

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.104
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(04/2016)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language –
Data and action language in SDL-2010

Recommendation ITU-T Z.104

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109

Application of formal description techniques Z.110–Z.119

Message Sequence Chart (MSC) Z.120–Z.129

User Requirements Notation (URN) Z.150–Z.159

Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.349

Data-oriented human-machine interfaces Z.350–Z.359

Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY

Quality of telecommunication software Z.400–Z.409

Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS

Methods for validation and testing Z.500–Z.519

MIDDLEWARE

Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.104 (04/2016) i

Recommendation ITU-T Z.104

Specification and Description Language –

Data and action language in SDL-2010

Summary

Scope/Objective

Recommendation ITU-T Z.104 defines the data features of the Specification and Description

Language so that data definitions and expressions are well defined. Together with Recommendations

ITU-T Z.100, ITU-T Z.101, ITU-T Z.102, ITU-T Z.103, ITU-T Z.105, ITU-T Z.106 and ITU-T Z.107,

this Recommendation is part of a reference manual for the language. The language defined in this

Recommendation partially overlaps features of the language included in Basic SDL-2010 in

Recommendation ITU-T Z.101 and used in Comprehensive SDL-2010 in Recommendation

ITU-T Z.102 and the features of Recommendation ITU-T Z.103.

Coverage

The Specification and Description Language has concepts for behaviour, data description and

(particularly for larger systems) structuring. The basis of behaviour description is extended finite state

machines communicating by messages. Data description is based on data types for values. The basis

for structuring is hierarchical decomposition and type hierarchies. Though a distinctive feature of the

Specification and Description Language is the graphical representation, the data and expression

language is textual. This Recommendation covers the features of the language used to encode and

decode data communicated by channels, define data types with values and operations and variables

(including parameters) based on data types and expression actions that use the data types. This

Recommendation does not always provide a canonical syntax, but by applying the Model descriptions

given, a specification is transformed to Basic SDL-2010 defined in ITU-T Z.101 except in those cases

where additional abstract syntax is added in this Recommendation. Object-oriented data in

ITU-T Z.107 is an extension to this Recommendation.

Applications

The Specification and Description Language is applicable within standards bodies and industry. The

main application areas for which the Specification and Description Language has been designed are

stated in Recommendation ITU-T Z.100, but the language is generally suitable for describing reactive

systems. The range of applications is from requirement description to implementation. The features of

the language defined in Recommendation ITU-T Z.104 are essential for the data within a system.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Z.104 2004-10-07 17 11.1002/1000/2203

2.0 ITU-T Z.104 2011-12-22 17 11.1002/1000/11391

2.1 ITU-T Z.104 (2011) Amd. 1 2012-10-14 17 11.1002/1000/11758

3.0 ITU-T Z.104 2016-04-29 17 11.1002/1000/12858

Keywords

Abstract data types, action language, C programming language binding, data, data types, encoding rules,

Predefined package, SDL-2010, Specification and Description Language.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/2203
http://handle.itu.int/11.1002/1000/11391
http://handle.itu.int/11.1002/1000/11758
http://handle.itu.int/11.1002/1000/12858
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Z.104 (04/2016)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2016

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.104 (04/2016) iii

Table of Contents

 Page

1 Scope and objective .. 1

1.1 Objective ... 1

1.2 Application ... 1

2 References ... 2

3 Definitions .. 3

3.1 Terms defined elsewhere .. 3

3.2 Terms defined in this Recommendation ... 3

4 Abbreviations and acronyms .. 3

5 Conventions .. 3

6 General rules ... 4

7 Organization of Specification and Description Language specifications 4

7.1 Framework .. 4

7.2 Package ... 4

7.3 Referenced definition ... 5

8 Structural concepts .. 5

8.1 Types, instances and gates .. 5

8.2 Type references and operation references .. 7

8.3 Context parameters ... 7

8.4 Specialization ... 7

9 Agents ... 7

10 Communication ... 8

10.1 Channel ... 8

10.2 Connection .. 9

10.3 Signal .. 9

10.4 Signal list area .. 10

10.5 Remote procedures ... 10

10.6 Remote variables .. 10

10.7 Communication path encoding rules, encode and decode 10

11 Behaviour .. 14

11.1 Start ... 14

11.2 State .. 15

11.3 Input .. 15

11.4 Priority input ... 16

11.5 Continuous signal ... 16

11.6 Enabling condition .. 16

11.7 Save .. 17

11.8 Implicit transition ... 17

iv Rec. ITU-T Z.104 (04/2016)

