping is a shorthand for defining a large (possibly infinite) number of axioms ranging over all the literals of a
sort. The literal mapping allows the literals for a sort to be mapped onto the values of the sort.

The spelling term mechanism is used in literal mappings to refer to the character string which contains the spelling of the
literal. This mechanism allows the Charstring operators to be used to define literal mappings.

Model

A <literal mapping> is a shorthand for a set of <axioms>. This set of <axioms> is derived from the <literal equation>s in
the <literal mapping>. The <equation>s which are used for this derivation are all <equation>s contained in <axioms> of
the rules <literal axioms>. In each of these <equation>s the <value identifier>s defined by the <value name> in the
<literal quantification> are replaced. In each derived <equation> each occurrence of the same <value identifier> is
replaced by the same <literal operator identifier> of the <sort> of the <literal quantification>. The derived set of
<axioms> contains all possible <equation>s which can be derived in this way.

The derived <axioms> for <literal equation>s are added to <axioms> (if any) defined after the keyword axioms and
before the keyword map in the same <partial type definition>.

For example

 newtype abc literals ’A’,b,’c’;

 operators
 "<" : abc,abc -> Boolean;

 "+" : abc,abc -> Boolean;

 map for all x,y in abc literals

 (x < y => y + x);

 endnewtype abc;

is derived concrete syntax for

 newtype abc literals ’A’,b,’c’;

 operators
 "<" : abc,abc -> Boolean;

 "+" : abc,abc -> Boolean;

 axioms
 ’A’ < ’A’ => ’A’ + ’A’;

 ’A’ < b => b + ’A’;

 ’A’ < ’c’ => ’c’ + ’A’;

 b < ’A’ => ’A’ + b ;

 b < b => b + b ;

 b < ’c’ => ’c’ + b ;

 ’c’ < ’A’ => ’A’ + ’c’;

 ’c’ < b => b + ’c’;

 ’c’ < ’c’ => ’c’ + ’c’;

 endnewtype abc;

Superseded by a more recent version

146 Recommendation Z.100 (03/93) Superseded by a more recent version

If a <literal quantification> contains one or more <spelling term>s, then there is replacement of the <spelling term>s
with Charstring literals (see Annex D, D.4).

If the <literal signature> of the <literal operator identifier> of a <spelling term> is a <literal operator name>, then the
<spelling term> is shorthand for an uppercase Charstring derived from the <literal operator identifier>. The Charstring
contains the uppercase spelling of the <literal operator name> of the <literal operator identifier>.

If the <literal signature> of the <literal operator identifier> of a <spelling term> is a <character string literal>, then the
<spelling term> is shorthand for a Charstring derived from the <character string literal>. The Charstring contains the
spelling of the <character string literal>.

The Charstring is used to replace the <value identifier> after the <literal equation> containing the <spelling term> is
expanded as shown above.

For example

 newtype abc literals ’A’,Bb,’c’;

 operators

 "<" : abc,abc -> Boolean;

 map for all x,y in abc literals

 spelling(x) < spelling(y) => x < y;

 endnewtype abc;

is derived concrete syntax for

 newtype abc literals ’A’,Bb,’c’;

 operators

 "<" : abc,abc -> Boolean;

 axioms

 /* note that ’A’, Bb, ’c’ are bound to the local sort abc */

 /* ’’’A’’’, ’BB’ and ’’’c’’’ should be qualified by the
 Charstring identifier if these literals are ambiguous - to be
 concise this is omitted below*/

 ’’’A’’’ < ’’’A’’’ => ’A’ < ’A’;

 ’’’A’’’ < ’BB’ => ’A’ < Bb;

 ’’’A’’’ < ’’’c’’’ => ’A’ < ’c’;

 ’BB’ < ’’’A’’’ => Bb < ’A’;

 ’BB’ < ’BB’ => Bb < Bb;

 ’BB’ < ’’’c’’’ => Bb < ’c’;

 ’’’c’’’ < ’’’A’’’ => ’c’ < ’A’;

 ’’’c’’’ < ’BB’ => ’c’ < Bb;

 ’’’c’’’ < ’’’c’’’ => ’c’ < ’c’;

 endnewtype abc;

A <spelling term> must be in a <literal mapping>.

The <value identifier> in a <spelling term> must be a <value identifier> defined by a <literal quantification>.

5.3.2 Operator definitions

Operator definitions allow operators to be defined in a manner resembling value returning procedures. However,
operators must not access or change the global state. They therefore only contain a single transition. The semantics of
operator definitions is expressed by transforming the transition into a start transition of a procedure.

Concrete textual grammar

<operator definitions> ::=

 { <operator definition> | <textual operator reference>}+

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 147

<operator definition> ::=

 operator

 { <operator identifier> | <operator name>} <end>

 <formal parameters> <end> <operator result> <end>

 { <data definition>

 | <variable definition>

 | <macro definition>

 | <select definition> }*

 <start> { <free action> }*

 endoperator

 [{<operator identifier> | <operator name> }] <end>

<operator result> ::=

 returns [<variable name>] <extended sort>

<textual operator reference> ::=

 operator <operator name>

 [<formal parameters> <operator result>]

 referenced <end>

An <operator definition> or <operator diagram> must not be used to define the implied equality operators "=" and "/=".

<start> of an <operator definition> must not contain <virtuality>.

For each <operator definition> or <operator diagram>, there must exist an <operator signature> in the same scope unit
having the same <operator name>, positionally having the same <argument sort>s as specified in the <formal
parameters> and having the same <result> as specified in <operator result>.

For each <operator signature> at most one corresponding <operator definition> or <operator diagram> can be given.

<formal parameters> and <operator result> in <textual operator reference> may be omitted if there is no other <textual
operator reference> within the same sort which has the same name. In this case, the <formal parameters> and the
<operator result> are derived from the <operator signature>.

<transition> or <transition area> may neither refer to any <imperative operator>s nor any <identifier>s defined outside
the enclosing <operator definition> or <operator diagram> respectively, except for <synonym identifier>s, <operator
identifier>s, <literal identifier>s and <sort>s.

An operator defined by an <operator definition> or <operator diagram> must not appear in an axiom, generator or
<ground expression>. An <operator definition> must not appear in a generator.

Concrete graphical grammar

<operator diagram> ::=

 <frame symbol> contains

 { <operator heading>

 { { <operator text area>

 | <macro diagram> }*

 <procedure start symbol> is followed by <transition area>

 {<in-connector area> } * } set }

<operator heading> ::=

 operator

 {<operator identifier> | <operator name> }

 <formal parameters>

 <operator result>

Superseded by a more recent version

148 Recommendation Z.100 (03/93) Superseded by a more recent version

<operator text area> ::=

 <text symbol> contains

 { <data definition>

 | <variable definition>

 | <select definition> }*

As there is no graphical grammar for sort definitions, an <operator diagram> can only be used through a <textual
operator reference>.

Semantics

An operator definition is a scope unit defining its own data and variables which can be manipulated inside the transition.

Variables introduced in <formal parameters> are also modifiable.

Model

An <operator definition> or <operator diagram> is transformed into a <procedure definition> or <procedure diagram>
respectively as defined in clause 7.

Application in an expression of an operator defined by an <operator definition> is transformed into a <value returning
procedure call> as defined in clause 7.

5.3.3 Use of data

The following subsections define how data types, sorts, literals, operators and synonyms are interpreted in expressions.

5.3.3.1 Expressions

Expressions are literals, operators, variables accesses, conditional expressions and imperative operators.

Abstract grammar

Expression = Ground-expression |

 Active-expression

An expression is an active expression if it contains an active primary (see 5.4).

An expression which does not contain an active primary is a ground expression.

Concrete textual grammar

For simplicity of description no distinction is made between the concrete syntax of ground expression and active
expression. The concrete syntax for <expression> is given in 5.3.3.2 below.

Semantics

An expression is interpreted as the value of the ground expression or active expression. If the value is error, then the
further behaviour of the system is undefined.

The expression has the sort of the ground expression or active expression.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 149

5.3.3.2 Ground expressions

Abstract grammar

Ground-expression :: Ground-term

The static conditions for the ground term also apply to the ground expression.

Concrete textual grammar

<ground expression> ::=
 <ground expression>

<expression> ::=
 <sub expression>
 | <value returning procedure call>

<sub expression> ::=
 <operand0>
 | <sub expression> => <operand0>

<operand0> ::=
 <operand1>
 | <operand0> { or | xor } <operand1>

<operand1> ::=
 <operand2>
 | <operand1> and <operand2>

<operand2> ::=
 <operand3>
 | <operand2> { = | /= | > | >= | < | <= | in } <operand3>

<operand3> ::=
 <operand4>
 | <operand3> { + | - | // } <operand4>

<operand4> ::=
 <operand5>
 | <operand4> { * | / | mod | rem } <operand5>

<operand5> ::=
 [- | not] <primary>

<primary> ::=
 <ground primary>
 | <active primary>
 | <extended primary>

<ground primary> ::=
 <literal identifier>
 | <operator identifier> (<ground expression list>)
 | (<ground expression>)
 | <conditional ground expression>

<extended primary> ::=
 <synonym>
 | <indexed primary>
 | <field primary>
 | <structure primary>

Superseded by a more recent version

150 Recommendation Z.100 (03/93) Superseded by a more recent version

<ground expression list> ::=

 <ground expression> { , <ground expression> }*

<operator identifier> ::=

 <operator identifier>

 | [<qualifier>] <quoted operator>

An <expression> which does not contain any <active primary> represents a ground expression in the abstract syntax.
A <ground expression> must not contain an <active primary>.

If an <expression> is a <ground primary> with an <operator identifier> and an <argument sort> of the <operator
signature> is a <syntype>, then the range check for that syntype defined in 5.3.1.9.1 is applied to the corresponding
argument value. The value of the range check must be True.

If an <expression> is a <ground primary> with an <operator identifier> and the <result> of the <operator signature> is a
<syntype>, then the range check for that syntype defined in 5.3.1.9.1 is applied to the result value. The value of the
range check must be True.

If an <expression> contains an <extended primary> (i.e. a <synonym>, <indexed primary>, <field primary> or
<structure primary>), this is replaced at the concrete syntax level as defined in 5.3.3.3, 5.3.3.4, 5.3.3.5 and 5.3.3.6
respectively, before relationship to the abstract syntax is considered.

The optional <qualifier> before a <quoted operator> has the same relationship with the abstract syntax as a <qualifier>
of an <operator identifier> (see 5.2.2).

Semantics

A ground expression is interpreted as the value denoted by the ground term syntactically equivalent to the ground
expression.

In general there is no need or reason to distinguish between the ground term and the value of the ground term. For
example, the ground term for the unity Integer value can be written "1". Usually there are several ground terms which
denote the same value, e.g. the Integer ground terms "0+1", "3–2" and "(7+5)/12", and it is usual to consider a simple
form of ground term (in this case "1") as denoting the value.

A ground expression has a sort which is the sort of the equivalent ground term.

A ground expression has a value which is the value of the equivalent ground term.

5.3.3.3 Synonym

Concrete textual grammar

<synonym> ::=

 <synonym identifier>

 | <external synonym>

The alternative <external synonym> is described in 4.3.1.

Semantics

A synonym is a shorthand for denoting an expression defined elsewhere.

Model

A <synonym> represents the <ground expression> defined by the <synonym definition> identified by the <synonym
identifier>. An <identifier> used in the <ground expression> represents an identifier in the abstract syntax according to
the context of the <synonym definition>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 151

5.3.3.4 Indexed primary

An indexed primary is a shorthand syntactic notation which can be used to denote “indexing” of an “array” value.
However, apart from the special syntactic form, an indexed primary has no special properties and denotes an operator
with the primary as a parameter.

Concrete textual grammar

<indexed primary> ::=

 <primary> (<expression list>)

Semantics

An indexed expression represents the application of an Extract! operator.

Model

A <primary> followed by a bracketed <expression list> is derived concrete syntax for the concrete syntax

 Extract!(<primary>, <expression list>)

and this is then considered as a legal expression even though Extract! is not allowed as an operator name in the concrete
syntax for expressions. The abstract syntax is determined from this concrete expression according to 5.3.3.2.

5.3.3.5 Field primary

A field primary is a shorthand syntactic notation which can be used to denote “field selection” of “structures”. However,
apart from the special syntactic form, a field primary has no special properties and denotes an operator with the primary
as a parameter.

Concrete textual grammar

<field primary> ::=

 <primary> <field selection>

<field selection> ::=

 ! <field name>

 | (<field name> { , <field name> }*)

The field name must be a field name defined for the sort of the primary.

Semantics

A field primary represents the application of one of the field extract operators of a structured sort.

Model

The form

 <primary> (<field name>)

is derived syntax for

 <primary> ! (<field name>)

Superseded by a more recent version

152 Recommendation Z.100 (03/93) Superseded by a more recent version

The form

 <primary> (<first field name> { , <field name> }*)

is derived syntax for

 <primary> ! <first field name> { ! <field name> }*

where the order of field names is preserved.

The form

 <primary> ! <field name>

is derived syntax for

 <field extract operator name> (<primary>)

where the field extract operator name is formed from the concatenation of the field name and "Extract!" in that order.
For example,

 s ! f1

is derived syntax for

 f1Extract!(s)

and this is then considered as a legal expression even though f1Extract! is not allowed as an operator name in the
concrete syntax for expressions. The abstract syntax is determined from this concrete expression according to 5.3.3.2.

In the case where there is an operator defined for a sort so that

 Extract!(s,name)

is a valid term when “name” is the same as a valid field name of the sort of s, then a primary

 s(name)

is derived concrete syntax for

 Extract!(s,name)

and the field selection must be written

 s ! name

5.3.3.6 Structure primary

Concrete textual grammar

<structure primary> ::=

 [<qualifier>] (. <expression list> .)

Semantics

A structure primary represents a value of a structured sort which is constructed from expressions for each field of the
structure.

The form

(. <expression list> .)

is derived concrete syntax for

 Make!(<expression list>)

where this is considered as a legal expression even though Make! is not allowed as an operator name in concrete syntax
for expressions. The abstract syntax is determined from this concrete expression according to 5.3.3.1.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 153

5.3.3.7 Conditional ground expression

Concrete textual grammar

<conditional ground expression> ::=

 if <Boolean ground expression>

 then <consequence ground expression>

 else <alternative ground expression>

 fi

<consequence ground expression> ::=

 <ground expression>

<alternative ground expression> ::=

 <ground expression>

The <conditional ground expression> represents a ground expression in the abstract syntax. If the <Boolean ground
expression> represents True then the ground expression is represented by the <consequence ground expression>
otherwise it is represented by the <alternative ground expression>.

The sort of the <consequence ground expression> must be the same as the sort of the <alternative ground expression>.

Semantics

A conditional ground expression is a ground primary which is interpreted as either the consequence ground expression
or the alternative ground expression.

If the <Boolean ground expression> has the value True then the <alternative ground expression> is not interpreted. If the
<Boolean ground expression> has the value False then the <consequence ground expression> is not interpreted. The
further behaviour of the system is undefined if the <ground expression> which is interpreted has the value of an error.

A conditional ground expression has a sort which is the sort of the consequence ground expression (and also the sort of
the alternative ground expression).

5.4 Use of data with variables

This section defines the use of data and variables declared in processes and procedures, and the imperative operators
which obtain values from the underlying system.

A variable has a sort and an associated value of that sort. The value associated with a variable may be changed by
assigning a new value to the variable. The value associated with the variable may be used in an expression by accessing
the variable.

Any expression containing a variable is considered to be “active” since the value obtained by interpreting the expression
may vary according to the value last assigned to the variable.

5.4.1 Variable and data definitions

Concrete textual grammar

<data definition> ::=

 { <partial type definition>

 | <syntype definition>

 | <generator definition>

 | <synonym definition> } <end>

Superseded by a more recent version

154 Recommendation Z.100 (03/93) Superseded by a more recent version

A data definition forms part of a data type definition if it is a <partial type definition> or <syntype definition>.

The syntax for introducing process variables and for procedure parameter variables is given in 2.5.1.1 and 2.3.4
respectively. A variable defined in a procedure must not be revealed.

Semantics

A data definition is used either for the definition of part of a data type or the definition of a synonym for an expression as
further defined in 5.2.1, 5.3.1.9 or 5.3.1.13.

5.4.2 Accessing variables

The following defines how an expression involving variables is interpreted.

5.4.2.1 Active expressions

Abstract grammar

Active-expression = Variable-access |

 Conditional-expression |

 Operator-application |

 Imperative-operator |

 Error-term

Concrete textual grammar

<active expression> ::=

 <active expression>

<active primary> ::=

 <variable access>

 | <operator application>

 | <conditional expression>

 | <imperative operator>

 | (<active expression>)

 | <active extended primary>

 | error

<active extended primary> ::=

 <active extended primary>

<expression list> ::=

 <expression> { , <expression> }*

An <expression> is an <active expression> if it contains an <active primary>.

An <extended primary> is an <active extended primary> if it contains an <active primary>. For an <extended primary>
replacement at the concrete syntax level takes place as defined in 5.3.3.3, 5.3.3.4, 5.3.3.5 and 5.3.3.6 before the
relationship to the abstract syntax is considered.

Semantics

An active expression is an expression whose value will depend on the current state of the system.

An active expression has a sort which is the sort of the equivalent ground term.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 155

An active expression has a value which is the ground term equivalent to the active expression at the time of
interpretation.

If an expression containing error is interpreted, the further behaviour of the system is undefined.

Within an active expression each operator is interpreted in the order determined by traversing the concrete syntax given
in 5.3.3.2 from left to right. Within an active expression list or expression list each element of the list is interpreted in the
order left to right.

Model

Each time the active expression is interpreted, the value of the active expression is determined by finding the ground
term equivalent to the active expression. This ground term is determined from a ground expression formed by replacing
each active primary in the active expression by the ground term equivalent to the value of that active primary. The value
of an active expression is the same as the value of the ground expression.

5.4.2.2 Variable access

Abstract grammar

Variable-access = Variable-identifier

Concrete textual grammar

<variable access> ::=

 <variable identifier>

Semantics

A variable access is interpreted as giving the value associated with the identified variable.

A variable access has a sort which is the sort of the variable identified by the variable access.

A variable access has a value which is the value last associated with the variable or error if the variable is “undefined”.
If the value is error the further behaviour of the system is undefined.

5.4.2.3 Conditional expression

A conditional expression is an expression which is interpreted as either the consequence or the alternative.

Abstract grammar

Conditional-expression :: Boolean-expression

 Consequence-expression

 Alternative-expression

Boolean-expression = Expression

Consequence-expression = Expression

Alternative-expression = Expression

The sort of the consequence expression must be the same as the sort of the alternative expression.

Superseded by a more recent version

156 Recommendation Z.100 (03/93) Superseded by a more recent version

Concrete textual grammar

<conditional expression> ::=

 if <Boolean active expression>

 then <consequence expression>

 else <alternative expression>

 fi

 | if <Boolean expression>

 then <active consequence expression>

 else <alternative expression>

 fi

 | if <Boolean expression>

 then <consequence expression>

 else <active alternative expression>

 fi

<consequence expression> ::=

 <expression>

<alternative expression> ::=

 <expression>

A <conditional expression> is distinguished from a <conditional ground expression> by the occurrence of an <active
expression> in the <conditional expression>.

Semantics

A conditional expression is interpreted as the interpretation of the condition followed by either the interpretation of the
consequence expression or the interpretation of the alternative expression. The consequence is interpreted only if the
condition has the value True, so that if the condition has the value False then the further behaviour of the system is
undefined only if the alternative expression is an error. Similarly, the alternative is interpreted only if the condition has
the value False, so that if the condition has the value True then the further behaviour of the system is undefined only if
the consequence expression is an error.

The conditional expression has a sort which is the same as the sort of the consequence and alternative. The conditional
expression has a value which is the value of the consequence if the condition is True or the value of the alternative if the
condition is False.

5.4.2.4 Operator application

An operator application is the application of an operator where one or more of the actual arguments is an active
expression.

Abstract grammar

Operator-application :: Operator-identifier

 Expression+

If an argument sort of the operator signature is a syntype and the corresponding expression in the list of expressions is a
ground expression, the range check defined in 5.3.1.9.1 applied to the value of the expression must be True.

Concrete textual grammar

<operator application> ::=

 <operator identifier> (<active expression list>)

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 157

<active expression list> ::=

 <active expression> [, <expression list>]

 | <ground expression> , <active expression list>

An <operator application> is distinguished from the syntactically similar <ground expression> by one of the
<expression>s in the bracketed list of <expression>s being an <active expression>. If all the bracketed <expression>s
are <ground expression>s then the construction represents a ground expression as defined in 5.3.3.2.

Semantics

An operator application is an active expression which has the value of the ground term equivalent to the operator
application. The equivalent ground term is determined as in 5.4.2.1.

The list of expressions for the operator application are interpreted in the order given before interpretation of the operator.

If an argument sort of the operator signature is a syntype and the corresponding expression in the active expression list is
an active expression then the range check defined in 5.3.1.9.1 is applied to the value of the expression. If the range check
is False at the time of interpretation then the system is in error and the further behaviour of the system is undefined.

If the result sort of the operator signature is a syntype then the range check defined in 5.3.1.9.1 is applied to the value of
the operator application. If the range check is False at the time of interpretation then the system is in error and the further
behaviour of the system is undefined.

5.4.3 Assignment statement

Abstract grammar

Assignment-statement :: Variable-identifier

 Expression

The sort of the variable identifier and the sort of the expression must be the same.

If the variable is declared with a syntype and the expression is a ground expression, then the range check defined
in 5.3.1.9.1 applied to the expression must be True.

Concrete textual grammar

<assignment statement> ::=

 <variable> := <expression>

<variable> ::=

 <variable identifier>

 | <indexed variable>

 | <field variable>

If the <variable> is a <variable identifier> then the <expression> in the concrete syntax represents the <expression> in
the abstract syntax. The other forms of <variable>, <indexed variable> and <field variable>, are derived syntax and the
<expression> in the abstract syntax is found in the equivalent concrete syntax defined in 5.4.3.1 and 5.4.3.2 below.

Semantics

An assignment statement is interpreted as creating an association from the variable identified in the assignment statement
to the value of the expression in the assignment statement. The previous association of the variable is lost.

Superseded by a more recent version

158 Recommendation Z.100 (03/93) Superseded by a more recent version

If the variable is declared with a syntype and the expression is an active expression, then the range check defined
in 5.3.1.9.1 is applied to the expression. If this range check is equivalent to False, then the assignment is in error and the
further behaviour of the system is undefined.

5.4.3.1 Indexed variable

An indexed variable is a shorthand syntactic notation which can be used to denote “indexing” of “arrays”. However,
apart from the special syntactic form an indexed active primary has no special properties and denotes an operator with
the active primary as a parameter.

Concrete textual grammar

<indexed variable> ::=

 <variable> (<expression list>)

There must be an appropriate definition of an operator named Modify!.

Semantics

An indexed variable represents the assignment of a value formed by the application of the Modify! operator to an access
of the variable and the expression given in the indexed variable.

Model

The concrete syntax form

 <variable> (<expression list>) := <expression>

is derived concrete syntax for

 <variable> := Modify!(<variable>, <expression list>, <expression>)

where the same <variable> is repeated and the text is considered as a legal assignment even though Modify! is not
allowed as an operator name in the concrete syntax for expressions. The abstract syntax is determined for this
<assignment statement> according to 5.4.3 above.

NOTE – A consequence of this model is that a value must be assigned to a complete array, before any element can be
modified.

5.4.3.2 Field variable

A field variable is a shorthand for assigning a value to a variable so that only the value in one field of that variable has
changed.

Concrete textual grammar

<field variable> ::=

 <variable> <field selection>

There must be an appropriate definition of an operator named Modify!. Normally this definition will be implied by a
structured sort definition.

Semantics

A field variable represents the assignment of a value formed by the application of a field modify operator.

Model

Bracketed field selection is derived syntax for ! <field name> field selection as defined in 5.3.3.5.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 159

The concrete syntax form

 <variable> ! <field name> := <expression>

is derived concrete syntax for

 <variable> := <field modify operator name> (<variable>, <expression>)

where

a) the same <variable> is repeated; and

b) the <field modify operator name> is formed from the concatenation of the field name and “Modify!”; and
then

c) the text is considered as a legal assignment even though the <field modify operator name> is not allowed
as an operator name in the concrete syntax for expressions.

If there is more than one <field name> in the field selection then they are modelled as above by expanding each ! <field
name> in turn from right to left and considering the remaining part of the <field variable> as a <variable>. For example,

 var ! fielda ! fieldb := expression;

is first modelled by

 var ! fielda := fieldbModify!(var ! fielda, expression);

and then by

 var := fieldaModify!(var, fieldbModify!(var ! fielda, expression));

The abstract syntax is determined for the <assignment statement> formed by the modelling according to 5.4.3 above.

NOTE – A consequence of this model is that a value must be assigned to a complete structure before any field can be
modified.

5.4.3.3 Default initialization

A default initialization allows initialization of all variables of a specified sort with the same value, when the variables are
created.

Concrete textual grammar

<default initialization> ::=

 default <ground expression> [<end>]

A <partial type definition> or <syntype definition> must contain not more than one <default initialization>.

Semantics

A default initialization is optionally added to a properties expression of a sort. A default initialization specifies that any
variable declared with the sort introduced by the partial type definition or syntype definition initially gets the value of the
ground expression associated.

Model

Default initialization is a shorthand for specifying an explicit initialization for the variables of the <sort>, which are
declared without a <ground expression>.

If no <default initialization> is given in <syntype definition>, then the syntype has the <default initialization> of the
<parent sort identifier> provided its value is in the range.

A variable declared inside a parameterized type whose sort is a formal context parameter, does not get the default
initialization of its sort.

Superseded by a more recent version

160 Recommendation Z.100 (03/93) Superseded by a more recent version

5.4.4 Imperative operators

Imperative operators obtain values from the underlying system state.

The transformations described in the Models of this section are made at the same time as the expansion for import is
made. A label attached to an action in which an imperative operator appears is moved to the first task inserted during the
described transformation. If several imperative operators appear in an expression, the tasks are inserted in the same order
as the imperative operators appear in the expression.

Abstract grammar

Imperative-operator = Now-expression |

 Pid-expression |

 View-expression |

 Timer-active-expression |

 Anyvalue-expression

Concrete textual grammar

<imperative operator> ::=

 <now expression>

 | <import expression>

 | <PId expression>

 | <view expression>

 | <timer active expression>

 | <anyvalue expression>

Imperative operators are expressions for accessing the system clock, the value of imported variables, the PId values
associated with a process, the value of viewed variables, the status of timers or for supplying unspecified values.

5.4.4.1 Now expression

Abstract grammar

Now-expression :: ()

Concrete textual grammar

<now expression> ::=

 now

Semantics

The now expression is an expression which accesses the system clock variable to determine the absolute system time.

The now expression represents an expression requesting the current value of the system clock giving the time. The origin
and unit of time are system dependent. Whether two occurrences of now in the same transition will give the same value
is system dependent. However, it always holds that:

now <= now;

A now expression has the Time sort.

Model

The use of <now expression> in an expression is a shorthand for inserting a task just before the action, where the
expression occurs which assigns an implicit variable the value of <now expression> and then uses that implicit variable

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 161

in the expression. If <now expression> occurs several times in an expression, one variable is used for each occurrence.

5.4.4.2 Import expression

Concrete textual grammar

The concrete syntax for an import expression is defined in 4.13.

Semantics

In addition to the semantics defined in 4.13, an import expression is interpreted as a variable access (see 5.4.2.2) to the
implicit variable for the import expression.

Model

The import expression has implied syntax for the importing of the value as defined in 4.13 and also has an implied
variable access of the implied variable for the import in the context where the <import expression> appears.

The use of <import expression> in an expression is a shorthand for inserting a task just before the action, where the
expression occurs which assigns an implicit variable the value of <import expression> and then uses that implicit
variable in the expression. If <import expression> occurs several times in an expression, one variable is used for each
occurrence.

5.4.4.3 PId expression

Abstract grammar

Pid-expression = Self-expression |

 Parent-expression |

 Offspring-expression |

 Sender-expression

Self-expression :: ()

Parent-expression :: ()

Offspring-expression :: ()

Sender-expression :: ()

Concrete textual grammar

<PId expression> ::=

 self

 | parent

 | offspring

 | sender

Semantics

A PId expression accesses one of the implicit process variables defined in 2.4.4. The process variable expression is
interpreted as the last value associated with the corresponding implicit variable.

A PId expression has a sort which is PId.

A PId expression has a value which is the last value associated with the corresponding variable as defined by 2.4.4.

Superseded by a more recent version

162 Recommendation Z.100 (03/93) Superseded by a more recent version

5.4.4.4 View expression

A view expression allows a process to obtain the value of a variable of another process in the same block as if the
variable were defined locally. The viewing process cannot modify the value associated with the variable.

Abstract grammar

View-expression :: View-identifier

 [Expression]

The expression must be a PId expression.

Concrete textual grammar

<view expression> ::=

 view (<view identifier> [, <PId expression>])

Semantics

A view expression is interpreted in the same way as a variable access (see 5.4.2.2).

A view expression has a value which are the value of the variable access and a sort which is the sort of the View-
definition.

If an Expression is given, the variable accessed is the variable in the process instance within the same block identified by
Expression. If Expression denotes an non-existing instance or if the process denoted by Expression does not contain a
variable of the same name and sort, no variable access can be made.

If no Expression is given, the variable accessed is the variable in an arbitrary process instance within the block, which
contains a revealed variable with same name and sort. If no such instance exists, no variable access can be made.

If no variable access can be made based on <view expression> the further behaviour of the system is undefined.

Model

The use of <view expression> in an expression is a shorthand for inserting a task just before the action, where the
expression occurs which assigns an implicit variable the value of <view expression> and then uses that implicit variable
in the expression. If <view expression> occurs several times in an expression, one variable is used for each occurrence.

5.4.4.5 Timer active expression

Abstract grammar

Timer-active-expression :: Timer-identifier

 Expression*

The sorts of the Expression* in the Timer-active-expression must correspond by position to the Sort-reference-
identifier* directly following the Timer-name (2.8) identified by the Timer-identifier.

Concrete textual grammar

<timer active expression> ::=

 active (<timer identifier> [(<expression list>)])

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 163

Semantics

A timer active expression is an expression of the predefined Boolean sort which has the value True if the timer identified
by timer identifier, and set with the same values as denoted by the expression list (if any), is active (see 2.8). Otherwise
the timer active expression has the value False. The expressions are interpreted in the order given.

If a sort specified in a timer definition is a syntype, then the range check defined in 5.3.19.1 applied to the corresponding
expression in <expression list> must be True, otherwise the system is in error and the further behaviour of the system is
undefined.

Model

The use of <timer active expression> in an expression is a shorthand for inserting a task just before the action, where the
expression occurs which assigns an implicit variable the value of <timer active expression> and then uses that implicit
variable in the expression. If <timer active expression> occurs several times in an expression, one variable is used for
each occurrence.

5.4.4.6 Anyvalue expression

Abstract grammar

Anyvalue-expression :: Sort-reference-identifier

Concrete textual grammar

<anyvalue expression> ::=

 any(<sort>)

Semantics

An Anyvalue-expression is an unspecified value of the sort or syntype designated by Sort-reference-identifier. If no
value exists, the further behaviour of the system is undefined. If Sort-reference-identifier denotes a Syntype-identifier,
the resulting value will be within the range of that syntype. Anyvalue-expression is useful for modelling behaviour,
where stating a specific value would imply over-specification. From a value returned by an Anyvalue-expression no
assumption can be derived on other values returned by Anyvalue-expression.

Model

The use of <anyvalue expression> in an expression is a shorthand for inserting a task just before the action, where the
expression occurs which assigns an implicit variable the value of <anyvalue expression> and then uses that implicit
variable in the expression. If <anyvalue expression> occurs several times in an expression, one variable is used for each
occurrence.

5.4.5 Value returning procedure call

Concrete textual grammar

<value returning procedure call> ::=

 <procedure call>

 | <remote procedure call>

A <value returning procedure call> must not occur in the <Boolean expression> of a <continuous signal area>,
<continuous signal>, <enabling condition area> or <enabling condition>.

Superseded by a more recent version

164 Recommendation Z.100 (03/93) Superseded by a more recent version

The <procedure identifier> in a <value returning procedure call> must identify a procedure (or remote procedure) having
at least one parameter in its <procedure formal parameters> and the ending formal parameter must have the in/out
attribute. This rule applies after the transformation of <procedure result>.

NOTE – Normally the <procedure identifier> identifies a procedure with a <procedure result>.

Model

The use of <value returning procedure call> in an expression is a shorthand for inserting a procedure call action, just
before the action where the expression occurs, containing the <value returning procedure call> where an extra
<expression> has been appended to the <actual parameters> and then using that <expression> instead of the <value
returning procedure call> in the action to follow.

The constructed <expression> consists of the identifier of a distinct new implicit variable, whose <sort> is the <sort> of
the ending formal parameter for the procedure.

The transformation takes place when other imperative operators are removed from expressions (see 5.4.4).

NOTE – Transforming the value returning procedure call after <procedure result> implies that a procedure with
<procedure result> can be used in <procedure call> and that a procedure without <procedure result> can be used in <value returning
procedure call> if it fulfils the conditions stated in this section.

5.4.6 External data

Concrete textual grammar

<external properties> ::=

 alternative

 <external formalism name> [, <word>] <end>

 <external data description>

 [endalternative] [<end>]

<external formalism name> ::=

 <text>

<external data description> ::=

 <text>

<external formalism name> must not contain the character ";" or ",". If <word> is present, it denotes the sequence which
terminates the <external data description>. If <external data description> does not contain the keyword endalternative,
<word> may be omitted. Otherwise, <word> terminates the alternative data definition and endalternative may be
omitted. The terminating <word> is not formally part of the SDL description.

Semantics

alternative indicates that <external data description> is not formally part of the SDL description. The use of <external
formalism name> allows to relate the <external data description> with some external formalism. The relations to external
formalisms are not part of this Recommendation.

The literals and operators used outside <partial type definition> are only those which are explicitly defined in
<operators>.

If a separate Recommendation defines the mapping from a formalism denoted by <external formalism name> to values
based on the package Predefined (see Annex D), the mapping may imply implicit literals and operators. In this case,
these are considered in addition to the ones stated in <operators> of the <partial type definition>.

The semantics of a <partial type definition> with <external properties> are conceptually assumed to be given in a set of
axioms unavailable to the SDL description.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 165

Example

newtype application_data

 literals empty;

 operators

 anyuseExtract! : application_data -> Boolean;

 idExtract! : application_data -> Integer;

 anyuseModify! : Boolean, application_data -> application_data;

 idModify! : Integer, application_data -> application_data;

 Make! : Boolean, Integer -> application_data;

 alternative ASN.1;

 SET { anyuse BOOLEAN

 id INTEGER }

 endalternative;

endnewtype application_data;

Superseded by a more recent version

166 Recommendation Z.100 (03/93) Superseded by a more recent version

6 Structural Typing Concepts in SDL

This section introduces a number of language mechanisms characterized by modeling application specific phenomena by
instances and application specific concepts by types. This implies that the inheritance mechanism is intended to represent
concept generalization/specialization.

The language mechanisms introduced provide

a) (pure) type definitions that may be defined anywhere in a system or in a package;

b) typebased instance definitions that define instances or instance sets according to types;

c) parameterized type definitions that are independent of enclosing scope by means of context parameters
and may be bound to specific scopes;

d) specialization of supertype definitions into subtype definitions, by adding properties and by redefining
virtual types and transitions.

The concepts introduced in this section are additional concepts. The properties of a shorthand notation are derived from
the way it is modelled in terms of (or transformed to) the primitive concepts. In order to ensure easy and unambiguous
use of the shorthand notations, and to reduce side effects when several shorthand notations are combined, these concepts
are transformed in a specified order as defined in clause 7.

6.1 Types, instances, and gates

There is a distinction between definition of instances (or set of instances) and definition of types in SDL descriptions.
This section introduces (in 6.1.1) type definitions for systems, blocks, processes, and services, and (in 6.1.3)
corresponding instance specifications, while clauses 2 and 5 introduce signals, procedures, timers and sorts as types. A
type definition is not connected (by channels or signal routes) to any instances; instead, type definitions introduce
gates (6.1.4). These are connection points on the typebased instances for channels and signal routes.

6.1.1 Type definitions

6.1.1.1 System type

Concrete textual grammar

<system type definition> ::=

 system type {<system type name> | <system type identifier>}

 [<formal context parameters>]

 [<specialization>] <end>

 {<entity in system>}*

 endsystem type [<system type name> | <system type identifier>] <end>

<textual system type reference> ::=

 system type <system type name> referenced <end>

A <formal context parameter> of <formal context parameters> must not be a <process context parameter>, <variable
context parameter> or <timer context parameter>.

Concrete graphical grammar

<system type diagram> ::=

 is associated with

 <frame symbol> contains

 {<system type heading>

 { {<system text area>}*

 {<macro diagram>}*

 <block interaction area>

 {<type in system area>}*} set }

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 167

<system type heading> ::=

 system type {<system type name> | <system type identifier>}

 [<formal context parameters>]

 [<specialization>]

<type in system area> ::=

 <block type diagram>

 | <block type reference>

 | <process type diagram>

 | <process type reference>

 | <service type diagram>

 | <service type reference>

 | <procedure diagram>

 | <graphical procedure reference>

<system type reference> ::=

 <system type symbol> contains { system <system type name> }

<system type symbol> ::=

 <block type symbol>

Semantics

A <system type definition> defines a system type. All systems of a system type have the same properties as defined for
that system type.

6.1.1.2 Block type

Concrete textual grammar

<block type definition> ::=

 [<virtuality>]

 block type {<block type name> | <block type identifier>}

 [<formal context parameters>]

 [<virtuality constraint>]

 [<specialization>] <end>

 {<gate definition>}*

 {<entity in block>}*

 [<block substructure definition>

 | <textual block substructure reference>]

 endblock type [<block type name> | <block type identifier>] <end>

<textual block type reference> ::=

 [<virtuality>] block type <block type name>

 referenced <end>

A <formal context parameter> of <formal context parameters> must not be a <process context parameter>, <variable
context parameter> or <timer context parameter>.

Superseded by a more recent version

168 Recommendation Z.100 (03/93) Superseded by a more recent version

Concrete graphical grammar

<block type diagram> ::=
 <frame symbol>
 contains {<block type heading>
 { {<block text area>}* {<macro diagram>}*
 {<type in block area>}*
 [<process interaction area>]
 [<block substructure area>]} set}
 is associated with
 {{{ <gate> }* { <graphical gate constraint> }* } set }

<block type heading> ::=
 [<virtuality>]
 block type {<block type name> | <block type identifier>}
 [<formal context parameters>] [<virtuality constraint>]
 [<specialization>]

<type in block area> ::=
 <block type diagram>
 | <block type reference>
 | <process type diagram>
 | <process type reference>
 | <service type diagram>
 | <service type reference>
 | <procedure diagram>
 | <graphical procedure reference>

<block type reference> ::=
 <block type symbol> contains
 {[<virtuality>] <block name> }

<block type symbol> ::=

Semantics

A <block type definition> defines a block type. All blocks of a block type have the same properties as defined for that
block type.

6.1.1.3 Process type

Concrete textual grammar

<process type definition> ::=
 [<virtuality>]
 process type { <process type name> | <process type identifier> }
 [<formal context parameters>]
 [<virtuality constraint>]
 [<specialization>] <end>
 [<formal parameters> <end>] [<valid input signal set>]
 {<gate definition>}*
 {<entity in process>}*
 [<process type body>]
 endprocess type [<process type name> | <process type identifier>] <end>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 169

<process type body> ::=
 <procedure body>

<textual process type reference> ::=
 [<virtuality>] process type <process type name>
 referenced <end>

A <formal context parameter> of <formal context parameters> must not be a <variable context parameter> or <timer
context parameter>.

Concrete graphical grammar

<process type diagram> ::=
 <frame symbol>
 contains {<process type heading>
 { {<process text area>}*
 {<type in process area>}*
 {<macro diagram> }*
 {<process type graph area> | <service interaction area> }}set }
 is associated with
 {{ {<gate>}* {<graphical gate constraint>}*} set }

<process type heading> ::=
 [<virtuality>]
 process type {<process type name> | <process type identifier>}
 [<formal context parameters>]
 [<virtuality constraint>]
 [<specialization>] [<end>]
 [<formal parameters>]

<process type graph area> ::=
 [<start area>] { <state area> | <in-connector area> }*

<type in process area> ::=
 <service type diagram>
 | <service type reference>
 | <procedure diagram>
 | <graphical procedure reference>

<process type reference> ::=
 <process type symbol> contains
 {[<virtuality>] <process type name> }

<process type symbol> ::=

Semantics

A <process type definition> defines a process type. All process instance sets of a process type have the same properties
as defined for that process type.

The complete valid input signal set of a process type is the union of the complete valid input signal set of its supertype,
the <signal list>s in all gates in the direction towards the process type, the <valid input signal set>, the implicit input
signals introduced by the additional concepts in 4.10 to 4.14 and the timer signals.

Superseded by a more recent version

170 Recommendation Z.100 (03/93) Superseded by a more recent version

Signals mentioned in <output>s of a process type must be in the complete valid input signal set of the process type or in
the <signal list> of a gate in the direction from the process type.

6.1.1.4 Service type

Concrete textual grammar

<service type definition> ::=
 [<virtuality>]
 service type{<service type name> | <service type identifier>}
 [<formal context parameters>]
 [<virtuality constraint>]
 [<specialization>] <end>
 [<valid input signal set>]
 {<gate definition>}*
 {<entity in service>}*
 [<service type body>]
 endservice type [{<service type name> | <service type identifier>}] <end>

<service type body> ::=
 <process type body>

<textual service type reference> ::=
 [<virtuality>] service type <service type name>
 referenced <end>

A <formal context parameter> of <formal context parameters> must not be a <timer context parameter>.

A <variable definition> in a <service type definition> must not contain the keyword revealed.

Concrete graphical grammar

<service type diagram> ::=
 <frame symbol> contains
 {<service type heading>
 { {<service text area> }*
 {<graphical procedure reference>}*
 {<procedure diagram>}*
 {<macro diagram>}*
 <service graph area> } set }
 is associated with
 { { {<gate>}* {<graphical gate constraint>}*} set }

<service type heading> ::=
 [<virtuality>]
 service type {<service type name> | <service type identifier>}
 [<formal context parameters>]
 [<virtuality constraint>]
 [<specialization>]

<service type reference> ::=
 <service type symbol> contains
 {[<virtuality>] <service type name>}

<service type symbol> ::=

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 171

Semantics

A <service type definition> defines a service type. All services of a service type have the same properties as defined for
that service type.

The complete valid input signal set of a service type is the union of the complete valid input signal set of its supertype,
the <signal list>s in all gates in the direction towards the service type, the <valid input signal set>, the implicit signals
introduced by the additional concepts in 4.10 to 4.14 and the timer signals.

Signals mentioned in <output>s of a service type must be in the complete valid input signal set of the service type or in
the <signal list> of a gate in the direction from the service type.

6.1.2 Type expression

A type expression is used for defining one type in terms of another as defined by specialization in 6.3.

Concrete textual grammar

<type expression> ::=

 <base type> [<actual context parameters>]

<base type> ::=

 <identifier>

<actual context parameters> can be specified if and only if <base type> denotes a parameterized type. Context
parameters are defined in 6.2.

Outside a parameterized type, the parameterized type can only be used by referring to its <identifier> in <type
expression>.

Semantics

A <type expression> yields either the type identified by the identifier of <base type> in case of no actual context
parameters or an anonymous type defined by applying the actual context parameters to the formal context parameters of
the parameterized type denoted by the identifier of <base type>.

If some actual context parameters are omitted, the type is still parameterized.

A <type expression> does not represent specialization if the <base type> is a parameterized type (see 6.3).

NOTE – Even though the definition denoted by the <base type> fulfils any static conditions, usage of the <type
expression> may violate the properties associated with the <base type>. The properties may be violated in the following cases:

1) When a scope unit has signal context parameters or timer context parameters, the condition that stimuli for a state
must be disjoint, depends on which actual context parameters that will be used.

2) When an output in a scope unit refers to a gate, a signal route or a channel, which is not defined in the nearest
enclosing type having gates, instantiation of that type result in an erroneous specification if there is no
communication path to the gate.

3) When a procedure contains references to signal identifiers, remote variables and remote procedures, specialization of
that procedure inside a process or service result in an erroneous specification if the usage of such identifiers inside the
procedure violates valid usage for the process or service.

4) When a create action, output action or view definition inside a process or service type defined in a block refers to a
process instance set, specialization and/or instantiation of the process type in a substructure of the block results in an
erroneous specification.

5) When services types are instantiated, the resulting process is erroneous if two or more services have the same signal
in the complete valid input signal set.

Superseded by a more recent version

172 Recommendation Z.100 (03/93) Superseded by a more recent version

6) When a scope unit has a process context parameter which is used in an output action, the existence of a possible
communication path depends on which actual context parameter will be used.

7) When a scope unit has a sort context parameter and an operator in the sort signature is used in axioms, application of
an actual sort context parameter for which the operator is defined using an operator definition results in an erroneous
specification.

8) If a formal parameter of a procedure added in a specialization has the <parameter kind> in/out, a call in the supertype
to a subtype (using this) will result in an omitted actual in/out parameter, i.e. an erroneous specification.

9) If a formal procedure context parameter is defined with an atleast constraint and the actual context parameter has
added a parameter of <parameter kind> in/out, a call of the formal procedure context parameter in the parameterized
type may result in an omitted actual in/out parameter, i.e. an erroneous specification.

Model

If the scope unit contains <specialization> and any <actual context parameter>s are omitted in the <type expression>, the
<formal context parameter>s are copied (while preserving their order) and inserted in front of the <formal context
parameter>s (if any) of the scope unit. In place of omitted <actual context parameter>s, the names of corresponding
<formal context parameter>s are inserted. These <actual context parameter>s now have the defining context in the
current scope unit.

6.1.3 Definitions based on types

A typebased system, block, process or service definition defines a system, block, process instance set or service,
respectively, according to a type denoted by <type expression>. The defined entities get the properties of the types, they
are based on.

6.1.3.1 System definition based on system type

Concrete textual grammar

<textual typebased system definition> ::=

 <typebased system heading> <end>

<typebased system heading> ::=

 system <system name> : <system type expression>

Concrete graphical grammar

<graphical typebased system definition> ::=

 <frame symbol> contains <typebased system heading>

Semantics

A typebased system definition defines a System-definition derived by transformation from a system type.

Model

A <textual typebased system definition> or a <graphical typebased system definition> is transformed to a <system
definition> which has the definitions of the system type as defined by <system type expression>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 173

6.1.3.2 Block definition based on block type

Concrete textual grammar

<textual typebased block definition> ::=

 block <typebased block heading> <end>

<typebased block heading> ::=

 <block name> [<number of block instances>] : <block type expression>

<number of block instances> ::=

 (<Natural simple expression>)

If <number of block instances> is omitted, the number of blocks is 1. The <number of block instances> must be equal to
or greater than 1.

Concrete graphical grammar

<graphical typebased block definition> ::=

 <block symbol> contains

 { <typebased block heading>

 { <gate>* }set }

<existing typebased block definition> ::=

 <dashed block symbol> contains { <block identifier> { <gate>* }set }

<dashed block symbol> ::=

The <gate>s are placed near the border of the symbols and associated with the connection point to channels.

Semantics

A typebased block definition defines Block-definitions derived by transformation from a block type.

Model

A <textual typebased block definition> or a <graphical typebased block definition> is transformed to a <block
definition> which has the definitions of the block type as defined by <block type expression>. The number of derived
<block definition>s is specified by <number of block instances>.

An <existing typebased block definition> can only appear in a subtype definition. It represents the block defined in the
supertype of the subtype definition. Additional channels connected to gates of the existing block may be specified.

6.1.3.3 Process definition based on process type

Concrete textual grammar

<textual typebased process definition> ::=

 process <typebased process heading> <end>

<typebased process heading> ::=

 <process name> [<number of process instances>] : <process type expression>

Superseded by a more recent version

174 Recommendation Z.100 (03/93) Superseded by a more recent version

The process type denoted by <base type> in <process type expression> must contain a start transition.

Concrete graphical grammar

<graphical typebased process definition> ::=

 <process symbol> contains

 { <typebased process heading>

 { <gate>* }set }

<existing typebased process definition> ::=

 <dashed process symbol> contains { <process identifier> { <gate>* }set }

<dashed process symbol> ::=

The <gate>s are placed near the border of the symbols and associated with the connection point to signal routes.

Semantics

A typebased process definition defines a Process-definition derived by transformation from a process type.

Creation of individual process instances are described in 2.4.4 (system initialization) and 2.7.2 (dynamic create request).

Model

A <textual typebased process definition> or a <graphical typebased process definition> is transformed to a <process
definition> which has the definitions of the process type as defined by <process type expression>.

An <existing typebased process definition> can only appear in a subtype definition. It represents the process defined in
the supertype of the subtype definition. Additional signal routes connected to gates of the existing process may be
specified.

6.1.3.4 Service definition based on service type

Concrete textual grammar

<textual typebased service definition> ::=

 service <typebased service heading> <end>

<typebased service heading> ::=

 <service name> : <service type expression>

The service type denoted by <base type> in <service type expression> must contain a start transition.

Concrete graphical grammar

<graphical typebased service definition> ::=

 <service symbol> contains

 { <typebased service heading>

 { <gate>* }set }

<existing typebased service definition> ::=

 <dashed service symbol> contains { <service identifier> { <gate>* }set }

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 175

<dashed service symbol> ::=

The <gate>s are placed near the border of the symbols and associated with the connection point to signal routes.

Semantics

A typebased service definition defines a Service-definition derived by transformation from a service type.

Model

A <textual typebased service definition> or a <graphical typebased service definition> is transformed to a <service
definition> which has the definitions of the service type as defined by <service type expression>.

An <existing typebased service definition> can only appear in subtype definitions. It represents a service specified in the
supertype of the subtype definition. Additional signal routes connected to gates of the existing service may be specified.

6.1.4 Gate

Gates are defined in block, process or service types (as defined in 6.1.1) and represent connection points for channels
and signal routes, connecting instances of these types (as defined in 6.1.3) with other instances of the same entity kind or
with the enclosing frame symbol.

Concrete textual grammar

<gate definition> ::=

 gate <gate>

 [adding] <gate constraint> <end>

 [<gate constraint> <end>]

<gate> ::=

 <gate name>

<gate constraint> ::=

 { out [to <textual endpoint constraint>]

 | in [from<textual endpoint constraint>] }

 [with <signal list>]

<textual endpoint constraint> ::=
 [atleast]<identifier>

out or in denotes the direction of <signal list>, from or to the type respectively. Types from which instances are defined
must have a <signal list> in the <gate constraint>s.

The <identifier> of <textual endpoint constraint> must denote a type definition of the same entity kind as the type
definition in which the gate is defined.

A channel/signal route connected to a gate must be compatible with the gate constraint. A channel/signal route is
compatible with a gate constraint if the other endpoint of the channel/signal route is a block/process/service of the type
denoted by <identifier> in the endpoint constraint or a subtype of this type (in case atleast<identifier>), and if the set of
signals on the channel/signal route is equal to or is a subset of the set of signals specified for the gate in the respective
direction.

Superseded by a more recent version

176 Recommendation Z.100 (03/93) Superseded by a more recent version

<base type> in <textual typebased block definition> or <textual typebased process definition> must for each
combination of (gate, signal, direction) defined by the type contain at least one signal route mentioning env, the gate and
the signal for the given direction, if the base type contains signal routes.

A <block substructure definition> in <base type> in <textual typebased block definition> must for each combination of
(gate, signal, direction) defined by the block type contain at least one channel mentioning env, the gate and the signal for
the given direction.

Where two <gate constraint>s are specified one must be in the reverse direction to the other, and the <textual endpoint
constraint>s of the two <gate constraint>s must be the same.

adding may only be specified in a subtype definition and only for a gate defined in the supertype. When adding is
specified for a <gate>, any <textual endpoint constraint>s and <signal list>s are additions to the <gate constraint>s of the
gate in the supertype.

If <textual endpoint constraint> is specified for the gate in the supertype, the <identifier> of an (added) <textual
endpoint constraint> must denote the same type or a subtype of the type denoted in the <textual endpoint constraint> of
the supertype.

Concrete graphical grammar

<graphical gate constraint> ::=
 { <gate symbol> | <existing gate symbol> }
 is associated with
 {<gate> [<signal list area>[<signal list area>]] }
 is connected to

 { <frame symbol> [<endpoint constraint>] }

<endpoint constraint> ::=
 { <block symbol> | <process symbol> | <service symbol> }
 contains <textual endpoint constraint>

<gate symbol> ::=
 <signal route symbol>

<existing gate symbol> ::=
 <gate symbol 1> | <gate symbol 2>

<gate symbol 1> ::=

<gate symbol 2> ::=

The <graphical gate constraint> is outside the diagram frame.

The <signal list area> elements are associated with the directions of the signal route symbol.

The symbol in <endpoint constraint> must be the symbol for instance definition corresponding to the type definition in
which the gate is defined, i.e. <block symbol>, <process symbol> or <service symbol>.

<signal list area>s and <endpoint constraint> associated with an <existing gate symbol> are regarded as additions to
those of the gate definition in the supertype.

An <existing gate symbol> can only appear in a subtype definition, and it is then a representative for the gate with the
same <gate name> specified in the supertype of the subtype definition.

For each arrowhead on the <gate symbol>, there can be a <signal list area>. A <signal list area> must be unambiguously
close enough to the arrowhead to which it is associated. The arrowhead indicates whether the <signal list area> denotes
an in or an out <gate constraint>.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 177

Semantics

The use of gates in type definitions corresponds to the use of communication paths in the enclosing scope in (set of)
instance specifications.

Model

For each instance of a type defining a <gate>, a <signal route to route connection>, a <channel to route connection> or a
<channel connection> is derived:

a) For each instantiation of a process type, a <signal route to route connection> is derived in the resulting
<process definition> where:

– The <external signal route identifiers> are those signal routes defined in the enclosing block which
mention the process and the gate in a <signal route path>.

 – The <signal route identifiers> are those signal routes defined inside the <process definition> which
mention the keyword env and the gate in the <signal route path>.

b) For each instantiation of a block type, a <channel to route connection> in the resulting <block definition>
is derived where:

– The <channel identifiers> are those channels defined in the scope unit enclosing the block which
mention the block and the gate in a <channel path>.

– The <signal route identifiers> are those signal routes defined inside the <block definition> which
mention the keyword env and the gate in the <channel path>.

c) For each instantiation of a block type containing a <block substructure definition>, a <channel
connection> in the resulting scope of the block is derived where:

– The <channel identifiers> are those channels defined in the scope unit enclosing the surrounding
block which mention the block and the gate in a <channel path>.

– The <subchannel identifiers> are those channels defined inside the <block substructure definition>
which mention the keyword env and the gate in a <channel path>. Any rules for using signal
refinement on type-based block instances is defined through the rules for the resulting <channel
connection> (see 3.3).

6.2 Context parameter

In order for a type definition to be used in different contexts, both within the same system specification and within
different system specifications, types may be parameterized by context parameters. Context parameters are replaced by
actual identifiers, actual context parameters, as defined in 6.1.2.

The following type definitions can have formal context parameters: system type, block type, process type, service type,
procedure, signal and sort.

Context parameters can be given constraints, i.e. required properties any entity denoted by the corresponding actual
identifier must have. The context parameters have these properties inside the type.

Concrete textual grammar

<formal context parameters> ::=

 <context parameters start> <formal context parameter>

 {<end> <formal context parameter> }* <context parameters end>

<actual context parameters> ::=

 <context parameters start>

 [<actual context parameter>] {, [<actual context parameter>] }* <context parameters end>

Superseded by a more recent version

178 Recommendation Z.100 (03/93) Superseded by a more recent version

<actual context parameter> ::=

 <identifier>

<context parameters start> ::=

 <

<context parameters end> ::=

 >

<formal context parameter> ::=

 <process context parameter>

 | <procedure context parameter>

 | <remote procedure context parameter>

 | <signal context parameter>

 | <variable context parameter>

 | <remote variable context parameter>

 | <timer context parameter>

 | <synonym context parameter>

 | <sort context parameter>

NOTE – The characters "<" and ">" delimit context parameters, and are not solely used as meta-symbols above.

The scope unit of a type definition with formal context parameters defines the names of the formal context parameters.
These names are therefore visible in the definition of the type, and also in the definition of the formal context
parameters.

Formal context parameters can neither be used as <base type> in <type expression> nor in atleast constraints of <formal
context parameters>.

Constraints are specified by constraint specifications. A constraint specification introduces the entity of the formal
context parameter followed by either a constraint signature or an atleast clause. A constraint signature introduces
directly sufficient properties of the formal context parameter. An atleast clause denotes that the formal context
parameter must be replaced by an actual context parameter, which is the same type or a subtype of the type identified in
the atleast clause. Identifiers following the keyword atleast in this clause must identify type definitions of the entity
kind of the context parameter and must be neither formal context parameters nor parameterized types.

A formal context parameter of a type must be bound only to an actual context parameter of the same entity kind which
meets the constraint of the formal parameter.

The parameterized type can only use the properties of a context parameter which are given by the constraint, except for
the cases listed in 6.1.2.

A context parameter using other context parameters in its constraint cannot be bound before the other parameters are
bound.

The binding of an actual variable or synonym context parameter to its definition is not resolved by context.

Trailing commas may be omitted in <actual context parameters>.

Semantics

The formal context parameters of a type definition that is neither a subtype definition nor defined by binding formal
context parameters in a <type expression> are the parameters specified in the <formal context parameters>.

Context parameters of a type are bound in the definition of a <type expression> or an <inheritance rule> to actual
context parameters. In this binding, occurrences of formal context parameters inside the parameterized type are replaced
by the actual parameters. During this binding of identifiers contained in <formal context parameter>s to definitions
(i.e. deriving their qualifier, see 2.2.2), other local definitions than the <formal context parameters>s are ignored.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 179

Parameterized types cannot be actual context parameters. In order for a definition to be allowed as an actual context
parameter, it must be of the same entity kind as the formal parameter and satisfy the constraint of the formal parameter.

Model

If a scope unit contains <specialization>, any omitted actual context parameter in the <specialization> is replaced by the
corresponding <formal context parameter> of the <base type> in the <type expression> and this <formal context
parameter> becomes a formal context parameter of the scope unit.

6.2.1 Process context parameter

Concrete textual grammar

<process context parameter> ::=

 process <process name> <process constraint>

<process constraint> ::=

 [atleast] <process identifier> | <process signature>

<process signature> ::=

 [[<end>] <formal parameters signature>]

<formal parameters signature> ::=

 fpar <sort>{, <sort> }*

Semantics

An actual process parameter must identify a process definition. Its type must be a subtype of the constraint process type
(atleast <process identifier>) with no addition of formal parameters to those of the constraint type, or it must be the type
denoted by <process identifier>, or it must be compatible with the formal process signature. A process definition is
compatible with the formal process signature if the formal parameters of the process definition have the same sorts as the
corresponding <sort>s of the <formal parameters signature>.

6.2.2 Procedure context parameter

Concrete textual grammar

<procedure context parameter> ::=

 procedure <procedure name> <procedure constraint>

<procedure constraint> ::=

 atleast <procedure identifier>

 | <procedure signature>

<procedure signature> ::=

 [[<end>] fpar <procedure formal parameter constraint>

 {, <procedure formal parameter constraint> }*

 [<end> returns <sort>]]

 | [<end>] returns <sort>

<procedure formal parameter constraint> ::=

 <parameter kind> <sort>

Superseded by a more recent version

180 Recommendation Z.100 (03/93) Superseded by a more recent version

Semantics

An actual procedure parameter must identify a procedure definition that is either a specialization of the procedure of the
constraint (atleast <procedure identifier>) or compatible with the formal procedure signature. A procedure definition is
compatible with the formal procedure signature

a) if the formal parameters of the procedure definition have the same sorts as the corresponding parameters
of the signature, if they have the same <parameter kind>, and if both return a value of the same <sort> or
if neither returns a value, or

b) if this rule is obeyed after substituting a result specification into an additional in/out parameter; and

c) if each in/out parameter in the procedure definition has the same <sort identifier> or <syntype identifier>
as the corresponding parameter of the signature.

6.2.3 Remote procedure context parameter

Concrete textual grammar

<remote procedure context parameter> ::=

 remote procedure <procedure name> <procedure signature>

Semantics

An actual parameter to a remote procedure context parameter must identify a <remote procedure definition> with the
same signature.

6.2.4 Signal context parameter

Concrete textual grammar

<signal context parameter> ::=

 signal <signal name> <signal constraint>

 {, <signal name> <signal constraint> }*

<signal constraint> ::=

 atleast <signal identifier>

 | <signal signature>

<signal signature> ::=

 [<sort list>]

 [<signal refinement>]

Semantics

An actual signal parameter must identify a signal definition that is either a subtype of the signal type of the constraint
(atleast <signal identifier>) or compatible with the formal signal signature.

A signal definition is compatible with a formal signal signature if the sorts of the signal are the same sorts as in the sort
constraint list, and if <signal refinement> of the <signal context parameter> is stated, the signal definitions of the <signal
refinement> are compatible with the <signal refinement> of the <signal context parameter>.

Two <signal refinement>s are compatible, if they define the same set of signal names, and if each corresponding
<subsignal definition> has the same <reverse> attribute.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 181

6.2.5 Variable context parameter

Concrete textual grammar

<variable context parameter> ::=

 dcl <variable name> {,<variable name>}* <sort>

 {, <variable name> {,<variable name>}* <sort> }*

Semantics

An actual parameter must be a variable or a formal process or procedure parameter of the same sort as the sort of the
constraint.

6.2.6 Remote variable context parameter

Concrete textual grammar

<remote variable context parameter> ::=

 remote <remote variable name> {,<remote variable name>}* <sort>

 {, <remote variable name> {,<remote variable name>}* <sort> }*

Semantics

An actual parameter must identify a <remote variable definition> of the same sort.

6.2.7 Timer context parameter

Concrete textual grammar

<timer context parameter> ::=

 timer <timer name> <timer constraint>

 {, <timer name> <timer constraint> }*

<timer constraint> ::=

 [<sort list>]

Semantics

An actual timer parameter must identify a timer definition that is compatible with the formal sort constraint list. A timer
definition is compatible with a formal sort constraint list if the sorts of the timer are the same sorts as in the sort
constraint list.

6.2.8 Synonym context parameter

Concrete textual grammar

<synonym context parameter> ::=

 synonym <synonym name> <synonym constraint>

 {, <synonym name> <synonym constraint> }*

<synonym constraint> ::=

 <sort>

Semantics

An actual synonym must be of the same sort as the sort of the constraint.

Superseded by a more recent version

182 Recommendation Z.100 (03/93) Superseded by a more recent version

6.2.9 Sort context parameter

Concrete textual grammar

<sort context parameter> ::=

 newtype <sort name> [<sort constraint>]

<sort constraint> ::=

 atleast <sort>

 | <sort signature>

<sort signature> ::=

 <operators> endnewtype [<sort name>]

Semantics

If <sort constraint> is omitted, the actual sort can be any sort. Otherwise, an actual sort must be either a subtype without
<literal renaming> or <inheritance list> of the sort of the constraint (atleast <sort>), or compatible with the formal sort
signature. A sort is compatible with the formal sort signature if the literals of the sort include the literals in the formal
sort signature and the operators of the sort include the operators in the formal sort signature and the operators have the
same signatures.

A <sort signature> implicitly includes the equal and the not equal operators (see 5.3.1.4). noequality is not allowed in
<sort signature>.

ordering in <sort signature> yields the signature for the ordering operators as defined in 5.3.1.8.

6.3 Specialization

In order to express concept specialization, a type may be defined as a specialization of another type (the supertype),
yielding a new subtype. A subtype may have properties in addition to the properties of the supertype, and it may redefine
virtual local types and transitions.

Specialization is in the specialized type definition specified by "inherits <type expression>", where <type expression>
denotes the general type. The general type is said to be the supertype of the specialized type, and the specialized type is
said to be a subtype of the general type. Any specialization of the subtype is a subtype of the general type.

Note that the whole <type expression> represents the supertype. Only if the <type expression> contains only <base
type>, the supertype is named.

Virtual types can be given constraints, i.e. properties any redefinition of the virtual type must have. These properties are
used to guarantee properties of any redefinition. Virtual types are defined in 6.3.2.

6.3.1 Adding properties

Concrete textual grammar

<specialization> ::=

 inherits <type expression> [adding]

If a type subT is derived from a (super)type T through specialization (either directly or indirectly), then

a) T must not enclose subT;

b) T must not be derived from subT;

c) definitions enclosed by T must not be derived from subT.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 183

Semantics

The resulting content of a specialized type definition with local definitions consists of the content of the supertype
followed by the content of the specialized definition. This implies that the set of definitions of the specialized definition
is the union of those given in the specialized definition itself and those of the supertype. The resulting set of definitions
must obey the rules for distinct names as given in 2.2.2. However, three exceptions to this rule are:

1) a redefinition of a virtual type is a definition with the same name as that of the virtual type;

2) a gate of the supertype may be given an extended definition (in terms of signals conveyed and endpoint
constraints) in a subtype – this is specified by a gate definition with the same name as that of the
supertype;

3) if the <type expression> contains <actual context parameters> any occurrence of the <base type> of the
<type expression> is replaced by the name of the subtype.

The <block substructure definition> given in a specialized block type definition is added to the substructure definition of
the block supertype. If present, the name of the substructure of the subtype must be the same as the name of the
substructure of the supertype.

The formal context parameters of a subtype are the unbound, formal context parameters of the supertype definition
followed by the formal context parameters of the specialized type (see 6.2).

The formal parameters of a specialized process type or procedure are the formal parameters of the process supertype or
procedure followed by the formal parameters added in the specialization.

The complete valid input signal set of a specialized process or service type is the union of the complete valid input signal
set of the specialized process or service type and the complete valid input signal set of the process or service supertype
respectively.

The resulting graph of a specialized process type, service type or procedure definition consists of the graph of its
supertype definition followed by the graph of the specialized process type, service type or procedure definition.

The process graph of a given process type, service type or procedure definition may have at most one start transition.

All the <connector name>s defined in the combined <body> must be distinct. It is permissible to have a join from the
<body> of the specialized process/procedure/service to a connector defined in the supertype.

A specialized signal definition may add (by appending) sorts to the sort list of the supertype.

A specialized partial type definition may add properties in terms of operators, literals, axioms, operator definitions and
default assignment.

NOTE – When a gate in a subtype is an extension of an existing gate in a supertype, the <existing gate symbol> is used
in SDL/GR.

6.3.2 Virtual type

A type being defined locally to a type definition (enclosing type) may be specified to be a virtual type. Block types,
process types, service types, and procedures may be specified as virtual types. A virtual type may be constrained by
another type of the same entity kind and it may be redefined in subtypes of its enclosing type.

Concrete textual grammar

<virtuality> ::=

 virtual | redefined | finalized

Superseded by a more recent version

184 Recommendation Z.100 (03/93) Superseded by a more recent version

<virtuality constraint> ::=

 atleast <identifier>

The syntax of virtual types are introduced in 6.1.1.2 (block type), 6.1.1.3 (process type), 6.1.1.4 (service type) and 2.4.6
(procedure).

A virtual type and its constraint cannot have context parameters.

A virtual type may be constrained by the type identified by the <identifier> following the keyword atleast. This
<identifier> must identify a type definition of the same entity kind as the virtual type. If <virtuality constraint> is
omitted, it corresponds to specifying the virtual type itself as the constraint.

If <virtuality> is present in both the reference and the referenced definition, then they must be equal. If <procedure
preamble> is present in both procedure reference and in the referenced procedure definition they must be equal.

A virtual type must have <virtuality> in its definition.

A virtual type must have the same formal parameters, gates and signals on its gates as its constraint.

Semantics

A virtual type may be redefined in the definition of a subtype of the enclosing type of the virtual type. In the subtype it is
the definition from the subtype that defines the type of instances of the virtual type, also when applying the virtual type
in parts of the subtype inherited from the supertype. A virtual type that is not redefined in a subtype definition has the
definition as given in the supertype definition.

Accessing a virtual type by means of a qualifier denoting one of the supertypes implies, however, the application of the
(re)definition of the virtual type given in the actual supertype denoted by the qualifier. A type (T) whose name is hidden
in an enclosing subtype by a redefinition (of T) can be made visible through qualification with a supertype name (i.e. a
type name in the inheritance chain). The qualifier will consist of only one path item denoting the particular supertype, or
in the case of accessing a hidden type from a substructure of the supertype, the qualifier will consist of two path items,
the first one denoting the block type and the second one denoting the substructure.

Both in the enclosing type definition and in any subtype of the enclosing type, the virtual type definition must be a
specialization of its constraint. In a specialization of the enclosing type, a new definition of the virtual type is given by a
type definition with the same name and with the keyword redefined. A redefined virtual type is still a virtual type. The
keyword finalized instead of redefined indicates that the type is not virtual, and it may thus not be given new definitions
in further subtype redefinitions.

A virtual type with an explicit constraint but without an explicit inheritance implicitly inherits from the constraint type.

A redefined or finalized type without an explicit constraint and without an explicit inheritance implicitly inherits from
the constraint of the corresponding virtual type.

A subtype of a virtual type is a subtype of the original virtual type and not of a possible redefinition.

6.3.3 Virtual transition/save

This section describes virtual start, input and save as introduced in other sections.

Transitions or saves of a process type, service type or procedure are specified to be virtual transitions or saves by means
of the keyword virtual. Virtual transitions or saves may be redefined in specializations. This is indicated by transitions
or saves respectively with the same (state, signal) and with the keyword redefined or finalized.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 185

Concrete Grammar

The syntax of virtual transition and save are introduced in 2.4.6 (virtual procedure start), 2.6.2 (virtual process start),
2.6.4 (virtual input), 2.6.5 (virtual save), 2.6.6 (virtual spontaneous transition), 4.10 (virtual priority input), 4.11 (virtual
continuous signal), 4.14 (virtual remote procedure input and save).

Virtual transitions or saves must not appear in process (set of instances) definitions or in service (instance) definitions.

A state must not have more than one virtual spontaneous transition.

A redefinition in a specialization marked with redefined may in further specializations be defined differently, while a
redefinition marked with finalized must not be given new definitions in further specializations.

An input or save with <virtuality> must not contain <asterisk>.

Semantics

Redefinition of virtual transitions/saves corresponds closely to redefinition of virtual types (see 6.3.2).

A virtual start transition can be redefined to a new start transition.

A virtual priority input or input transition can be redefined to a new priority input or input transition or to a save.

A virtual save can be redefined to a priority input, an input transition or a save.

A virtual spontaneous transition can be redefined to a new spontaneous transition.

A virtual continuous transition can be redefined to a new continuous transition. The redefinition is indicated by the same
(state,[priority]) as the redefined continuous transition. If several virtual continuous transitions exist in a state, then each
of these must have a distinct priority. If only one virtual continuous transition exists in a state, the priority may be
omitted.

A transition of a virtual remote procedure input transition can be redefined to a new remote procedure input transition or
to a remote procedure save.

A virtual remote procedure save can be redefined to a remote procedure input transition or a remote procedure save.

The transformation for virtual input transition applies for virtual remote procedure input transition also.

The transformation of virtual transitions and saves in asterisk state is elaborated in 7.1, step 14.

6.4 Examples

Figure 6.4.1 shows a package “lib”. Figure 6.4.2 shows a block type (enclosed in a package) which uses this package
“lib” and another package “slib” which is referenced. Figure 6.4.3 shows a system diagram with a use clause.

Superseded by a more recent version

186 Recommendation Z.100 (03/93) Superseded by a more recent version

sr2 [ss]

[ss]
sr1

[ss]
c2

sr3
[ss]

c1
[ss]

P2

T1007880-93/d25

P1

package lib

block type B<signal ss(Integer, Real)>

FIGURE 6.4.1/Z.100

Package diagram (SDL/GR)

FIGURE 6.4.1/Z100.[D25]

P1 P2

T1007890-93/d26

P3
sr6

[sig]

sr4

[sig]

sr5
[sig]

c1

use lib/ B; use slib/ sig ;

package Bxlib

block type BX inherits B <sig>

use lib/ B; use slib/ sig ;

FIGURE 6.4.2/Z.100

Package diagram with use clause (SDL/GR)

FIGURE 6.4.2/Z100.[D26]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 187

T1007900-93/d27

[sig]

[sig]

[sig]

B1:B<sig>
c1

c2

v

u

x

B2:BX
c2

c1

c1 c2
B3:BX

use lib /B; use BXlib/BX; use slib /sig;

system S

FIGURE 6.4.3/Z.100

System diagram with use clause (SDL/GR)

FIGURE 6.4.3/Z100.[D27]

sr2 [ss]

sr1

[ss]
g2

sr3
[ss]

g1
[ss]

P2

T1007910-93/d28

P1

[ss]

block type B

atleast
B

FIGURE 6.4.4/Z.100

Block type with gates g1 and g2 (SDL/GR)

FIGURE 6.4.4/Z100.[D28]

block type B;
 gate g1 out with ss;
 gate g2 in from atleast B with ss;
 signalroute sr2 from p1 to p2 with ss;
 signalroute sr1 from env via g2 to p1 with ss;
 signalroute sr3 from p2 to env via g1 with ss;
 process p1 referenced;
 process p2 referenced;
endblock type B;

FIGURE 6.4.5/Z.100

Block type with gates g1 and g2 (same as in Figure 6.4.4) (SDL/PR)

Superseded by a more recent version

188 Recommendation Z.100 (03/93) Superseded by a more recent version

Figure 6.4.6 shows a block type BX being a subtype of B with an additional process definition, in SDL/GR, and with
references to sets of existing processes (P1 and P3) in order to connect the additional process to them. Figure 6.4.7
shows the same example in SDL/PR.

P1 P2

T1007920-93/d29

P3
sr6 [ss] sr4 [ss]

sr5 [ss]

g1

block type BX inherits B adding

FIGURE 6.4.6/Z.100

Definition of subtype (SDL/GR)
FIGURE 6.4.6/Z100.[D29]

block type BX inherits B adding ;
 signalroute sr4 from p3 to p2 with ss;
 signalroute sr5 from p3 to env via g1 with ss;
 signalroute sr6 from p1 to p3 with ss;
process p3 referenced;
endblock type BX;

FIGURE 6.4.7/Z.100

Definition of subtype in SDL/PR

Figures 6.4.8 and 6.4.9 show the use of the block types B and BX to specify block instances, and connections to gates.

T1007930-93/d30

B1:B
g1

g2

v

u [ss]

x

B2:BX

B3:BX

B BX

[ss]

[ss]

g1

g2

g2g1

system S

signal ss;

FIGURE 6.4.8/Z.100

Definition of system using block types (SDL/GR)
FIGURE 6.4.8/Z100.[D30]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 189

system S;
 signal ss;
 block type B referenced;
 block type BX referenced;

 block B1:B;
 block B2:BX;
 block B3:BX;

 channel u from B1 via g1 to B2 via g2 with ss endchannel;
 channel v from B3 via g1 to B1 via g2 with ss endchannel;
 channel x from B2 via g1 to B3 via g2 with ss endchannel;

endsystem S;

FIGURE 6.4.9/Z.100

Definition of system using block types (SDL/PR)

Examples of virtual types are shown in Figure 6.4.10 below:

procedure Proc; fpar i,j Integer ... endprocedure;

process type P
 virtual procedure VProc1 atleast Proc
 inherits Proc ... endprocedure;

 virtual procedure VProc2 ... endprocedure;

 ... call VProc1(1,2) ; call VProc2; ...
endprocess type ;

process type P1 inherits P;

 redefined procedure VProc1 atleast VProc1
 inherits << process type P >> VProc1;
 ...
 endprocedure;

 finalized procedure VProc2 ... endprocedure;
 ...
endprocess type ;

process type P2 inherits P1;

 finalized procedure VProc1
 inherits << process type P1 >> VProc1;
 ...
 endprocedure;
 ...
endprocess type ;

FIGURE 6.4.10/Z.100

Examples of virtual types (SDL/PR)

In P the procedure VProc1 is virtual, it has to be a specialization of Proc, and the definition of VProc1 inherits from
Proc. If a P process is generated, or if a specialized process does not supply a definition of VProc1, then this definition
applies. VProc2 is also virtual in P, with an implicit constraint, being itself, i.e. redefinitions of VProc2 in subtypes of P
must be subtypes of VProc2.

In P1 the procedure VProc1 is still virtual, constrained by itself, while VProc2 is not virtual. The definitions apply in
case a P1 process is generated, also for the calls made in the P definition. The definition of VProc1 is a specialization of
the VProc1 defined in process P, therefore it has the qualifier (process type P).

In P2 a new definition of VProc1 is given. This is possible since VProc1 is virtual in P1. A redefinition of VProc2 is not
allowed here, since it was finalized in P1.

Superseded by a more recent version

190 Recommendation Z.100 (03/93) Superseded by a more recent version

Figures 6.4.11 to 6.4.16 show examples of types corresponding to the example introduced in Figures 2.10.5 to 2.5.10.

R4

R1

R2

R3

T1007940-93/d31

1(1)

g3

g1 g2

Gameover

Newgame

block Game

signal
Gameover(PId); Game

Monitor (1,1)
Games (0,):
Game

Probe,
Result,
Endgame

Gameid,
Win,
Lose,
Score

Gameserver.in

FIGURE 6.4.11/Z.100

Block with process type (SDL/GR)

Gameserver.out

FIGURE 6.4.11/Z100.[D31]

block Game;

 signal Gameover(PId);

 connect Gameserver.in and R1,R2;

 connect Gameserver.out and R3;

 signalroute R1 from env to Monitor with Newgame;

 signalroute R2 from env to Games via g1 with Probe, Result, Endgame;

 signalroute R3 from Games via g2 to env

 with Gameid, Win, Lose, Score;

 signalroute R4 from Games via g3 to Monitor with Gameover;

 process type Game referenced;

 process Monitor (1,1) referenced;

 process Games (0,) : Game referenced;

endblock Game;

FIGURE 6.4.12/Z.100

Block with process type (SDL/PR)

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 191

T1007950-93/d32

1(1)

g1 g2 g3

process type Game fpar player PId

dcl count Integer := 0;
/*counter to keep
track of score */

Gameid
to player

*

Result End
game

none

even

Probe

Score(count)
to player

Gameover
(player) odd Lose to

player

Probe none count :=
count–1

Win
to player even

count:=
count+1

The hyphen means
that the state is not
changed

[Probe,
Result,
Endgame]

[Gameid,
Win, Lose,
Score]

[Gameover]

FIGURE 6.4.13/Z.100

Game process as a process type (SDL/GR)

–

FIGURE 6.4.13/Z100.[D32]

Superseded by a more recent version

192 Recommendation Z.100 (03/93) Superseded by a more recent version

 process type Game;
 fpar player Pid;

 gate g1 in with Probe, Result, Endgame;
 g2 out with Gameid, Win, Lose, Score;
 g3 out with Gameover;
 dcl count Integer:=0;

 start;
 output Gameid to player;
 nextstate Even;
 state Even;
 input none;
 nextstate Odd;
 input Probe;
 output Lose to player;
 task count:= count - 1;
 nextstate -;

 state Odd;
 input none;
 nextstate Even;
 input Probe;
 output Win to Player;
 task count:= count + 1;
 nextstate -;

 state *;
 input Result;
 output Score(count) to player;
 nextstate -;

 input Endgame;
 output Gameover(player);
 stop;

 endprocess type Game;

FIGURE 6.4.14/Z.100

Game process as a process type (SDL/PR)

Figures 6.4.15 and 6.4.16 show a specialization, SpecialGame of the process type Game, taking into account a new
signal Evil from a new process, Devil. In any of the states of Game, the reception of this signal leads to the state Even,
allowing the player a greater probability of losing. Note that the Game-part still behaves exactly like a Game process. If
the Devil does not send any Evil signals, then the behaviour is the same as in an instance of the supertype, Game.

Note that the extension of the Game process type requires extensions to the block enclosing instances of the specialized
process type. Evil is assumed to come in on the same gate as Probe, Result and Endgame.

T1007960-93/d33

g1

process type SpecialGame inherits Game

Even,
Odd

Evil

Even

FIGURE 6.4.15/Z.100

Specialization of the Game process (SDL/GR)

[Evil]

FIGURE 6.4.15/Z100.[D33]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 193

process type SpecialGame inherits Game;

gate g1 adding in with Evil;

 state Even, Odd;

 input Evil;

 nextstate Even;

endprocess type SpecialGame;

FIGURE 6.4.16/Z.100

Specialization of the Game process (SDL/PR)

Figure 6.4.17 shows examples of context parameters. In a), the actual sort must be a specialization of the (at this point
visible) sort t. In b) it suffices that the first actual parameter is a subtype of t, and that the second actual parameter is a
sort with an operator accepting two values of the first actual parameter and returning a value of the second parameter.
In c) the first actual parameter must be a subtype of SuperProc whereas the second actual parameter can be any
procedure, which accepts two (in) parameters of sort Integer and Boolean.

signal S<newtype t1 atleast t> (t1); /* case a) */

procedure P<newtype t1 atleast t; /* case b) */

 newtype t2 operators op: t1,t1 -> t2 endnewtype>;

 dcl x11,x12 t1, x2 t2;

 start;

 task x2:=op(x11,x12);

 return;

endprocedure;

procedure P /* case c) */

 < procedure Proc1 atleast SuperProc;

 procedure Proc2 fpar Integer, Boolean >;

 start;

 call Proc1;

 call Proc2(7, True);

 return;

endprocedure;

FIGURE 6.4.17/Z.100

Examples of context parameters (SDL/PR)

Superseded by a more recent version

194 Recommendation Z.100 (03/93) Superseded by a more recent version

7 Transformation of SDL Shorthands

This section details the transformation of the SDL constructs, whose dynamic semantics are given after a transformation
to the subset of SDL for which Abstract Grammar exists. These shorthand notations are

a) constructs from clauses 2, 3 and 5 for which a Model section exists, and

b) constructs defined in clauses 4 and 6.

The properties of a shorthand notation are derived from the way it is modelled in terms of (or transformed to) the
primitive concepts. In order to ensure easy and unambiguous use of the shorthand notations, and to reduce side effects
when several shorthand notations are combined, these concepts are transformed in a specified order as detailed in this
section.

The specified order of transformation means that in the transformation of a shorthand notation of order n, another
shorthand notation of order m may be used, provided m>n.

Since there is no abstract syntax for the shorthand notations, terms of either graphical syntax or textual syntax are used in
their definitions. The choice between graphical syntax terms and textual syntax terms is based on practical
considerations, and does not restrict the use of the shorthand notations to a particular concrete syntax.

The transformations are described as a number of enumerated steps. One step may describe the transformation of several
concepts and thus consist of a number of sub-steps, either because these concepts must be transformed as a group or
because the transformation order between these concepts is not significant. The latter case, is indicated by a dash (–)
rather than by enumeration.

7.1 Transformation of additional concepts

1. Lexical transformations

1) <macro definition>s and <macro call>s (4.2) are identified lexically and <macro call>s are expanded.

2) <macro diagram>s are replaced by occurrences of <macro call area>.

3) <underline> followed by separator characters are removed from names and separators in names are
replaced by an <underline> (2.2.1). After this transformation the <sdl specification> is considered to be
syntactically well-formed.

4) <macro definition>s are removed (also in <package definition>s).

2. Definition references are replaced by <referenced definition>s (2.4.1.3).

3. The graphs are normalized, i.e.

1) Non-terminating decisions and non-terminating transition options are transformed into terminating
decisions and terminating transition options respectively.

2) The actions and/or terminator statement following the decisions and transition options are moved to
appear as <free action>s. Those generated <free action>s which have no label attached are given
anonymous labels.

3) Action lists (including the terminator statement which follows) where the first action (if any, otherwise
the following terminator statement) has a label attached, are replaced by a join to the label and the action
list appears as a <free action>.

4. The package Predefined is included in the <package list>.

5. Transformation of generic system (4.3) and external data (5.4.6):

1) Identifiers in <simple expression>s contained in the <sdl specification> are bound to definitions. During
this binding, only <data definition>s defined in the predefined package Predefined and <external
synonym definition>s are considered (i.e. all other <data definition>s are ignored).

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 195

2) <external synonym>s are replaced by <synonym definition>s and informal text in transition options is
replaced by <range condition>. How this is done is not defined by SDL.

3) <simple expression>s are evaluated and <select definition>s, <option area>s, <transition option>s and
<transition option area>s are removed. <transition>s which are not selected in a <transition option> or
<transition option area> are given anonymous labels and appear then as <free action>s or <in-connector
area> respectively.

 The values in <number of process instances> are represented by fully qualified Integer literal identifiers.

4) <external properties> are replaced by axioms and informal text. How this is done is not part of SDL.

6. Package inclusion (2.4.1.2)

 <package>s which are mentioned in a <package reference clause>, but which are not part of the <package list>
are included in the <package list>. How this is done is not defined by SDL.

 If the <sdl specification> does not contain a <system definition> no further steps are applied, though the
properties of packages assures that further steps in practice can be applied.

 7. Transformation of:

– Multiple assignments in <task body> (2.7.1)

– Non-deterministic decision (2.7.5)

– <infix operator>s and their operands transformed to the prefix form (5.4.1.1)

– <procedure result> (2.4.6)

– Structure sort (5.3.1.10)

– State list (2.6.3)

– Stimulus list (2.6.4)

– Field primary (5.3.2.5)

– Structure primary (5.3.2.6)

– Boolean axioms (5.3.1.5)

– <syntype definition>s with newtype (5.3.1.9)

– Multiple signals in <output body> (2.7.4)

– Multiple timers in <set> and <reset> (2.8)

8. Full qualifiers are inserted

 According to the visibility rules and the rules for resolution by context (2.2.2), qualifiers are extended to
denote the full path.

 NOTE – As some additional concepts (e.g. generator transformations and specialization) have impact on the set of
definitions attached to a scope unit, the qualifiers are derived after removal of such concepts for the particular scope unit.

For each scope unit:

– Context parameters (6.2)

– Specialization (6.3)

– Signal list (2.5.5)

– Ordering (5.3.1.8)

– Generators (5.3.1.12)

– Indexed primary (5.3.3.4)

– Field variable (5.4.3.2)

– Indexed variable (5.4.3.1)

– Input of fields (2.6.4)

– Open block substructure diagram (3.2.2)

– Default duration value for timer set (2.8)

– Initialization of variables of sorts with default initialization (5.4.3.3)

Superseded by a more recent version

196 Recommendation Z.100 (03/93) Superseded by a more recent version

 are transformed, whereupon qualifiers are inserted. Afterwards, the transformations are applied for scope units
enclosed in the scope unit.

 The step is defined separately in 7.2 below.

9. Implicit specialization of global procedures (2.7.3)

 If an occurrence of a <procedure identifier> refers to a procedure which is not enclosed by a process or
service, it causes a copy local to the process to be made and the <procedure identifier> to be changed to denote
the copy. This step is repeated until there are no more references inside processes or services to non-local
procedures.

 <operator definition>s are transformed into procedures having anonymous names and having the result as
in/out parameter. The resulting <procedure definition> is moved to the enclosing scope unit, the operators
signatures for each operator are removed and the operator applications are transformed into <value returning
procedure call>s.

10. Transformation of:

– <textual typebased system definition>s, <graphical typebased system definition>s, <textual typebased
block definition>s, <graphical typebased block definition>s, <textual typebased process definition>s,
<graphical typebased process definition>s, <textual typebased service definition>s and <graphical
typebased service definition>s are replaced by <system definition>s, <system diagram>, <block
definition>, <block diagram>, <process definition>, <process diagram>, <service definition> and
<service diagram> respectively, by copying the contents of the type denoted by the <base type>. In this
copy, <formal context parameter>s are replaced by the <identifier>s in <actual context parameters> in the
same manner as described in sub-step 2.2 of step 8 (see below).

 – The keyword this in procedure call, is replaced by the procedure identifier.

 – Occurrences of type names inside qualifiers are replaced by the respective instance names and
occurrences of this where it denotes a <process identifier> are replaced by the identifier denoting the
enclosing <process definition> or <process diagram>.

 – <channel connection>s, <channel to route connection>s, <signal route to route connection>s, the full
signalset and omitted signal routes (if any) are derived from the <gate>s occurring in channels and signal
routes connected to the instance.

 These transformations apply both for <process definition>s and <service definition>s.

– <gate>s in <output body>s are replaced by those channels or signal routes which are connected to the
instance, which conveys the signal and which mentions the gate.

– The <gate>s in channels and signal routes are removed.

– Block sets are removed and the via is modified:

 Each channel definition having a block set as endpoint is replaced by a number of channels, one for each
block in the set. Each new channel is connected to a copy of the block definition defined by the block set.
The copy has a distinct new name.

 For via and connections contained inside a block copy, an occurrence of the original channel identifier is
replaced by the channel identifier connecting that particular block member.

 For via and connections contained inside a block connected to a block set, all occurrences of the original
channel identifier is replaced by the list of channel identifiers resulting from expanding the block set.

 If the two endpoints of the original channel denotes the same <block identifier>, the resulting number of
channel equals the square of the number of block instances minus the number of block instances.

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 197

11. Removal of:

 1) Types having <formal context parameter>s, system types, block types, process types, service types,
occurrences of <specialization> and <inheritance rule>.

2) Procedures defined outside processes or services and <virtuality> for remaining procedures.

12. The definitions inside packages (2.4.1.2) are moved to the system level.

Each name defined inside a package will be renamed to an anonymous name and qualifiers are changed to
denote the system level.

The package list is removed.

13. Transformation of channel substructure (3.2.3).

14. Removal of asterisk state, asterisk input and asterisk save:

– A body originating from a process definition, service definition or procedure definition without
specialization, has its asterisk states expanded according to the model defined in 4.4 followed by
expansion of asterisk input according to the model defined in 4.6, followed by the model for asterisk save
according to the model defined in 4.7.

– A body which is formed by combining two or more type bodies (through specialization) retains
information of which type body its states originate from. That is, it can be regarded as consisting of a list
of type bodies, where the first type body originates from the type having no specialization, and type body
N (N>1) in the list originates from the process type body being a specialization of type body N-1.

– The combined body is formed by applying the following steps:

1) Include all states from all bodies, but exclude associated transitions and saves, which are redefined or
finalized.

2) Expand asterisk state like for a body originating from a definition without specialization.

3) Expand asterisk input and asterisk save like for a body originating from a definition without
specialization.

4) Replace virtual and redefined transitions and saves with the redefined and finalized transitions and
saves for the types one by one in ascending order of N. If a state is an asterisk state, the replacement
applies for all states in the combined body.

– Multiple appearance of state is merged (4.5).

15. Implicit transitions are inserted (4.8).

16. via all is changed into an output list (2.7.4).

17. <free action>s (2.6.7) are removed:

1) Any <join> or <out-connector area> is replaced by the <free action> or <in-connector area> respectively
containing that connector name, unless the <join> or <out-connector area> is contained in the same <free
action> or <in-connector area> as the corresponding connector name.

2) The <free action>s and <in-connector area>s are then discarded. The resulting graphs are no longer
acyclic apart from loops inside a transition (no transitions are shared by inputs).

18. Dash nextstate is replaced by a state name (4.9).

19. Trailing commas in <stimulus> (2.6.4), <create body> (2.7.2), <procedure body> (2.7.3) and <output body>
are inserted.

Superseded by a more recent version

198 Recommendation Z.100 (03/93) Superseded by a more recent version

20. Synonym identifiers are replaced by the expression they denote (5.3.2.3).

21. Priority inputs are transformed (4.10).

22. Continuous signal is transformed (4.11).

23. Enabling condition is transformed (4.12).

24. Implicit tasks for expressions containing <now expression> (5.4.4.2), <import expression> (4.13), <view
expression> (5.4.4.4), <timer active expression> (5.4.4.5) and implicit procedure calls for expressions
containing <value returning procedure call>s (5.4.5) are inserted.

25. Imported and exported values (4.13) and remote procedures (4.14) are transformed.

7.2 Insertion of full qualifiers

This section details the contents of step 8 (see 7.1 above), full qualifiers:

Insertion of full qualifiers and transformation of the concepts transformed in this section are done package by package
(in the order given by <package list>) and ending with the <system definition>. Insertion of full qualifiers is done by
applying the visibility rules and resolution by context rules as defined in 2.2.2.

Steps 1 to 9 below are repeated until all scope units have been transformed.

1. Select a scope unit (initially the leftmost <package> in <package list> or the <system definition>), which
satisfies the following conditions:

1) The surrounding scope unit (if any) has been transformed.

2) Omitted <actual context parameter>s are inserted (6.1.2).

3) If it contains <specialization> then any scope unit contained in that type given by <base type> has been
transformed.

4) It has not been transformed already.

2. If the scope unit contains <specialization>, make a copy of the <base type> and bind any <actual context
parameter>s contained in the <specialization>. The copy of the type denoted by <base type> is made such that:

1) Virtual types which also have a definition in the scope unit to be transformed, are given unique
anonymous names, but the scope units keep knowledge of their original full qualifier such that identifiers
denoting the original virtual types (i.e. those identifiers qualified with the <base type> inside the scope
unit and inside specializations of the scope unit) can be replaced by the new identity when qualifiers are
inserted (step 7 below).

2) Any applied occurrences (except in generators) of <formal context parameter>s defined for that type are
replaced by corresponding <actual context parameter>s. Subsignals, literals and operators of <signal
context parameter>s and of <sort context parameter>s respectively have their qualifier changed to denote
the identifier of the <actual context parameter>. <formal context parameter>s corresponding to omitted
<actual context parameters> are not replaced but instead become (parts of the) <formal context
parameter>s of the scope unit.

3) Virtual transitions are not transformed at this stage, as there is an interdependency with asterisk input,
asterisk save and asterisk state. Instead knowledge in the combined body is inserted about which type
body any state originates from. Consequently, the combined body cannot be regarded valid until asterisk
input, asterisk save and asterisk state have been transformed (see step 14, in 7.1).

4) Occurrences of the type name in qualifiers contained in the type are replaced with the name of the scope
unit (except in generators).

3. Transformation of <generator transformation>

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 199

1) <generator transformation>s inside <generator definition>s occurring in the scope unit are transformed.

2) <generator transformation>s inside <partial type definition>s occurring in the scope unit are transformed.

4. <ordering> is transformed (5.3.1.8).

5. <partial type definition>s are transformed:

1) If a <partial type definition> contains <type expression>, the literals and operators are copied according to
the inheritance list. If the <base type> for a <partial type definition> has formal <sort context
parameter>s, any argument sort or result sort mentioning a <sort context parameter> is changed
accordingly.

2) The equality properties are derived (5.3.1.4).

3) Qualifiers of identifiers in <axioms>, in the <range condition>s and in the default expression are inserted
and explicit quantification is inserted. Resolution by context is done by discarding any <partial type
definition>s having <formal context parameter>s (except for the enclosing one, if any).

4) For any <partial type definition> containing a <type expression> with <actual context parameter>s, the
<axioms>, the <default initialization> and the <range condition>s contained in the <base type> are copied
to the <partial type definition>, where <formal context parameter>s have been replaced by the
corresponding <actual context parameter>s.

 5) For any <partial type definition> containing a <type expression> with no <actual context parameter>s, the
implied axioms are inserted (5.3.1.11).

6. <signal definition>s with <specialization> are removed:

 A signal definition which has <specialization> and where the <base type> denotes a <signal definition>
without <specialization> is selected. The model for <specialization> for this <signal definition> is applied in a
similar manner as step 2 above. This step is repeated until there are no more <signal definition>s having
<specialization> in the scope unit.

7. Qualifiers in those identifiers directly contained in the scope unit and in those contained in contained signal
definitions are inserted.

 Resolution by context is done by discarding any <partial type definition>s having <formal context
parameter>s.

 References directly contained in the scope unit to a virtual type in a supertype of an enclosing scope unit are
transformed into references to the anonymous copy (see step 2.1 above).

8. <stimulus> containing <indexed variable>s and <field variable>s are transformed (2.6.4).

9. Transformation of:

– Signal list identifiers to a list of signal identifiers (2.5.5)

– Indexed primary (5.3.2.4)

– Field variable (5.4.3.2)

– Indexed variable (5.4.3.1)

– <return> with <expression> (2.4.6)

Superseded by a more recent version

200 Recommendation Z.100 (03/93) Superseded by a more recent version

Annex A

Index

to clauses 2 to 7 of Recommendation Z.100 (normative parts)

(This annex forms an integral part of this Recommendation)

The entries are:

a) <keyword>s from the concrete grammar.

b) Non-terminals from the concrete grammar. These are enclosed in angle brackets (i.e. < and >). The
definitions are the bolded index entries.

c) Non-terminals from the abstract grammar. The definitions are the bolded index entries.

d) Glossary items, these are the words marked with (G). Only glossary entries which refer to clauses 2 to 7
are included.

 If both a defining and an applying occurrence of a non-terminal exist on the same page, the bolded entry
for the defining occurrence takes priority. Non-terminals from the concrete grammar who have no bolded
entry are either

1) not part of syntax rules; or

2) contain underlined parts (underlining is not shown in the index).

Non-terminals containing underlined parts should be looked up ignoring the underlined parts for a
defining occurrence.

<action statement>; 57; 58; 60; 68; 69; 101
<action>; 55; 58
<active alternative expression>; 156
<active consequence expression>; 156
<active expression list>; 156; 157
<active expression>; 154; 156; 157
<active extended primary>; 154
<active primary>; 149; 150; 154
<actual context parameter>; 19; 172; 177; 178; 198; 199
<actual context parameters>; 137; 138; 171; 177; 178; 183; 196; 198
<actual parameters>; 63; 64; 65; 66; 67; 112; 164
<additional heading>; 21
<alphanumeric>; 14; 15; 128
<alternative expression>; 156
<alternative ground expression>; 153
<alternative question>; 100; 101
<alternative>; 130
<answer part>; 68; 69; 100; 101; 106; 108
<answer>; 68; 69; 70; 101
<any area>; 92; 94; 95
<anyvalue expression>; 69; 160; 163
<apostrophe>; 15; 22; 128
<argument list>; 119; 120; 133; 136
<argument sort>; 19; 119; 120; 121; 133; 147; 150
<assignment statement>; 55; 62; 157; 158; 159
<asterisk input list>; 54; 103
<asterisk save list>; 55; 103
<asterisk state list>; 52; 102
<asterisk>; 102; 103; 185
<axioms>; 117; 118; 122; 141; 145; 199
<base type literal rename signature>; 137; 138
<base type operator name>; 137
<base type>; 49; 138; 171; 174; 176; 178; 179; 182; 183; 196; 198; 199
<basic input area>; 54; 55

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 201

<basic input part>; 54; 55
<basic save area>; 55; 56
<basic save part>; 55; 56
<block area>; 29; 43; 92; 99
<block definition>; 18; 27; 28; 30; 31; 32; 34; 43; 46; 47; 84; 87; 88; 96; 98; 118; 173; 177; 196
<block diagram>; 18; 27; 29; 31; 32; 85; 196
<block heading>; 31
<block identifier>; 30; 31; 43; 87; 88; 173; 196
<block interaction area>; 29; 85; 87; 92; 96; 166
<block name>; 28; 29; 30; 31; 168; 173
<block substructure area>; 31; 85; 92; 168
<block substructure definition>; 18; 27; 30; 84; 85; 86; 88; 118; 167; 176; 177; 183
<block substructure diagram>; 18; 27; 43; 85; 86
<block substructure heading>; 85
<block substructure identifier>; 84; 85
<block substructure name>; 84; 85
<block substructure symbol>; 85
<block substructure text area>; 85; 92; 99
<block symbol>; 29; 85; 88; 173; 176
<block text area>; 31; 92; 99; 168
<block type definition>; 18; 24; 27; 28; 31; 32; 43; 46; 47; 84; 85; 98; 118; 167; 168
<block type diagram>; 18; 27; 46; 85; 99; 167; 168
<block type expression>; 173
<block type heading>; 168
<block type identifier>; 167; 168
<block type name>; 167; 168
<block type reference>; 92; 99; 167; 168
<block type symbol>; 167; 168
<body>; 19; 57; 60; 102; 103; 183
<Boolean active expression>; 156
<Boolean axiom>; 122; 129
<Boolean expression>; 105; 106; 107; 108; 156; 163
<Boolean ground expression>; 153
<Boolean simple expression>; 98; 99
<Boolean term>; 129; 130
<channel connection>; 84; 85; 88; 90; 98; 177; 196
<channel definition area>; 29; 43; 92; 99
<channel definition>; 28; 43; 84; 87; 88; 98
<channel endpoint connection>; 87; 88; 90; 98
<channel endpoint>; 43
<channel identifier>; 48; 66; 88
<channel identifiers>; 31; 43; 46; 48; 84; 85; 177
<channel name>; 43; 87
<channel path>; 43; 177
<channel substructure area>; 87; 92
<channel substructure association area>; 43; 87; 93
<channel substructure definition>; 18; 27; 43; 87; 88; 118
<channel substructure diagram>; 18; 27; 43; 87; 88
<channel substructure heading>; 87
<channel substructure identifier>; 87
<channel substructure name>; 87
<channel substructure symbol>; 87; 88
<channel substructure text area>; 87; 93; 99
<channel symbol 1>; 43
<channel symbol 2>; 43
<channel symbol 3>; 43; 44
<channel symbol 4>; 43; 44
<channel symbol 5>; 43; 44
<channel symbol>; 20; 43; 44; 85; 87; 92; 95
<channel to route connection>; 30; 47; 48; 98; 177; 196
<character string literal identifier>; 126; 127
<character string literal>; 126; 127; 128; 137; 143; 144; 146
<character string>; 14; 15; 16; 17; 19; 20; 21; 22; 68; 95; 127; 128

Superseded by a more recent version

202 Recommendation Z.100 (03/93) Superseded by a more recent version

<closed range>; 135
<comment area>; 21; 93
<comment symbol>; 20; 21; 22
<comment>; 21
<composite special>; 14; 15
<composite term list>; 122; 123; 125
<composite term>; 122; 125
<condition>; 130
<conditional composite term>; 125; 130
<conditional equation>; 122; 123; 124
<conditional expression>; 154; 156
<conditional ground expression>; 149; 153; 156
<conditional ground term>; 126; 130
<conditional term>; 130
<connector name>; 19; 57; 60; 183
<consequence expression>; 156
<consequence ground expression>; 153
<consequence>; 130
<constant>; 70; 135
<context parameters end>; 177; 178
<context parameters start>; 177; 178
<continuous signal area>; 93; 105; 106; 163
<continuous signal association area>; 53; 93; 105
<continuous signal>; 52; 105; 106; 108; 163
<create body>; 63; 197
<create line area>; 31; 93; 99
<create line symbol>; 20; 31; 32; 92; 95
<create request area>; 59; 63; 93
<create request symbol>; 63
<create request>; 58; 63
<dash nextstate>; 59; 104
<dashed association symbol>; 20; 21; 22; 87; 92; 95
<dashed block symbol>; 173
<dashed process symbol>; 174
<dashed service symbol>; 174; 175
<data definition>; 17; 24; 28; 29; 30; 33; 35; 37; 38; 40; 98; 147; 148; 153; 194
<decimal digit>; 14
<decision area>; 59; 69; 93
<decision body>; 68; 69
<decision symbol>; 69
<decision>; 58; 68; 69; 106; 108
<default initialization>; 51; 117; 118; 133; 138; 140; 159; 199
<definition selection list>; 24; 25; 26
<definition selection>; 24; 25; 26
<definition>; 26; 27
<destination>; 66; 110; 111; 112; 114
<diagram identifier>; 21
<diagram in package>; 25
<diagram kind>; 21
<diagram name>; 21
<diagram>; 22; 26; 27
<dummy inlet symbol>; 94; 95; 96
<dummy outlet symbol>; 92; 94; 95; 96
<Duration ground expression>; 70; 71
<else part>; 68; 69; 100; 101
<enabling condition area>; 54; 56; 93; 107; 113; 163
<enabling condition symbol>; 105; 107
<enabling condition>; 54; 56; 107; 108; 112; 163
<end>; 21; 24; 28; 30; 31; 33; 35; 37; 39; 43; 45; 48; 49; 50; 51; 52; 54; 55; 56; 57; 58; 68; 70; 84; 87; 91; 95; 98; 100;
104; 105; 107; 110; 112; 113; 119; 122; 136; 137; 141; 144; 147; 153; 159; 164; 166; 167; 168; 169; 170; 172; 173;
174; 175; 177; 179
<endpoint constraint>; 176
<entity in block>; 30; 167

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 203

<entity in package>; 24; 25
<entity in procedure>; 39; 40
<entity in process>; 33; 168
<entity in service>; 37; 170
<entity in system>; 28; 84; 87; 166
<entity kind>; 24; 25; 26
<equation>; 122; 145
<error term>; 122; 131
<exclamation>; 19; 126; 131; 140
<existing gate symbol>; 176; 183
<existing typebased block definition>; 29; 93; 173
<existing typebased process definition>; 31; 174
<existing typebased service definition>; 35; 174; 175
<export area>; 59; 93; 110
<export>; 58; 110; 111; 112
<exported as>; 50
<exported variable definition>; 110
<expression list>; 70; 151; 152; 154; 157; 158; 162; 163
<expression>; 42; 61; 63; 64; 65; 67; 101; 127; 148; 149; 150; 154; 156; 157; 158; 159; 164; 199
<extended composite term>; 122; 125; 126
<extended ground term>; 122; 126
<extended literal identifier>; 122; 126
<extended literal name>; 119; 120; 126
<extended operator identifier>; 125; 126
<extended operator name>; 119; 120; 123; 126
<extended primary>; 149; 150; 154
<extended properties>; 117; 118; 125; 133
<extended sort>; 119; 120; 122; 140; 141; 145; 147
<external data description>; 164
<external formalism name>; 164
<external properties>; 117; 118; 164; 195
<external signal route identifiers>; 46; 48; 177
<external synonym definition item>; 97
<external synonym definition>; 97; 142; 194
<external synonym identifier>; 97
<external synonym name>; 97
<external synonym>; 97; 150; 195
<field extract operator name>; 152
<field list>; 136
<field modify operator name>; 159
<field name>; 136; 151; 152; 158; 159
<field primary>; 149; 150; 151
<field selection>; 151; 158
<field sort>; 136
<field variable>; 55; 157; 158; 159; 199
<fields>; 136
<first constant>; 135
<first field name>; 152
<flow line symbol>; 20; 57; 60; 69; 92; 95; 101
<formal context parameter>; 19; 49; 118; 166; 167; 169; 170; 172; 177; 178; 179; 196; 197; 198; 199
<formal context parameters>; 39; 41; 49; 117; 118; 166; 167; 168; 169; 170; 177; 178
<formal name>; 91; 96
<formal parameters signature>; 179
<formal parameters>; 19; 33; 35; 147; 148; 168; 169
<formal variable parameters>; 19; 39
<frame symbol>; 20; 21; 25; 29; 31; 34; 38; 40; 43; 46; 85; 87; 91; 92; 96; 147; 166; 168; 169; 170; 172; 176
<free action>; 33; 40; 57; 147; 194; 195; 197
<full stop>; 14; 15; 128
<gate constraint>; 175; 176
<gate definition>; 19; 167; 168; 170; 175
<gate identifier>; 66
<gate name>; 19; 175; 176
<gate symbol 1>; 176
<gate symbol 2>; 176
<gate symbol>; 176

Superseded by a more recent version

204 Recommendation Z.100 (03/93) Superseded by a more recent version

<gate>; 43; 45; 46; 168; 169; 170; 173; 174; 175; 176; 177; 196
<generator actual list>; 141
<generator actual>; 141
<generator definition>; 139; 140; 153; 199
<generator formal name>; 19; 126; 139; 140; 141
<generator identifier>; 141
<generator name>; 139; 140
<generator parameter list>; 139
<generator parameter>; 139; 140; 141
<generator sort>; 120; 140
<generator text>; 126; 139; 140; 141
<generator transformation>; 141; 142; 198; 199
<generator transformations>; 17; 125; 139; 141
<graphical answer part>; 69
<graphical answer>; 69; 101
<graphical block reference>; 29; 93
<graphical block substructure reference>; 85
<graphical channel substructure reference>; 87
<graphical else part>; 69
<graphical gate constraint>; 43; 46; 168; 169; 170; 176
<graphical procedure reference>; 38; 40; 93; 167; 168; 169; 170
<graphical process reference>; 31; 34; 93
<graphical service reference>; 35
<graphical typebased block definition>; 29; 93; 173; 196
<graphical typebased process definition>; 31; 174; 196
<graphical typebased service definition>; 35; 174; 175; 196
<graphical typebased system definition>; 29; 172; 196
<ground expression list>; 149; 150
<ground expression>; 50; 51; 97; 101; 135; 142; 147; 149; 150; 153; 157; 159
<ground primary>; 149; 150
<ground term>; 122; 126; 141; 145
<heading area>; 20; 21
<heading>; 21
<hyphen>; 104
<identifier>; 17; 18; 19; 26; 27; 123; 147; 150; 171; 175; 176; 178; 184; 196
<imperative operator>; 147; 154; 160
<implicit text symbol>; 21
<import expression>; 110; 111; 160; 161; 198
<import identifier>; 111
<imported procedure specification>; 33; 35; 37; 38; 98; 112; 113
<imported variable specification>; 33; 35; 37; 38; 98; 110; 111
<in-connector area>; 35; 41; 57; 60; 93; 147; 169; 195; 197
<in-connector symbol>; 57; 60
<indexed primary>; 149; 150; 151
<indexed variable>; 55; 157; 158; 199
<infix operator>; 125; 126; 127; 195
<informal text>; 16; 20; 62; 68; 97; 100; 122
<inheritance list>; 126; 129; 137; 138; 182
<inheritance rule>; 125; 129; 137; 178; 197
<inherited operator name>; 137; 138
<inherited operator>; 137
<initial number>; 33; 34
<inlet symbol>; 94; 95; 96
<input area>; 53; 54; 93
<input association area>; 53; 93
<input list>; 54; 103; 105; 107
<input part>; 52; 54; 55; 103; 104; 106; 107; 112; 114
<input symbol>; 20; 54; 56; 113
<Integer literal name>; 105; 106
<interface>; 24; 25; 26
<internal input symbol>; 20; 54; 71

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 205

<internal output symbol>; 20; 66; 72
<internal properties>; 117
<internal synonym definition>; 142
<join>; 57; 58; 60; 69; 101; 197
<kernel heading>; 21
<keyword>; 14; 15; 17
<label>; 57; 58
<left curly bracket>; 14
<left square bracket>; 14
<letter>; 14; 16
<lexical unit>; 14; 16; 91; 95
<literal axioms>; 144; 145
<literal equation>; 129; 144; 145; 146
<literal identifier>; 122; 147; 149
<literal list>; 119; 132
<literal mapping>; 117; 118; 141; 144; 145; 146
<literal name>; 21
<literal operator identifier>; 120; 122; 123; 145; 146
<literal operator name>; 119; 120; 137; 146
<literal quantification>; 144; 145; 146
<literal rename list>; 137; 138
<literal rename pair>; 137
<literal rename signature>; 137; 138
<literal renaming>; 137; 182
<literal signature>; 19; 119; 120; 132; 141; 146
<macro actual parameter>; 91; 94; 95; 96
<macro body area>; 91; 92
<macro body port1>; 92; 96
<macro body port2>; 92; 96
<macro body>; 16; 91; 94
<macro call area>; 93; 95; 96; 194
<macro call body>; 95
<macro call port1>; 95; 96
<macro call port2>; 95; 96
<macro call symbol>; 95; 96
<macro call>; 95; 96; 194
<macro definition>; 24; 27; 28; 29; 30; 33; 35; 37; 38; 39; 40; 91; 94; 98; 147; 194
<macro diagram>; 25; 27; 29; 31; 34; 38; 40; 85; 87; 91; 94; 95; 96; 99; 147; 166; 168; 169; 170; 194
<macro formal name>; 19
<macro formal parameter>; 91; 94; 95; 96
<macro formal parameters>; 91; 92
<macro heading>; 91; 92
<macro inlet symbol>; 92; 96
<macro label>; 92; 94; 95; 96
<macro name>; 19; 91; 92; 94; 95; 96
<macro outlet symbol>; 92; 96
<macro parameter>; 91
<maximum number>; 33; 34
<merge area>; 59; 60; 93
<merge symbol>; 60
<monadic operator>; 125; 126; 127
<name class literal>; 126; 141; 143
<name>; 16; 17; 18; 19; 24; 26; 27; 85; 91; 92; 94; 111; 120; 123
<national>; 14; 16
<Natural literal name>; 21; 143; 144
<Natural simple expression>; 33; 173
<nextstate area>; 20; 53; 59; 93
<nextstate body>; 59
<nextstate>; 58; 59; 104; 105; 106; 107; 108
<noequality>; 119; 120; 129
<note>; 14; 15; 16; 21
<now expression>; 160; 161; 198
<number of block instances>; 44; 173

Superseded by a more recent version

206 Recommendation Z.100 (03/93) Superseded by a more recent version

<number of pages>; 21
<number of process instances>; 31; 33; 34; 35; 173; 195
<open block substructure diagram>; 85; 86
<open range>; 135
<operand0>; 149
<operand1>; 149
<operand2>; 149
<operand3>; 149
<operand4>; 149
<operand5>; 149
<operator application>; 154; 156; 157
<operator definition>; 18; 27; 138; 146; 147; 148; 196
<operator definitions>; 117; 118; 126; 146
<operator diagram>; 18; 27; 138; 147; 148
<operator heading>; 93; 147
<operator identifier>; 120; 122; 123; 126; 147; 149; 150; 156
<operator list>; 119; 129; 136
<operator name>; 19; 119; 120; 123; 126; 137; 138; 141; 147
<operator result>; 147
<operator signature>; 19; 119; 120; 121; 135; 147; 150
<operator text area>; 93; 147; 148
<operators>; 117; 118; 119; 164; 182
<option area>; 25; 32; 93; 98; 99; 195
<option outlet1>; 101
<option outlet2>; 101
<option symbol>; 99
<ordering>; 19; 119; 120; 132; 199
<other character>; 15; 128
<out-connector area>; 57; 59; 60; 93; 197
<out-connector symbol>; 20; 60
<outlet symbol>; 92; 94; 95; 96
<output area>; 59; 66; 67; 93
<output body>; 66; 67; 195; 196; 197
<output symbol>; 20; 66
<output>; 47; 58; 66; 67; 88; 170; 171
<overline>; 14
<package definition>; 18; 24; 26; 194
<package diagram>; 18; 24; 25
<package heading>; 25
<package list>; 23; 24; 25; 26; 194; 195; 198
<package name>; 24; 25; 26
<package reference area>; 25; 29; 93
<package reference clause>; 19; 24; 25; 26; 28; 195
<package text area>; 25; 93
<package>; 23; 24; 25; 26; 27; 195; 198
<page number area>; 20; 21
<page number>; 21
<page>; 20; 21
<parameter kind>; 39; 40; 42; 172; 179; 180
<parameters of sort>; 19; 33; 39
<parent sort identifier>; 26; 133; 134; 159
<partial regular expression>; 143; 144
<partial type definition>; 18; 19; 117; 118; 120; 121; 129; 132; 134; 138; 145; 153; 154; 159; 164; 199
<path item>; 17; 18; 26; 120
<PId expression>; 66; 112; 114; 160; 161; 162
<plain input symbol>; 54; 71
<plain output symbol>; 66; 71
<predefined sort>; 97
<primary>; 149; 151; 152
<priority input area>; 93; 104
<priority input association area>; 53; 93; 104
<priority input list>; 103; 104
<priority input symbol>; 20; 104

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 207

<priority input>; 52; 104; 105
<procedure area>; 40; 93; 99
<procedure body>; 39; 40; 42; 169; 197
<procedure call area>; 59; 64; 65; 93
<procedure call body>; 64
<procedure call symbol>; 64; 113
<procedure call>; 41; 58; 64; 163; 164
<procedure constraint>; 179
<procedure context parameter>; 178; 179
<procedure definition>; 18; 24; 27; 28; 31; 33; 37; 39; 40; 98; 118; 148; 196
<procedure diagram>; 18; 27; 38; 40; 41; 148; 167; 168; 169; 170
<procedure formal parameter constraint>; 179
<procedure formal parameters>; 39; 41; 42; 164
<procedure graph area>; 40; 41; 42; 57; 93
<procedure heading>; 40; 41
<procedure identifier>; 39; 41; 64; 65; 164; 179; 180; 196
<procedure name>; 33; 39; 40; 41; 179; 180
<procedure preamble>; 33; 39; 40; 41; 184
<procedure result>; 18; 39; 40; 41; 42; 61; 164; 195
<procedure signature>; 112; 134; 179; 180
<procedure start area>; 41; 42; 93
<procedure start symbol>; 41; 147
<procedure symbol>; 40; 41
<procedure text area>; 40; 93; 99
<process area>; 31; 32; 46; 93; 99
<process body>; 33; 34; 37
<process constraint>; 17; 179
<process context parameter>; 17; 166; 167; 178; 179
<process definition>; 18; 27; 30; 32; 33; 34; 37; 46; 47; 78; 98; 102; 103; 118; 174; 177; 196
<process diagram>; 18; 27; 31; 34; 35; 196
<process graph area>; 34; 35; 38; 57; 60; 93; 99
<process heading>; 34; 35
<process identifier>; 17; 33; 35; 45; 63; 64; 66; 67; 174; 179; 196
<process interaction area>; 31; 93; 168
<process name>; 17; 31; 33; 35; 173; 179
<process signature>; 179
<process symbol>; 31; 174; 176
<process text area>; 34; 35; 93; 99; 169
<process type body>; 60; 168; 169; 170
<process type definition>; 18; 24; 27; 28; 30; 32; 46; 47; 63; 66; 98; 118; 168; 169
<process type diagram>; 18; 27; 46; 99; 167; 168; 169
<process type expression>; 173; 174
<process type graph area>; 60; 93; 99; 169
<process type heading>; 169
<process type identifier>; 168; 169
<process type name>; 168; 169
<process type reference>; 93; 99; 167; 168; 169
<process type symbol>; 169
<properties expression>; 117; 118; 126; 133; 139; 140; 141; 145
<qualifier>; 17; 18; 19; 27; 120; 126; 127; 140; 150; 152
<quantification>; 122; 123
<quantified equations>; 122; 123
<question expression>; 68
<question>; 68; 69; 106; 108
<quote>; 127
<quoted operator>; 17; 18; 19; 126; 127; 150
<range condition>; 68; 70; 133; 134; 135; 195; 199
<referenced definition>; 23; 24; 26; 27; 194
<regular element>; 143; 144
<regular expression>; 143; 144
<regular interval>; 128; 143; 144
<remote procedure call area>; 59; 93; 113
<remote procedure call body>; 112; 113

Superseded by a more recent version

208 Recommendation Z.100 (03/93) Superseded by a more recent version

<remote procedure call>; 58; 112; 113; 114; 163
<remote procedure context parameter>; 178; 180
<remote procedure definition>; 24; 28; 29; 31; 33; 35; 98; 112; 113; 180
<remote procedure identifier list>; 107; 112; 113
<remote procedure identifier>; 39; 40; 112; 113
<remote procedure input area>; 54; 93; 113; 114
<remote procedure input transition>; 54; 112; 113; 114
<remote procedure name>; 37; 112; 113
<remote procedure save area>; 55; 93; 113; 114
<remote procedure save>; 55; 107; 112; 113; 114
<remote variable context parameter>; 178; 181
<remote variable definition>; 24; 28; 29; 30; 33; 35; 98; 110; 111; 181
<remote variable identifier>; 50; 110
<remote variable name>; 37; 110; 181
<reset area>; 59; 71; 93
<reset statement>; 70; 71
<reset>; 58; 70; 71; 195
<restricted equation>; 124
<restriction>; 124
<result>; 19; 119; 120; 121; 136; 147; 150
<return area>; 42; 59; 61; 93
<return symbol>; 61
<return>; 42; 58; 61; 199
<reverse>; 89; 180
<right curly bracket>; 14
<right square bracket>; 14
<save area>; 53; 55; 93
<save association area>; 53; 93
<save list>; 55; 103; 107
<save part>; 52; 55; 107; 114
<save symbol>; 55; 56; 113
<scope unit kind>; 17; 18; 117; 118
<sdl specification>; 23; 25; 26; 91; 194; 195
<second constant>; 135
<select definition>; 24; 28; 29; 30; 33; 35; 37; 38; 39; 40; 98; 99; 147; 148; 195
<service area>; 35; 46; 93; 99
<service body>; 37
<service definition>; 18; 27; 33; 34; 37; 38; 47; 78; 98; 103; 118; 175; 196
<service diagram>; 18; 27; 35; 38; 196
<service graph area>; 38; 93; 170
<service heading>; 38
<service identifier>; 37; 38; 45; 174
<service interaction area>; 34; 35; 93; 169
<service name>; 33; 35; 37; 38; 174
<service symbol>; 35; 174; 176
<service text area>; 38; 93; 99; 170
<service type body>; 170
<service type definition>; 18; 24; 27; 28; 31; 33; 98; 118; 170; 171
<service type diagram>; 18; 27; 99; 167; 168; 169; 170
<service type expression>; 174; 175
<service type heading>; 170
<service type identifier>; 170
<service type name>; 170
<service type reference>; 93; 99; 167; 168; 169; 170
<service type symbol>; 170
<set area>; 59; 70; 93
<set statement>; 70; 71
<set>; 58; 70; 71; 195
<signal constraint>; 180
<signal context parameter>; 19; 178; 180; 198
<signal definition item>; 49
<signal definition>; 18; 19; 24; 28; 29; 30; 33; 35; 49; 89; 98; 111; 113; 199
<signal identifier>; 49; 54; 66; 67; 88; 103; 180

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 209

<signal list area>; 43; 44; 46; 49; 93; 176
<signal list definition>; 24; 28; 29; 30; 33; 35; 49; 98
<signal list identifier>; 26; 49
<signal list item>; 49
<signal list name>; 49
<signal list symbol>; 49; 50
<signal list>; 33; 43; 45; 47; 49; 55; 88; 169; 170; 171; 175; 176
<signal name>; 49; 111; 113; 180
<signal refinement>; 49; 89; 118; 180
<signal route definition area>; 31; 35; 46; 48; 93; 99
<signal route definition>; 30; 32; 33; 34; 45; 46; 47; 98
<signal route endpoint>; 45
<signal route identifier>; 48; 66
<signal route identifiers>; 34; 48; 177
<signal route name>; 45; 46
<signal route path>; 45; 177
<signal route symbol 1>; 46
<signal route symbol 2>; 46
<signal route symbol>; 20; 46; 92; 95; 176
<signal route to route connection>; 33; 47; 48; 98; 177; 196
<signal signature>; 180
<simple expression>; 97; 100; 101; 194; 195
<solid association symbol>; 20; 22; 53; 92; 95; 104; 105
<sort constraint>; 182
<sort context parameter>; 18; 49; 118; 178; 182; 198; 199
<sort identifier>; 120; 180
<sort list>; 49; 70; 180; 181
<sort name>; 17; 117; 118; 120; 182
<sort signature>; 182
<sort type expression>; 137; 138
<sort>; 17; 18; 26; 33; 40; 42; 49; 50; 51; 110; 120; 123; 133; 136; 142; 143; 145; 147; 159; 163; 164; 179; 180; 181;
182
<space>; 15; 16; 17; 128
<special>; 14; 15; 128
<specialization>; 19; 39; 41; 49; 166; 167; 168; 169; 170; 172; 179; 182; 197; 198; 199
<spelling term>; 122; 145; 146
<spontaneous designator>; 56
<spontaneous transition area>; 53; 56; 57; 93
<spontaneous transition association area>; 53; 93
<spontaneous transition>; 52; 56; 57; 107
<start area>; 35; 51; 52; 93; 169
<start symbol>; 51
<start>; 33; 40; 51; 52; 104; 147
<state area>; 35; 41; 53; 59; 93; 169
<state list>; 52; 53; 102
<state name>; 19; 52; 53; 59; 102; 103; 104
<state symbol>; 53; 59
<state>; 33; 40; 52; 53; 102; 103; 104; 106; 108; 112; 114
<stimulus>; 54; 55; 103; 104; 105; 107; 197; 199
<stop symbol>; 59; 61; 93
<stop>; 58; 61
<structure definition>; 125; 136
<structure primary>; 149; 150; 152
<sub expression>; 149
<subchannel identifiers>; 84; 87; 177
<subsignal definition>; 89; 180
<synonym constraint>; 181
<synonym context parameter>; 118; 178; 181
<synonym definition item>; 142
<synonym definition>; 97; 142; 150; 153; 195
<synonym identifier>; 147; 150
<synonym name>; 142; 181
<synonym>; 97; 149; 150

Superseded by a more recent version

210 Recommendation Z.100 (03/93) Superseded by a more recent version

<syntactical unit>; 20; 21
<syntype definition>; 133; 134; 153; 154; 159; 195
<syntype identifier>; 132; 133; 134; 180
<syntype name>; 133
<syntype>; 120; 132; 133; 150
<system definition>; 18; 23; 25; 26; 27; 113; 118; 172; 195; 196; 198
<system diagram>; 18; 26; 29; 196
<system heading>; 29
<system name>; 26; 28; 29; 172
<system text area>; 29; 31; 85; 87; 93; 99; 166
<system type definition>; 18; 24; 27; 98; 118; 166; 167
<system type diagram>; 18; 25; 27; 99; 166
<system type expression>; 172
<system type heading>; 166; 167
<system type identifier>; 166; 167
<system type name>; 166; 167
<system type reference>; 25; 99; 167
<system type symbol>; 167
<task area>; 59; 62; 93
<task body>; 55; 62; 195
<task symbol>; 62; 70; 71; 110
<task>; 42; 55; 58; 62
<term>; 122; 123; 125; 127; 130
<terminator statement>; 57; 58; 68; 69; 101
<terminator>; 58
<text extension area>; 22; 94
<text extension symbol>; 20; 22
<text symbol>; 22; 25; 29; 35; 38; 40; 148
<text>; 15; 21; 22; 164
<textual block reference>; 28; 98
<textual block substructure reference>; 30; 84; 167
<textual block type reference>; 24; 28; 31; 98; 167
<textual channel substructure reference>; 43; 87
<textual endpoint constraint>; 175; 176
<textual operator reference>; 146; 147; 148
<textual procedure reference>; 24; 28; 31; 33; 37; 40; 98
<textual process reference>; 30; 31; 34; 98
<textual process type reference>; 24; 28; 30; 98; 169
<textual service reference>; 33; 34; 98
<textual service type reference>; 24; 28; 31; 33; 98; 170
<textual system definition>; 18; 26; 28
<textual system type reference>; 24; 98; 166
<textual typebased block definition>; 28; 32; 34; 43; 44; 84; 85; 98; 173; 176; 196
<textual typebased process definition>; 30; 32; 34; 45; 47; 98; 173; 174; 176; 196
<textual typebased service definition>; 32; 33; 34; 37; 45; 47; 98; 174; 175; 196
<textual typebased system definition>; 28; 172; 196
<Time expression>; 70; 71
<timer active expression>; 160; 162; 163; 198
<timer constraint>; 181
<timer context parameter>; 166; 167; 169; 170; 178; 181
<timer definition item>; 70
<timer definition>; 33; 35; 37; 38; 70; 98
<timer identifier>; 49; 54; 70; 162
<timer name>; 70; 181
<transition area>; 41; 51; 54; 56; 57; 59; 60; 69; 94; 101; 104; 105; 113; 147
<transition option area>; 59; 94; 101; 195
<transition option symbol>; 101
<transition option>; 32; 58; 68; 100; 101; 102; 195
<transition string area>; 59; 94
<transition string>; 57; 58; 60; 68; 69; 101
<transition>; 51; 54; 55; 56; 57; 58; 68; 69; 101; 104; 105; 106; 112; 113; 114; 147; 195
<type expression>; 171; 172; 178; 179; 182; 183; 199
<type in block area>; 31; 94; 168

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 211

<type in process area>; 34; 94; 169
<type in system area>; 25; 29; 85; 87; 94; 166; 167
<typebased block heading>; 173
<typebased process heading>; 173; 174
<typebased service heading>; 174
<typebased system heading>; 172
<underline>; 14; 15; 16; 17; 18; 128; 194
<unquantified equation>; 122; 123; 124
<upward arrow head>; 14
<valid input signal set>; 33; 34; 35; 36; 37; 38; 46; 47; 168; 169; 170; 171
<value identifier>; 19; 122; 145; 146
<value name>; 122; 123; 145
<value returning procedure call>; 42; 148; 149; 163; 164; 196; 198
<variable access>; 154; 155
<variable context parameter>; 166; 167; 169; 178; 181
<variable definition>; 17; 33; 35; 37; 38; 40; 50; 51; 98; 111; 147; 148; 170
<variable identifier>; 55; 64; 110; 155; 157
<variable name>; 33; 40; 42; 50; 147; 181
<variable>; 54; 55; 157; 158; 159
<variables of sort>; 50
<vertical line>; 14
<via path element>; 66; 67
<via path>; 66; 67; 88
<view definition>; 17; 33; 35; 37; 38; 50; 51; 98
<view expression>; 160; 162; 198
<view identifier>; 162
<view name>; 51
<virtuality constraint>; 39; 41; 167; 168; 169; 170; 184
<virtuality>; 21; 39; 41; 42; 51; 52; 54; 55; 56; 57; 104; 105; 106; 112; 113; 114; 147; 167; 168; 169; 170; 183; 184;
185; 197
<word>; 14; 17; 164
abstract data types (G); 115
action (G); 59
active; 15; 162
active expression (G); 148; 154
active timer (G); 71; 163
Active-expression; 148; 154
actual context parameters (G); 177
actual parameter (G); 63; 64; 91
adding; 15; 136; 137; 139; 141; 175; 176; 182; 188; 193
all; 15; 66; 67; 122; 124; 129; 132; 137; 138; 139; 145; 146; 197
alternative; 15; 100; 102; 130; 164; 165
Alternative-expression; 155
and; 15; 48; 74; 78; 84; 86; 87; 88; 100; 127; 129; 132; 135; 137; 139; 149; 190
And-operator-identifier; 134
any; 15; 68; 69; 163
anyvalue expression (G); 163
Anyvalue-expression; 160; 163
Argument-list; 119
as; 15; 39; 40; 50; 110; 113
assignment statement (G); 157
Assignment-statement; 62; 157
association area (G); 53; 87
atleast; 15; 139; 172; 175; 178; 179; 180; 182; 184; 187; 189; 193
axiom (G); 116; 121
axioms; 15; 117; 137; 139; 140; 141; 142; 145; 146
basic SDL (G); 13
block; 15; 17; 20; 24; 28; 30; 31; 73; 74; 86; 88; 96; 100; 167; 168; 173; 187; 188; 189; 190
block (G); 32
block substructure (G); 84
block tree diagram (G); 84
block type (G); 168
Block-definition; 28; 30; 83

Superseded by a more recent version

212 Recommendation Z.100 (03/93) Superseded by a more recent version

Block-identifier; 42
Block-name; 17; 30
Block-qualifier; 16; 17
Block-substructure-definition; 30; 83
Block-substructure-name; 17; 83
Block-substructure-qualifier; 16; 17
Boolean-expression; 155
call; 15; 64; 77; 112; 114; 189; 193
Call-node; 58; 64
channel; 15; 43; 73; 86; 88; 96; 100; 189
channel (G); 44
channel substructure (G); 88
Channel-connection; 83
Channel-definition; 28; 42; 83
Channel-identifier; 47; 65; 83
Channel-name; 42
Channel-path; 42
Channel-to-route-connection; 30; 47
Closed-range; 134
comment; 15; 21; 72
comment (G); 21
communication path (G); 65
complete valid input signal set (G); 36; 38
Composite-term; 121
Condition; 130
Condition-item; 134
conditional expression (G); 155
Conditional-composite-term; 121; 130
Conditional-equation; 121; 124
Conditional-expression; 154; 155
Conditional-ground-term; 121; 130
Conditional-term; 130
connect; 15; 48; 74; 78; 84; 86; 87; 88; 190
connect (G); 47
connection; 15; 57
connector (G); 57
Consequence; 130
Consequence-expression; 155
consistent partitioning subset (G); 82
consistent refinement subset (G); 90
constant; 15; 126; 139; 140; 141
constants; 15; 70; 133; 134
constraint (G); 176; 177; 182
context parameter (G); 177
continuous signal (G); 105
create; 15; 63
create (G); 63
create line area (G); 31
create request (G); 63
Create-request-node; 58; 63
dash nextstate (G); 104
data type (G); 115
data type definition (G); 116
Data-type-definition; 28; 30; 32; 37; 39; 83; 117
dcl; 15; 50; 75; 76; 77; 79; 181; 192; 193
decision; 15; 68; 76; 105
decision (G); 69
Decision-answer; 68
Decision-node; 58; 68
Decision-question; 68
default; 15; 159
default initialization (G); 159
Destination; 45

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 213

Destination-block; 42
diagram (G); 27
Direct-via; 65
else; 15; 68; 69; 101; 102; 130; 131; 140
Else-answer; 68
enabling condition (G); 106
endalternative; 15; 100; 102; 164; 165
endblock; 15; 20; 30; 74; 167; 187; 188; 190
endchannel; 15; 43; 73; 86; 88; 96; 100; 189
endconnection; 15; 57
enddecision; 15; 68; 76; 105
endgenerator; 15; 139; 140
endmacro; 15; 91
endnewtype; 15; 117; 133; 134; 139; 145; 146; 165; 182; 193
endoperator; 15; 147
endpackage; 15; 24
endpoint constraint (G); 175
endprocedure; 15; 39; 76; 189; 193
endprocess; 15; 33; 75; 77; 78; 168; 189; 192; 193
endrefinement; 15; 89
endselect; 15; 98; 100
endservice; 15; 37; 79; 80; 170
endstate; 15; 52; 79; 80
endsubstructure; 15; 84; 86; 87; 88
endsyntype; 15; 70; 133; 134
endsystem; 15; 20; 28; 73; 100; 166; 189
entity kind (G); 19
env; 15; 43; 45; 73; 74; 78; 86; 87; 88; 100; 176; 177; 187; 188; 190
environment (G); 13
Equation; 117; 121
equation (G); 116; 121
Equations; 117; 121
error; 15; 131; 140; 148; 154; 155
error (G); 131
Error-term; 121; 131; 154
export; 15; 110; 112
export (G); 110
export operation (G); 111
exported; 15; 21; 39; 40; 41; 50; 110; 111; 113
exported variable (G); 50
exporter (G); 111
Expression; 63; 64; 65; 68; 70; 148; 155; 156; 157; 162
expression (G); 23; 148
external; 15; 97; 100
external synonym (G); 97
External-signal-route-identifier; 47
Extract! (G); 136
fi; 15; 130; 131; 140
field (G); 136
finalized; 15; 183; 184; 185; 189
flow line (G); 20; 60
for; 15; 122; 124; 129; 132; 139; 145; 146
formal context parameter (G); 177
formal parameter (G); 36; 41; 91
fpar; 15; 33; 39; 76; 78; 91; 179; 189; 192; 193
from; 15; 43; 45; 73; 74; 78; 86; 88; 96; 100; 175; 187; 188; 189; 190
gate; 15; 175; 187; 192; 193
gate (G); 175
gate constraint (G); 175
generator; 15; 25; 139; 140
generator (G); 139
graph (G); 32; 37; 39
Graph-node; 58

Superseded by a more recent version

214 Recommendation Z.100 (03/93) Superseded by a more recent version

graphical gate constraint (G); 176
ground expression (G); 148; 149
Ground-expression; 50; 134; 148; 149
Ground-term; 121; 149
hierarchical structure (G); 82
Identifier; 16; 42; 45; 47; 53; 64; 70; 83; 119; 121; 132; 134
identifier (G); 17
if; 15; 98; 99; 100; 131; 140
imperative operator (G); 160
Imperative-operator; 154; 160
implicit transition (G); 103
import; 15; 110
import (G); 111
import expression (G); 110
import operation (G); 111
imported; 15; 110; 112
imported variable (G); 110
importer (G); 111
in; 15; 40; 41; 42; 64; 76; 113; 114; 122; 124; 127; 129; 132; 133; 134; 139; 145; 146; 149; 164; 172; 175; 176; 180;
187; 192; 193; 196
in variable (G); 41
in-connector (G); 57
In-parameter; 39
in/out variable (G); 41
infix operator (G); 127
informal text (G); 20
Informal-text; 20; 62; 68; 121
inherit (G); 138; 182
inherits; 15; 137; 139; 182; 188; 189; 193
inlet (G); 95
Inout-parameter; 39
input; 15; 54; 56; 75; 76; 77; 79; 80; 104; 105; 106; 108; 111; 112; 114; 192; 193
input (G); 54
input port (G); 36
Input-node; 52; 53
interface; 15; 25
join; 15; 60; 76; 106; 107; 108
join (G); 60
keyword (G); 15
label (G); 57
level (G); 82
lexical rules (G); 13
lexical unit (G); 13
literal; 15; 126; 139; 140; 141
literal (G); 23; 115; 120
Literal-operator-identifier; 121
Literal-operator-name; 119
Literal-signature; 119
literals; 15; 117; 119; 120; 121; 128; 129; 132; 137; 139; 140; 141; 142; 145; 146; 165
macro; 15; 95; 96
macro (G); 91
macro call (G); 95
macrodefinition; 15; 91; 92
macroid; 15; 91; 94
Make! (G); 136
map; 15; 144; 145; 146
merge area (G); 60
mod; 15; 127; 149
Modify! (G); 136
Name; 16; 17; 28; 30; 32; 37; 39; 42; 45; 48; 50; 52; 70; 83; 117; 119; 121; 132
name (G); 17
nameclass; 15; 143; 144
newtype; 15; 17; 24; 25; 115; 117; 128; 133; 134; 138; 139; 145; 146; 165; 182; 193; 195

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 215

newtype (G); 115
nextstate; 15; 59; 75; 76; 79; 80; 102; 105; 106; 192; 193
nextstate (G); 60
Nextstate-node; 58; 59
nodelay; 15; 43; 110; 112
noequality; 15; 129; 136; 137; 138; 182
none; 15; 56; 75; 80; 192
not; 15; 127; 129; 139; 149
note (G); 15
now; 15; 71; 160
now expression (G); 160
Now-expression; 160
Number-of-instances; 32
offspring; 15; 36; 37; 63; 161
offspring (G); 36
Offspring-expression; 161
Open-range; 134
operator; 15; 17; 126; 139; 140; 141; 147
operator (G); 115; 116; 118; 120
operator signature (G); 120
Operator-application; 154; 156
Operator-identifier; 121; 134; 156
Operator-name; 119
Operator-signature; 119
operators; 16; 117; 119; 120; 121; 128; 132; 137; 139; 140; 141; 142; 145; 146; 165; 193
option (G); 98; 100
or; 16; 127; 132; 135; 139; 143; 144; 149
Or-operator-identifier; 134
ordering; 16; 132; 182
ordering operators(G); 132
Origin; 45
Originating-block; 42
out; 16; 40; 42; 64; 76; 113; 114; 134; 164; 172; 175; 176; 180; 187; 192; 196
out-connector (G); 60
outlet (G); 92
output; 16; 66; 75; 76; 79; 80; 105; 106; 107; 111; 112; 114; 192
output (G); 65
Output-node; 58; 65
package; 16; 17; 24; 25; 26; 70; 129; 130
package (G); 24
package interface (G); 25
package reference (G); 24
page (G); 20
parent; 16; 36; 63; 161
parent (G); 36
Parent-expression; 161
Parent-sort-identifier; 132
partial type definition (G); 117
partitioning (G); 82
Path-item; 16
Pid-expression; 160; 161
predefined (G); 128
predefined data (G); 115; 128
priority; 16; 79; 104; 105
priority input (G); 104
procedure; 16; 17; 24; 33; 39; 41; 76; 112; 113; 179; 180; 189; 193
procedure (G); 39
procedure call (G); 41; 65
procedure constraint (G); 179
procedure context parameter (G); 179
procedure graph (G); 41
procedure signature (G); 179
procedure start (G); 41

Superseded by a more recent version

216 Recommendation Z.100 (03/93) Superseded by a more recent version

Procedure-definition; 32; 37; 39
Procedure-formal-parameter; 39
Procedure-graph; 39
Procedure-identifier; 64
Procedure-name; 17; 39
Procedure-qualifier; 16; 17
Procedure-start-node; 39
process; 16; 17; 24; 31; 33; 35; 74; 77; 78; 168; 169; 173; 179; 187; 188; 189; 190; 192; 193
process (G); 32
process constraint (G); 179
process context parameter (G); 179
process graph (G); 32
process instance (G); 35
process signature (G); 179
process type (G); 169
Process-definition; 30; 32
Process-formal-parameter; 32
Process-graph; 32
Process-identifier; 45; 63; 65
Process-name; 17; 32
Process-qualifier; 16; 17
Process-start-node; 32; 51
provided; 16; 105; 107
Qualifier; 16
qualifier (G); 17
Quantified-equations; 121
Range-condition; 68; 132; 134
redefined; 16; 183; 184; 185; 189
referenced; 16; 28; 31; 33; 73; 74; 78; 84; 86; 87; 88; 96; 100; 147; 166; 167; 169; 170; 187; 188; 189; 190
referenced definition (G); 27
refinement; 16; 89
refinement (G); 89
rem; 16; 127; 149
remote; 16; 25; 110; 112; 180; 181
remote procedure call (G); 112
remote procedure definition (G); 112
remote procedure input transition (G); 112
remote procedure save (G); 112
remote variable definition (G); 110
reset; 16; 70
reset (G); 70
Reset-node; 58; 70
Restricted-equation; 124
Restriction; 124
Result; 119
retained signal (G); 36
return; 16; 61; 193
return (G); 41; 61
Return-node; 58; 61
returns; 16; 40; 147; 179
revealed; 16; 40; 50; 170
revealed attribute (G); 50
reverse; 16; 89; 90
save; 16; 55; 112; 114
save (G); 55
Save-signalset; 52; 55
scope unit (G); 19
select; 16; 98; 99; 100
selection (G); 97
self; 16; 36; 56; 63; 71; 80; 105; 106; 107; 161
self (G); 36
Self-expression; 161
sender; 16; 36; 37; 55; 56; 71; 76; 112; 114; 161

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 217

sender (G); 36
Sender-expression; 161
service; 16; 17; 24; 33; 37; 38; 78; 79; 80; 170; 174
service (G); 37
service type (G); 171
Service-decomposition; 32
Service-definition; 32; 37
Service-graph; 37
Service-identifier; 45
Service-name; 17; 37
Service-qualifier; 16; 17
Service-start-node; 37
set; 16; 70
set (G); 70
Set-node; 58; 70
signal; 16; 17; 24; 49; 73; 74; 76; 77; 78; 86; 88; 100; 180; 189; 190; 193
signal (G); 49
signal constraint (G); 180
signal context parameter (G); 180
signal definition (G); 49
signal list (G); 49
signal route (G); 46
signal signature (G); 180
Signal-definition; 28; 30; 32; 48; 83; 89
Signal-destination; 65
Signal-identifier; 42; 45; 53; 55; 65
Signal-name; 17; 48
Signal-qualifier; 16; 17
Signal-refinement; 48; 89
Signal-route-definition; 30; 32; 44
Signal-route-identifier; 47; 65
Signal-route-name; 44; 45
Signal-route-path; 44; 45
Signal-route-to-route-connection; 32; 47
signallist; 16; 24; 49
signalroute; 16; 45; 74; 78; 187; 188; 190
signalset; 16; 33
Signature; 117; 119
signature (G); 118; 120
simple expression (G); 98
sort (G); 115
sort constraint (G); 182
sort context parameter (G); 182
sort signature (G); 182
Sort-identifier; 119; 121; 132
Sort-name; 17; 117
Sort-qualifier; 16; 17
Sort-reference-identifier; 32; 39; 48; 50; 51; 119; 163
Sorts; 117
specialization (G); 182
spelling; 16; 145; 146
spontaneous transition (G); 56
Spontaneous-transition; 52; 56
start; 16; 51; 75; 76; 79; 80; 192; 193
start (G); 51
state; 16; 52; 75; 76; 79; 80; 192; 193
state (G); 52
State-name; 52; 59
State-node; 32; 37; 39; 52
stop; 16; 61; 75; 79; 192
stop (G); 61
Stop-node; 58; 60
struct; 16; 115; 136; 137

Superseded by a more recent version

218 Recommendation Z.100 (03/93) Superseded by a more recent version

structure sort (G); 136
Sub-block-definition; 83
Sub-channel-identifier; 83
subblock (G); 82; 83
subchannel (G); 83
subsignal (G); 89
Subsignal-definition; 89
substructure; 16; 17; 84; 85; 86; 87; 88
subtype (G); 166; 182
supertype (G); 182
synonym; 16; 25; 97; 100; 142; 181
synonym (G); 142
synonym context parameter (G); 181
syntype; 16; 70; 133; 134
syntype (G); 132
Syntype-definition; 28; 30; 32; 37; 39; 83; 132
Syntype-identifier; 119; 132
Syntype-name; 132
system; 16; 17; 20; 24; 26; 28; 29; 73; 166; 167; 172; 189
system (G); 13
system type (G); 166
System-definition; 28
System-name; 17; 28
System-qualifier; 16
task; 16; 62; 72; 75; 76; 79; 102; 105; 106; 107; 112; 192; 193
task (G); 62
Task-node; 58; 62
Term; 121; 130
term (G); 116; 117; 123
Terminator; 58
text extension symbol (G); 22
textual endpoint constraint (G); 175
then; 16; 130; 131; 140
this; 16; 63; 64; 65; 66; 67; 172; 196
Time-expression; 70
timer; 16; 70; 181
timer (G); 71; 163
timer active expression (G); 163
timer context parameter (G); 181
Timer-active-expression; 160; 162
Timer-definition; 32; 37; 70
Timer-identifier; 70; 162
Timer-name; 70
to; 16; 43; 45; 67; 73; 74; 75; 78; 79; 80; 86; 88; 96; 100; 105; 106; 107; 111; 112; 114; 175; 187; 188; 189; 190; 192
Token; 17
Transition; 37; 39; 51; 53; 56; 58; 68
transition (G); 59
transition string (G); 58
type; 16; 17; 24; 120; 130; 139; 140; 141; 166; 167; 168; 169; 170; 187; 188; 189; 190; 192; 193
type expression (G); 171
Unquantified-equation; 121; 124
use; 16; 24; 26; 185
valid input signal set (G); 36
value (G); 23; 116
value returning procedure (G); 163
Value-identifier; 121
Value-name; 121
variable (G); 23
variable context parameter (G); 181
variable definition (G); 50
Variable-access; 154; 155
Variable-definition; 32; 37; 39; 50

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 219

Variable-identifier; 53; 155; 157

Variable-name; 32; 39; 50

via; 16; 43; 45; 66; 67; 88; 187; 188; 189; 190; 196; 197

view; 16; 162

view (G); 51

view definition (G); 51

view expression (G); 162

View-definition; 32; 37; 51

View-expression; 160; 162

View-identifier; 162

View-name; 51

viewed; 16; 51

virtual; 16; 183; 184; 189

virtual continuous signal (G); 106

virtual input (G); 55; 185

virtual priority input (G); 104; 185

virtual procedure start (G); 42

virtual remote procedure input (G); 114

virtual save (G); 56

virtual spontaneous transition (G); 57

virtual start (G); 52; 184

virtual type (G); 183

virtuality (G); 183

virtuality constraint (G); 184

visibility (G); 19

with; 16; 43; 45; 73; 74; 78; 86; 88; 96; 100; 175; 187; 188; 189; 190; 192; 193

xor; 16; 127; 149

Superseded by a more recent version

220 Recommendation Z.100 (03/93) Superseded by a more recent version

Annex B

SDL Glossary
(This annex forms an integral part of this Recommendation)

The Z.100 Recommendation contains the formal definitions of SDL terminology. The SDL Glossary is compiled to help
new SDL users when reading the Recommendation and its annexes, giving a brief, informal definition and reference to
the defining section of the Recommendation. The definitions in the Glossary may summarize or paraphrase the formal
definitions, and thus may be incomplete.

Terms which are italicized in a definition may also be found in the glossary. If an italicized phrase, e.g. procedure
identifier, is not in the glossary, then it may be the concatenation of two terms, in this case the term procedure followed
by the term identifier. When a word is in italics but cannot be located in the glossary, it may be a derivative of a glossary
term. For exemple, exported is the past tense of export. SDL keywords are in bold.

Except where a term is a synonym for another term, after the definition of the term there is a main reference to the use of
the term in the Z.100 Recommendation. These references are shown in square brackets [] after definitions. For example,
[3.2] indicates that the main reference is in § 3.2.

abstract data type

Abstract data types define data in terms of abstract properties rather than in terms of a concrete implementation. An
abstract data type is a class of type which defines sets of values (sorts), a set of operators which are applied to these
values and a set of algebraic rules (equations) defining the behaviour when the operators are applied to the values.
[2.3.1, 5.1]

abstract grammar

The abstract grammar defines the semantics of SDL. The abstract grammar is described by the abstract syntax and the
well-formedness rules. [1.2, 1.4.1]

abstract syntax

The abstract syntax is the means to describe the conceptual structure of an SDL specification. The concrete syntaxes are
mapped to the abstract syntax to ensure that SDL / PR and SDL / GR are equivalent. [1.2]

action

An action is an operation which is executed within a transition string, e.g., a task, output, decision, create request, set,
reset, export, or procedure call. [2.6.8.1, 2.7]

active expression

An active expression is an expression where the value depends on the current system state. An active expression
accesses a variable or contains an imperative operator. [5.3.3.1, 5.4.2.1]

active timer

An active timer is a timer which has a timer signal in the input port of the owning process or is scheduled to produce a
timer signal at some future time. [2.8, 5.4.4.5]

actual context parameter

An actual context parameter is an identifier denoting the actual definition for a corresponding formal context parameter.
The actual parameter identifier may either be an identifier of a formal context parameter of a subtype definition, or
denote a definition that is visible in the enclosing scope of the type expression or visible through a package reference.
[6.2]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 221

actual parameter

An actual parameter is an expression interpreted by a process (or procedure) for the corresponding formal parameter
when the process (or procedure) is created (or called). Note that in certain cases in a procedure call an actual parameter
must be a variable (i.e., a particular type of expression; see in/out). [2.7.2, 2.7.3, 4.2.2]

anyvalue expression

An anyvalue expression is an expression which yields a non-specified value of the designated sort or syntype. [5.4.4.6]

area

An area is a two-dimensional region in the concrete graphical syntax. Areas often correspond to nodes in the abstract
syntax and usually contain common textual syntax. In interaction diagrams, areas may be connected by channels or
signal routes. In control flow diagrams; areas may be connected by flow lines. [2.4.2.6]

array

Array is the predefined data generator used to introduce the concept of arrays, simplifying the definition of arrays.
[Annex D]

assignment statement

An assignment statement is a statement in a task, which, when interpreted, associates a value to a variable replacing the
previous value associated with the variable. [5.4.3]

association area

An association area is a connection between areas in an interaction diagram by means of an association symbol. There
are five association areas: channel substructure association area, input association area, priority input association area,
continuous signal association area and save association area. [1.5.3, 2.6.3, 3.2.3, 4.10.2, 4.11]

axiom

An axiom is a special kind of equation with an implied equivalence to the Boolean literal True. “Axioms” is used as a
synonym for “axioms and equations.” [5.1.3, 5.2.3]

basic SDL

Basic SDL is the subset of SDL defined in § 2 of Recommendation Z.100. [2]

behaviour

In SDL, behaviour is either 1) externally observable behaviour: the set of sequences of responses of a system to
sequences of stimuli, or 2) internally observable behaviour: a set of actions and tasks, triggered by a stimulus, executed
before the state machine transitions to the next state. [1.1.3]

binding

Binding associates actual parameters with formal parameters (in a creation of a process or in a procedure call) or
actual context parameters with (formal) context parameters. [1.3.1]

block

A block is part of a system or block and is the container for one or more process or one block substructure. A block is a
scope unit and provides a static interface. When used by itself, block is a synonym for a block instance. [2.4.3]

block substructure

A block substructure is the partitioning of the block into subblocks and new channels at a lower level of abstraction.
[3.2.2]

block tree diagram

A block tree diagram is an auxiliary document in SDL / GR representing the partitioning of a system into blocks at
successively lower levels of abstraction by means of an inverted tree diagram (i.e., block at the top). [3.2.1]

Superseded by a more recent version

222 Recommendation Z.100 (03/93) Superseded by a more recent version

block type

A block type is the association of a name and a set of properties that all block instances of this type will have. [6.1.1.2]

BNF (Backus-Naur Form)

BNF (Backus-Naur Form) is a formal notation used for expressing the concrete textual syntax of a language. An
extended form of BNF is used for expressing the concrete graphical grammar. [1.5.2, 1.5.3]

Boolean

Boolean is a sort defined in a predefined partial type definition and has the values True and False. For the sort Boolean
the predefined operators are not, and, or, xor and implication. [5.3.1.3, Annex D]

channel

A channel is the connection conveying signals between two blocks. Channels also convey signals between a block and
the environment. Channels may be unidirectional or bidirectional. [2.5.1]

channel substructure

A channel substructure is a partitioning of a channel into a set of channels and blocks at a lower level of abstraction.
[3.2.3]

character

Character is a predefined data sort for which the values are the elements of the CCITT No. 5 alphabet, (e.g., 1, A, B, C,
etc.). For the character sort the ordering operators are predefined. [Annex D]

charstring

Charstring is a predefined data sort for which the values are strings of characters and the operators are those of the
string predefined generator instantiated for characters. [Annex D]

comment

A comment is information which is in addition to or clarifies the SDL specification. In SDL / GR comments may be
attached by a dashed line to any symbol. In SDL / PR comments are introduced by the keyword COMMENT. Comments
have no SDL defined meaning. See also note. [2.2.6]

common textual grammar

The common textual grammar is the subset of the concrete textual grammar which applies to both SDL / GR and
SDL / PR. [1.2]

communication path

A communication path is a transportation means that carries signal instances from one process instance or from the
environment to another process instance or to the environment. A communication path comprises either channel path(s)
or signal route path(s) or a combination of both. [2.7.4]

complete valid input signal set

The complete valid input signal set of a process is the union of the valid input signal set, the local signals, timer signals
and the implicit signals of the process. [2.4.4]

concrete grammar

A concrete grammar is the concrete syntax along with the well-formedness rules for that concrete syntax. SDL / GR and
SDL / PR are the concrete grammars of SDL. The concrete grammars are mapped to the abstract grammar to determine
their semantics. [1.2]

concrete graphical grammar

The concrete graphical grammar is the concrete grammar for the graphical of SDL / GR. [1.2, 1.5.3]

concrete graphical syntax

The concrete graphical syntax is the concrete syntax for the graphical of SDL / GR. The concrete graphical syntax is
expressed in Z.100 using an extended form of BNF. [1.2, 1.5.3]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 223

concrete syntax

The concrete syntax for the various representations of SDL is the actual symbols used to represent SDL and the
interrelationship between symbols required by the syntactic rules of SDL. The two concrete syntaxes used in Z.100 are
the concrete graphical syntax and the concrete textual syntax. [1.2]

concrete textual syntax

The concrete textual syntax is the concrete syntax for SDL / PR and the textual parts of SDL / GR. The concrete textual
syntax is expressed in Z.100 using BNF.[1.2, 1.5.2]

conditional expression

A conditional expression is an expression containing a Boolean expression which controls whether the consequence
expression or the alternative expression is interpreted. [5.4.2.3]

connect

Connect indicates the connection of channels to one or more signal routes or the interconnection of signal routes. [2.5.3]

connector

A connector in SDL / PR is the label on an action. A connector is an SDL / GR symbol which is either an in-connector or
an out-connector. A flow line is implied from out-connectors to the associated in-connector in the same process or
procedure identified by having the same name. [2.6.7, 2.6.8.2.2]

consistent partitioning subset

A consistent partitioning subset is a set of the blocks and subblocks in a system specification which provides a complete
view of the system with related parts at a corresponding level of abstraction. Thus, when a block or subblock is contained
in a consistent partitioning subset, its ancestors and siblings are too. [3.2.1]

consistent refinement subset

The consistent refinement subset is a consistent partitioning subset which contains all blocks and subblocks which use
the signals used by any of the blocks or subblocks. [3.3]

constraint

The constraint of a context parameter constrains actual context parameters and defines the properties of the parameter
known by the parameterized type. The constraint of a virtual type constrains the redefinitions and defines the properties
of the virtual type known by the enclosing type. See also gate constraint. [6.2]

context parameter

A (formal) context parameter of a parameterized type definition is the association of an identifier and a constraint. A
new type is defined (by a type expression) by associating some or all of the context parameters with actual definitions.
[6.2]

continuous signal

A continuous signal is a shorthand notation which allows initiating a transition when the associated Boolean condition
becomes True. [4.11]

control flow diagram

A control flow diagram is either a process diagram, a procedure diagram, or a service diagram.

create

Create is a synonym for create request.

create line area

The create line area in a block diagram connects the process area of the creating (parent) process with the process area
of the created (offspring) process. [2.4.3]

Superseded by a more recent version

224 Recommendation Z.100 (03/93) Superseded by a more recent version

create request

A create request is the action causing the creation and starting of a new process instance using a specified proress type
as a template. The actual parameters in the create request replace the formal parameters in the process definition. [2.7.2]

dash nextstate

A dash nextstate is a shorthand notation indicating that the nextstate of the process instance is the current state. [4..9]

data type

Data type is a synonym for abstract data type.

data type definition

The data type definition at any given point in an SDL specification defines the validity of operators, sorts, and
expressions and relationship between expressions. [5.2.1]

decision

A decision is an action within a transition which asks a question to which the answer can be obtained at that instant and,
based on the answer selects one of the outgoing transitions from the decision to continue interpretation. [2.7.5]

default initialization

A default initialization is a notation for associating the same value to all variables of the specified sort before their
associated process or procedure is interpreted. [5.4.3.3]

definition

A definition associates a name and a set of properties with a type or an instance. [1.3.1]

description

A description of a system is the description of its actual behaviour. [1.1]

diagram

A diagram is the SDL / GR representation for a part of a specification. [2.4.2]

duration

Duration is a predefined data sort for which the values are denoted as reals and represent the interval between two time
instants. [Annex D]

enabling condition

An enabling condition is a means for conditionally accepting a signal for input. [4.12]

endpoint constraint

An endpoint constraint is the SDL / GR representation of a constraint on a gate constraining which
blocks/processes/services may be at the other end of a channel/signal route/service signal route connected to the gate.
[6.1.4]

entity kind

An entity kind is a categorization of SDL types based on similarity of use. [2.2.2]

environment

The term environment is a synonym for the environment of a system. When context allows, it may be a synonym for the
environment of a block, process, procedure or a service.

environment of a system

The environment of a system is the external world of the system being specified. The environment interacts with the
system by sending/receiving signal instances to/from the system. [1.3.2]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 225

equation

An equation is a relation between terms of the same sort which holds for all possible values substituted for each value
identifier in the equation. An equation may be an axiom. [5.1.3]

error

An error occurs during the interpretation of a valid specification of a system when one of the dynamic conditions of SDL
is violated. Once an error has occurred, the subsequent behaviour of the system is not defined. [1.3.3]

export

The term export is a synonym for export operation.

exported variable

An exported variable is a variable which can be used in an export operation. Its definition contains the keyword
exported. [2.6.1.1]

exporter

An exporter of a variable is the process instance which owns the variable and exports its values. [4.13]

export operation

An export operation is the execution of an export action by which the exporter discloses the current value of a variable.
See also import operation. [4.13]

expression

An expression is either a literal, an operator application, a synonym, a variable access, a conditional expression, or an
imperative operator applied to one or more expressions. When an expression is interpreted, a value is obtained (or the
system is in error). [2.3.4, 5.3.3.1]

external synonym

An external synonym of a predefined data sort whose value is not specified in the system specification. [4.3.1]

Extract!

Extract! is an implied operator for extracting a field from a structured sort and is implied in an expression when a
variable is immediately followed by bracketed expression(s). [5.3.1.10, 5.3.3.4, 5.3.3.5]

field

A field is an element of a structured sort. [5.3.1.10]

flow line

A flow line is a symbol used to connect areas in a control flow diagram. [2.2.4, 2.6.8.2.2]

formal context parameter

See context parameter.

formal parameter

A formal parameter is a variable name to which actual values are assigned or which are replaced by actual variables.
[2.4.4, 2.4.6, 4.2]

gate

A gate is defined in a block/process/service type and represents a connection point for channels/signal routes connecting
instances of the type with other instances or with the enclosing frame symbol. [6.1.4]

gate constraint

A gate constraint constrains the way channels/signal routes may be connected to the gate, and places restrictions on
their incoming and outgoing signals. [6.1.4]

general parameters

The general parameters in both a specification and a description of a system relate to such non-behavioural matters as
temperature limits, construction, exchange capacity, grade of service, etc., and are not defined in SDL. [1.1]

Superseded by a more recent version

226 Recommendation Z.100 (03/93) Superseded by a more recent version

generator

A generator allows a parameterized text template to be defined which is expanded by transformation before the
semantics of the data types are considered. [5.3.1.12, 7.2]

graph

A graph in the abstract syntax is a part of an SDL specification such as a procedure graph, service graph, or a process
graph. [2.4.4, 2.4.5, 2.4.6]

graphical gate constraint

A graphical gate constraint is the SDL / GR representation of a gate constraint. [6.1.4]

ground expression

A ground expression is an expression containing only operators, synonyms and literals. [5.3.3.2]

hierarchical structure

A hierarchical structure is a structure of a system specification where partitioning and refinement allow different views
of the system at different levels of abstraction. See also block tree diagram. [3.1]

identifier

An identifier is the unique identification of an object, formed from a qualifier part and a name. [2.2.2]

imperative operator

An imperative operator is a view expression, timer active expression, import expression, anyvalue expression, now
expression, or one of the PId expressions: self, parent, offspring, or sender. [5.4.4]

implicit transition

An implicit transition is in the concrete syntax initiated by a signal in the complete valid input signal set and not
specified in an input or save for the state. An implicit transition contains no action and leads directly back to the same
state. [4.8]

import

The term import is a synonym for import operation. [4.13]

imported variable

An imported variable is a variable used in an import expression. [4.13]

importer

An importer of an imported variable is the process instance which imports the value. [4.13]

import expression

An import expression specifies the keyword import and the identifier of a variable. [4.13]

import operation

An import operation is the execution of an import expression by which the importer accesses the value of an exported
variable. [4.13]

inherit

A specialized type or sort has or inherits all the properties of its supertype or referenced sort. [5.3.1.11, 6.3]

in parameter

An in parameter is a formal parameter attribute where a value is passed to a procedure via an actual parameter. [2.4.6]

inlout parameter

An in/out parameter is a formal parameter attribute where a formal parameter name is used as a synonym for the
variable (i.e., the actual parameter must be a variable). [2.4.6]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 227

in-connector

See connector.

infix operator

An inflx operator is one of the predefined dyadic operators of SDL (=>, or, xor, and, in, /=, =, >, <, <=, >=, +, -, //, *, /,
mod, rem) which are placed between its two arguments. [5.3.1.1]

informal text

Informal text is text included in an SDL specification for which semantics are not defined by SDL, but through some
other model. Informal text is enclosed in apostrophes. [2.2.3]

inlet

An inlet represents a line, such as a channel or a flow line, entering an SDL / GR macro call. [4.2.3]

input

An input is the consumption of a signal from the input port which starts a transition. During the consumption of a
signal, the values associated with the signal become available to the process instance. [2.6.4, 4.10.2]

input port

The input port of a process is a queue which receives and retains signals in the order of arrival until the signals are
consumed by an input. The input port may contain any number of retained signals. [2.4.4]

instance

An instance is a part of a system. An instance has properties and may exhibit behaviour. An instance of a type is an
object which has all the properties of the type as given in the type definition. [1.3.1]

instantiation

Instantiation is the creation of an instance of a type. [1.3.1]

integer

Integer is a predefined data sort for which the values are the mathematical integers (..., –2, –1, 0, +1, +2, ...). For the sort
integer the predefined operators +, –, *, /, and the ordering operators. [Annex D]

interaction diagram

An interaction diagram is a block diagram, system diagram, channel substructure diagram, or block substructure
diagram.

join

A join indicates a change in the execution flow of a transition string by indicating the connector to or label of the action
which should be executed next. [2.6.8.2.2]

keyword

A keyword is a reserved lexical unit in the concrete textual syntax. [2.2.1]

label

A label is a name followed by a colon and is used in the concrete textual syntax to indicate the target for transfer of
control from a join which references the same identifier as the label. [2.6.7, 2.6.8.2.2]

level

The term level is a synonym for level of abstraction.

level of abstraction

A level of abstraction is one of the levels of a block tree diagram. A description of a system is one block at the highest
level of abstraction and is shown as a single block at the top of a block tree diagram. [3.2.1]

lexical rules

Lexical rules are rules which define how lexical units are built from characters. [2.2.1, 4.2.1]

Superseded by a more recent version

228 Recommendation Z.100 (03/93) Superseded by a more recent version

lexical unit

Lexical units are the terminal symbols of the concrete textual syntax. [2.2.1]

literal

A literal denotes a value; it is an operator without an argument. [2.3.3, 5.1.2, 5.2.2, 5.3.1.14]

macro

A macro is a named collection of syntactic or textual items, which replaces the macro call before the meaning of the
SDL representation is considered (i.e., a macro has meaning only when replaced in a particular context). [4.2]

macro call

A macro call is an indication of a place where the macro definition with the same name should be expanded. [4.2.3]

Make!

Make! is an operation only used in data type definitions to form a value of a complex type (i.e., structured sort).
[5.3.1.10]

merge area

A merge area is where one flow line connects to another. [2.6.8.2.2]

Meta IV

Meta IV is a formal notation for expressing the abstract syntax of a language. [1.5.1]

model

A model gives the mapping for shorthand notations expressed in terms of previously defined concrete syntax. [1.4.1,
1.4.2]

Modify!

Modify! is an implied operator on structured sorts for modifying a field from a structured sort and is implied in
expressions when a variable is immediately followed by bracketed expressions and then :=. Within axioms Modify! is
used explicitly. (See also Extract!). [5.3.1.10, 5.4.3.1, 5.4.3.2]

name

A name is a lexical unit used to name SDL objects. [2.2.1, 2.2.2]

natural

Natural is a predefined data syntype for which the values are the non-negative integers (i.e., 0, 1, 2, ...). The operators
are the operators of the sort integer. [Annex D]

newtype

A newtype introduces a sort, a set of operators, and a set of equations. Note that the term newtype might be confusing
because actually a new sort is introduced, but newtype is maintained for historical reasons. [5.2.1]

nextstate

The nextstate terminates a transition and specifies the new state of the process instance. [2.8.6.2.1]

node

In the abstract syntax, a node is a designation of one of the basic concepts of SDL.

note

A note is text enclosed by /* and */ which has no SDL defined semantics. See also comment. [2.2.1]

now expression

A now expression is an expression of the time sort which yields the current system time. [5.4.4.1]

null

Null is a literal of the predefined data sort PId. [Annex D]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 229

offspring

offspring is an expression of the predefined data sort PId. When offspring is evaluated in a process it gives the
PId-value of the process most recently created by this process. If the process has not created any processes, the result of
the evaluation of offspring is null. [2.4.4]

operator

An operator is a denotation for an operation. Operators are defined in a partial type definition. For example +, –, *, /, are
names for operators defined for sort integer. [5.1.2, 5.1.3, 5.2.1, 5.3.2]

operator signature

An operator signature defines the sort(s) of the values to which the operator can be applied and the sort of the resulting
value. [5.2.2]

option

An option is a concrete syntax construct in a generic SDL system specification allowing different system structures to be
chosen before the system is interpreted. [4.3.3, 4.3.4]

ordering operators

The ordering operators are <, <=, > or >=. [5.3.1.8]

out-connector

See connector.

outlet

An outlet represents a line, such as a channel or flow line, exiting a macro diagram. [4.2.2]

output

An output is an action within a transition which generates a signal instance. [2.7.4]

package

A package consists of a set of definitions. [2.4.1.2]

package interface

A package interface lists the visible definitions of a package. [2.4.1.2]

package reference

A package reference makes definitions within a package visible to another package or to a system. Either individual or
all definitions listed in the package interface of the package become visible. [2.4.1.2]

page

A page is one of the components of a physical partitioning of a diagram. [2.2.5]

parameterized type

A parameterized type is a type where some of its dependencies on the enclosing scope units are represented by context
parameters. [1.3.1]

parent

parent is an expression of the predefined data sort PId. When a process evaluates this expression, the result is the
PId-value of the parent process. If the process was created at system initialization time, the result is null. [2.4.4]

partial type definition

The partial type definition for a sort defines some of the properties related to the sort. A partial type definition is part of
a data type definition. [5.2.1]

partitioning

Partitioning is the subdivision of a unit into smaller components which, when taken as a whole, have the same behaviour
as the original unit. Partitioning does not affect the static interface of a unit. [3.1, 3.2]

Superseded by a more recent version

230 Recommendation Z.100 (03/93) Superseded by a more recent version

PId

PId is a predefined data sort for which there is one literal, null. PId is an abbreviation for process instance identifier,
and the values of the sorts are used to identify process instances. [Annex D]

powerset

Powerset is the predefined data generator used to introduce mathematical sets. The operators for powerset are in, Incl,
Del, union, intersection and the ordering operators. [Annex D]

predefined

Predefined is a package containing the partial type definitions for the predefined data. [2.4.1.2, 5.2.1, 5.3.1.3, Annex D]

predefined data

For simplicity of description, the term predefined data is applied to both predefined names for sorts introduced by
partial type definitions and predefined names for data type generators. Boolean, character, charstring, duration,
integer, natural PId, real and time are sort names which are predefined. Array, powerset, and string are data type
generator names which are predefined. Predefined data are defined in the implicitly used package Predefined. [2.4.1.2,
5.1.1, 5.3.1.3, Annex D]

priority input

A priority input is a shorthand notation indicating that the reception of the listed signals should take precedence over
signals listed in inputs to that state. [4.10]

procedure

A procedure is an encapsulation of the behaviour of part of a process. A procedure is defined in one place but may be
referred to several times within a process. [2.4.6]

procedure call

A procedure call is the invocation of a named procedure for interpretation of the procedure and passing actual
parameters to the procedure. [2.7.3]

procedure constraint

A procedure constraint is the requirement on actual parameters to a formal procedure context parameter in terms of
either a procedure or a procedure constraint. [6.2.2]

procedure context parameter

A procedure context parameter is a context parameter for which the actual context parameter must be a procedure
fulfilling the procedure constraint. [6.2.2]

procedure signature

A procedure signature is a requirement on a formal procedure context parameter in terms of constraints on formal
parameters of the actual procedure. [6.2.2]

procedure start

The procedure start in a procedure indicates the point at which execution of the procedure begins on a procedure call.
[2.4.6]

process

A process is a communicating extended finite state machine. Communication can take place via signals or shared
variables. The behaviour of a process depends on the order of arrival of signals in its input port. [2.4.4]

process constraint

A process constraint is the requirement on actual parameters to a formal process context parameter, either in terms of a
process type (the actual process instance must then be a process of this type or of a subtype) or a process signature (the
actual process instance must then be compatible with the process signature). [6.2.1]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 231

process context parameter

A process context parameter is a context parameter for which the actual parameter must be a process definition or a
typed process definition fulfilling the process constraint. [6.2.1]

process instance

A process instance is a member of the set of processes. A process instance is created at system creation time or
dynamically as a result of a create. See self, sender, parent, and offspring. [2.4.4]

process signature

A process signature is a requirement on a formal process context parameter in terms of constraints on formal
parameters of the actual processes and on the valid input signal set of the actual process. [6.2.1]

process type

A process type is the association of a name and a set of properties that all process instances of that process type will
have. [6.1.1.3]

qualifier

The qualifier is part of an identifier which is the extra information to the name of the identifier to ensure uniqueness.
Qualifiers are always present in the abstract syntax, but only have to be used as far as needed for uniqueness in the
concrete syntax when the qualifier of an identifier cannot be derived from the context of the use of the name part. [2.2.2]

real

Real is a predefined data sort for which the values are the numbers which can be presented by one integer divided by
another. The predefined operators for the sort real have the same names as the operators of the sort integer. [Annex D]

referenced definition

A referenced definition is a syntactic means of distributing a system definition into several parts and relating the parts to
each other. [2.4.1.3]

refinement

Refinement is the addition of new details to the functionality at a certain level of abstraction. The refinement of a system
causes an enrichment in its behaviour or its capabilities to handle more types of signals and information, including those
signals to and from the environment. Compare with partitioning. [3.3]

remote procedure call

A remote procedure call is a request by a client process for a server process to execute a procedure defined in the server
process. [4.14]

remote procedure input transition

A remote procedure input transition indicates a state in which a process will execute the specified exported procedure,
possibly followed by a transition. [4.14]

remote procedure save

A remote procedure save indicates that the specified exported procedure will not be executed in the state. [4.14]

remote procedure definition

A remote procedure definition introduces the name and procedure signature for imported and exported procedures.
[4.14]

remote variable definition

A remote variable definition introduces the name and sort signature for imported and exported values. [4.13]

reset

Reset is an operation defined for timers that makes the timer inactive and removes any pending timer signals from the
input port of the process. See active timer. [2.8]

Superseded by a more recent version

232 Recommendation Z.100 (03/93) Superseded by a more recent version

retained signal

A retained signal is a signal in the input port of a process, i.e., a signal which has been received but not consumed by
the process. [2.4.4]

return

A return (from a procedure) is the transfer of control to the calling procedure or process. [2.6.8.2.4]

revealed attribute

A variable owned by a process may have a revealed attribute, in which case another process is permitted to view the
value associated with the variable. See view definition. [2.6.1.1]

save

A save is the declaration of those signals that should not be consumed in a given state. [2.6.5]

SDL

CCITT SDL (Specification and Description Language) is a formal language providing a set of constructs for the
specification of the behaviour of a system.

SDL/GR

SDLIGR is the graphical representation in SDL. The grammar for SDLIGR is defined by the concrete graphical
grammar and the common textual grammar. [1.2]

SDL/PR

SDLIPR is the textual phrase representation in SDL. The grammar for SDL / PR is defined by the concrete textual
grammar. [1.2]

scope unit

A scope unit in the concrete grammar defines the range of visibility of identifiers. Examples of scope units include the
system, block, process, procedure, partial type definitions and service definitions. [2.2.2]

selection

Selection means providing those external synonyms needed to make a specific system specification from a generic system
specification. [4.3, 4.3.3, 4.3.4]

self

self is an expression of the predefined data sort PId. When a process evaluates this expression, the result is the PId-value
of that process. self never results in the value Null. See also parent, offspring, PId. [2.4.4, 5.5.4.3]

semantics

Semantics gives meaning to an entity: the properties it has, the way its behaviour is interpreted, and any dynamic
conditions which must be fulfilled for the behaviour of the entity to meet SDL rules. [1.4.1, 1.4.2]

sender

sender is a PId expression. When evaluated sender yields the PId value of the sending process of the signal that
activated the current transition. [2.4.4, 2.6.4, 5.5.4.3]

service

A service is an alternative way of specifying a part of the behaviour of a process. Each service may define a partial
behaviour of a process. [2.4.5]

service type

A service type is the association of a name and a set of properties that all services of that service type will have. [6.1.1.4]

set

Set is an operation defined for timers which makes a timer an active timer. Set specifies the system time at which the
active timer is to return a timer signal. [2.8]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 233

shorthand notation

A shorthand notation is a concrete syntax notation providing a more compact representation implicitly referring to Basic
SDL concepts. [1.4.2, 4.1]

signal

A signal is an instance of a signal type communicating information to a process instance. [2.5.4]

signal constraint

A signal constraint is the requirement on actual parameters to a formal signal context parameter, either in terms of a
signal type (specifying the signal definition must be a subtype of the constraint type) or a signal signature (the actual
signal instance must then be compatible with the signal signature). [6.2.4]

signal context parameter

A signal context parameter is a context parameter for which the actual parameter must be a signal type fulfilling the
signal constraint. [6.2.4]

signal definition

A signal definition defines a named signal type and associates a list of zero or more sort identifiers with the signal name.
This association allows signals to carry values. [2.5.4]

signal list

A signal list is a list of signal identifiers used in channel and signal route definitions to indicate which signals may be
conveyed by the channel or signal route in one direction. [2.5.5]

signal route

A signal route indicates the flow of signals between a process type and either another process type in the same block or
the channels connected to the block. [2.5.2]

signal signature

A signal signature is a requirement on a formal signal context parameter in terms of constraints on sorts of the
parameters of the actual signal type. [6.2.4]

signature

The signature of a type is the set of sorts and set of operators for that type. [5.2.1, 5.2.2]

simple expression

A simple expression is an expression which only contains operators, synonyms, and literals of the predefined sorts.
[4.3.2]

sort

A sort is a set of values with common characteristics. Sorts are always nonempty and disjoint. [2.3.3, 5.1.2, 5.1.3, 5.2.1]

sort constraint

A sort constraint is the requirement on actual parameters to a formal sort context parameter, either in terms of a sort
(the actual sort must then be a subtype of this type) or a sort signature (the actual sort must then be compatible with the
operators in this sort signature). [6.2.9]

sort context parameter

A sort context parameter is a context for which the actual parameter must be a sort fulfilling the sort constraint. [6.2.9]

sort signature

A sort signature is a requirement on a formal sort context parameter in terms of constraints on operators and literals of
the actual sort. [6.2.9]

Superseded by a more recent version

234 Recommendation Z.100 (03/93) Superseded by a more recent version

specialization

Specialization creates a new type, called a subtype, by adding properties and/or redefining properties of another type
called the supertype. [1.3.1]

specification

A specification is a definition of the requirements of a system. A specification consists of general parameters required of
the system and the functional specification of its required behaviour. Specification may be also used as a shorthand for
“specification and/or description”, e.g., in SDL specification or system specification. [1.1]

spontaneous transition

A spontaneous transition allows interpretation of a transition without any signal consumption by the process. [2.6.6]

start

The start in a process or service is a transition string interpreted before any state or action at process creation. [2.6.2]

state

A state is a condition in which a process instance can consume a signal. [2.6.3]

stop

A stop is an action which terminates a process instance. When a stop is interpreted, all variables owned by the process
instance are destroyed and all retained signals in the input port are no longer accessible. [2.6.8.2.3]

string

String is a predefined data generator used to introduce lists. The predefined operators include Length, First, Last,
Substring and concatenation (//). [Annex D]

structure sort

A structure sort is a sort whose values are composed from a list of values of sorts (fields). A structure sort has implicit
operators and equations and special concrete syntax for these implicit operators by which the values of the fields can be
accessed and modified independently. [5.3.1.10]

subblock

A subblock is a block contained within another block. Subblocks are formed when a block is partitioned. [3.2.1, 3.2.2]

subchannel

A subchannel is a channel formed when a block is partitioned. A subchannel connects a subblock to a boundary of the
partitioned block or a block to the boundary of a partitioned channel. [3.2.2, 3.2.3]

subsignal

A subsignal is a refinement of a signal and may be further refined. [3.3]

subtype

A subtype is a type defined as a specialization of another type (the supertype). The properties associated with a subtype
are all the properties of the supertype, except redefined virtuals, plus the added properties being special for the subtype.
[1.3.1, 6.3]

supertype

A supertype is the type being used in defining a subtype. [1.3.1, 6.3]

symbol

A symbol is a terminal in the concrete syntaxes. A symbol may be one of a set of shapes in the concrete graphical syntax,
or a sequence of characters in the concrete textual syntax. [1.5.2, 1.5.3]

synonym

A synonym is a name which represents a value of a sort. [5.3.1.13]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 235

synonym context parameter

A synonym context parameter is a context parameter for which the actual parameter must be a synonym fulfilling the
requirement on actual parameters to a formal synonym context parameter in terms of a sort type. [6.2.8]

syntype

A syntype specifies a set of values which corresponds to a subset of the values of the sort. The operators of the syntype
are the same as those of the parent sort. [5.3.1.9]

system

A system is a set of blocks connected to each other and the environment by channels. [2.4.2]

system type

A system type is the association of a name and a set of properties that all system instances of this type will have. [6.1.1.1]

task

A task is an action within a transition containing either a sequence of assignment statements or informal text. [2.7.1]

term

A term is syntactically equivalent to an expression. Terms are only used in axioms and are distinguished from
expressions for reasons of clarity. [5.2.3, 5.3.3]

text extension symbol

A text extension symbol is a container of text which belongs to the graphical symbol to which the text extension symbol is
attached. The text in the text extension symbol follows the text in the symbol to which it is attached. [2.2.7]

textual endpoint constraint

A textual endpoint constraint is the SDL/PR representation of an endpoint constraint of a gate putting requirements on
which blocks/processes/services may be at the other end of a channel/signal route/service signal route connected to the
gate. [6.1.4]

time

Time is a predefined data sort for which the values are denoted as the values of real. The predefined operators for sorts
time and duration are + and –.

timer

A timer is an object, owned by a process instance, that can be active or inactive. An active timer returns a timer signal to
the owning process instance at a specified time. See also set and reset. [2.8, 5.4.4.5]

timer active expression

A timer active expression is a Boolean expression which, when executed, indicates whether the identified timer is an
active timer. [5.4.4.5]

timer context parameter

A timer context parameter is a context parameter for which the actual parameter must be a timer definition. [6.2.7]

transition

A transition is an active sequence which occurs when a process instance changes from one state to another. [2.6.8]

transition string

A transition string is a sequence of zero or more actions. [2.6.8.1]

type

A type is a set of properties for instances. Examples of kinds of types in SDL include blocks. processes, services, signals,
and systems. [1.3.1]

Superseded by a more recent version

236 Recommendation Z.100 (03/93) Superseded by a more recent version

type definition

A type definition defines the properties of a type. [1.3.1]

type expression

A type expression denotes a type that is either a base type or an anonymous type defined by applying actual context
parameter to a parameterized base type. [6.1.2]

valid input signal set

The valid input signal set of a process is the list Of all external signals handled by any input in the process. It consists of
those signals in signal routes leading to the process. Compare with complete valid input signal set. [2.4.4, 2.5.2]

valid specification

A valid specification is a specification which follows the concrete syntax and static well-formedness rules. [1.3.3]

value

A value of a sort is one of the values which are associated with a variable of that sort, and which can be used with an
operator requiring a value of that sort. A value is the result of the interpretation of an expression. [2.3.3, 5.1.3]

value returning procedure

A value returning procedure is a procedure that may return a value. [5.4.5]

variable

A variable is an entity owned by a process instance or procedure instance which can be associated with a value through
an assignment statement. When accessed, a variable yields the last value which was assigned to it. [2.3.2]

variable context parameter

A variable context parameter is a context parameter for which the actual must be a variable fulfilling the requirement
on actual parameters to a formal variable context parameter in terms of a sort type; the actual variable must be a
variable of this type. [6.2.5]

variable definition

A variable definition is the declaration that the variable names listed will be visible in the process, procedure or service
containing the variable definition. [2.6.1.1]

view definition

A view definition defines a view of a variable in another process (where it has the revealed attribute). This allows the
viewing process to access the value of that variable. [2.6.1.2]

view expression

A view expression is used within an expression to yield the current value of a viewed variable. [5.4.4.4]

virtual continuous signal

A virtual continuous signal is a continuous signal where the transition may be redefined in a subtype. [4.11, 6.3.3]

virtual input

A virtual input transition is an input transition that in a subtype may be redefined to a save or to an input transition.
[2.6.4, 6.3.3]

virtual priority input

A virtual priority input is a transition that may be redefined to a priority input or to a save. [6.3.3]

virtual procedure start

A virtual procedure start is a transition that may be redefined in a specialized procedure. [2.4.6, 6.3.3]

Superseded by a more recent version

 Recommendation Z.100 (03/93) Superseded by a more recent version 237

virtual remote procedure input

A virtual remote procedure input is a transition that may be redefined to a new remote procedure input transition or to a
remote procedure save. [6.3.3]

virtual save

A virtual save is a save that in a subtype may be redefined to an input transition. [2.6.5, 6.3.3]

virtual start

A virtual start is a start transition that in a subtype may be redefined to a new start transition. [2.6.2, 6.3.3]

virtual spontaneous transition

A virtual spontaneous transition is a spontaneous transition in a type that may be redefined in a subtype. [2.6.6, 6.3.3]

virtual type

A virtual type is a type that may be redefined in subtypes of the enclosing type. [6.3.2]

virtuality

The virtuality of a type or transition indicates if the type/transition is a virtual type, redefined in a subtype (and still a
virtual type), or finalized (that is redefined, but not a virtual type). [6.3.2]

virtuality constraint

The virtuality constraint of a virtual type puts requirements on the redefinitions of the virtual type by means of a
constraint type. Both the definition and redefinitions of a virtual type must be definitions of subtypes of the constraint
type. The constraint type of a virtual type also determines the properties of the virtual type known by the enclosing type
having the local virtual type. [6.3.2]

visibility

The visibility of an identifier is the scope units in which it may be used. No two definitions in the same scope unit and
belonging to the same entity kind may have the same name. [2.2.2]

well-formedness rules

Well-formedness rules are constraints on an abstract syntax or concrete syntax enforcing static conditions not directly
expressed by the syntax rules. [1.4.1, 1.4.2]