 Page

11.9 Spontaneous transition .. 17

11.10 Label ... 17

11.11 State machine and composite state ... 17

11.12 Transition .. 17

11.13 Action ... 17

11.14 Statement list .. 19

11.15 Timer .. 19

12 Data ... 19

12.1 Data definitions .. 20

12.2 Use of data .. 37

12.3 Active use of data ... 41

13 Generic system definition ... 47

14 Package Predefined ... 47

14.1 Boolean sort .. 47

14.2 Character sort .. 48

14.3 String sort ... 49

14.4 Charstring sort .. 50

14.5 Integer sort .. 50

14.6 Natural syntype ... 52

14.6.2 Usage .. 52

14.7 Real sort .. 52

14.8 Array sort .. 54

14.9 Vector ... 54

14.10 Powerset sort .. 54

14.11 Duration sort ... 55

14.12 Time sort ... 56

14.13 Bag sort ... 57

14.14 ASN.1 Bit and Bitstring sorts ... 58

14.15 ASN.1 Octet and Octetstring sorts ... 61

14.16 Pid sort .. 61

14.17 Encoding sort .. 61

14.18 Support for ASN.1 character, symbol string and NULL types 62

14.19 Predefined exceptions ... 66

Annex A – Abstract data types and axioms ... 67

A.1 Introduction .. 67

A.2 Notation .. 67

Annex B – Specification of the set of text encoding rules ... 75

B.1 Boolean ... 75

B.2 Character ... 75

 Rec. ITU-T Z.104 (04/2016) v

 Page

B.3 String .. 75

B.4 Charstring, IA5String, NumericString, PrintableString, VisibleString 75

B.5 Integer ... 76

B.6 Natural .. 76

B.7 Real ... 76

B.8 Array ... 77

B.9 Vector ... 77

B.10 Powerset ... 78

B.11 Duration .. 78

B.12 Time .. 78

B.13 Bag .. 79

B.14 Bit, Bitstring ... 79

B.15 Octet, Octetstring .. 79

B.16 Pid, pid sorts ... 80

B.17 Null ... 80

B.18 Enumerated (literal list) .. 80

B.19 Structures .. 81

B.20 Choice ... 81

B.21 Inherits and syntype .. 81

Annex C – Language binding .. 82

C.1 C Language binding ... 82

Bibliography... 147

vi Rec. ITU-T Z.104 (04/2016)

Introduction

Status/Stability

This Recommendation is part of the ITU-T Z.100 to ITU-T Z.107 series of Recommendations that

give the complete language reference manual for SDL-2010. The text of this Recommendation is

stable. For more details see Recommendation ITU-T Z.100.

 Rec. ITU-T Z.104 (04/2016) 1

Recommendation ITU-T Z.104

Specification and Description Language –

Data and action language in SDL-2010

1 Scope and objective

This Recommendation defines the data and action language features of the Specification and

Description Language. The features defined in this document include: encoding and decoding of data

communicated over channels, the definition of data types (including interfaces), the definition of

variables (including parameters), the definition and application of operations, the evaluation of

expressions and assignment of values to variables. Without these features the language would be of

limited use. For this reason, even very simple specifications in the Specification and Description

Language use ITU-T Z.104 features. Together with [ITU-T Z.100], [ITU-T Z.101], [ITU-T Z.102],

[ITU-T Z.103], [ITU-T Z.105], [ITU-T Z.106] and [ITU-T Z.107], this Recommendation forms a

reference manual for the language.

1.1 Objective

The objective of this Recommendation is to fully define the data related features of the Specification

and Description Language (except [ITU-T Z.105] and [ITU-T Z.107] features). Some of the ITU-T

Z.104 material is also in [ITU-T Z.100] and [ITU-T Z.101]. These definitions should be entirely

consistent. The difference between the descriptions in [ITU-T Z.100] and [ITU-T Z.101] and the

definition in Recommendation ITU-T Z.104 is that the former descriptions are overviews to enable

data to be used with other features of SDL-2010, whereas the ITU-T Z.104 definition is intended to

be complete (with the exception of definition of data types in ASN.1 modules and object-oriented –

see [ITU-T Z.105] and [ITU-T Z.107] respectively).

Recommendation ITU-T Z.104 also includes a mechanism for binding data definitions and actions

expressed in the concrete syntax from other notations as described in Annex C to the abstract grammar

and semantics of SDL-2010 and data binding in clause 7.2. By default the concrete grammar is as

given in the main body of ITU-T Z.104 or [ITU-T Z.101], [ITU-T Z.102], [ITU-T Z.103],

[ITU-T Z.105], [ITU-T Z.106] and [ITU-T Z.107].

1.2 Application

This Recommendation is part of the reference manual for the Specification and Description

Language.

The use of data is so fundamental, that even the simplest specifications need some data language

features. Therefore, it is almost certain that some features defined in Recommendation ITU-T Z.104

will appear in any specification in SDL-2010.

2 Rec. ITU-T Z.104 (04/2016)

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T T.50] Recommendation ITU-T T.50 (1992), International Reference Alphabet (IRA)

(Formerly International Alphabet No. 5 or IA5)  Information technology 

7-bit coded character set for information interchange.

[ITU-T X.680] Recommendation ITU-T X.680 (2015) | ISO/IEC 8824-1:2015, Information

technology – Abstract Syntax Notation One (ASN.1): Specification of basic

notation.

[ITU-T X.681] Recommendation ITU-T X.681 (2015) | ISO/IEC 8824-2:2015, Information

technology – Abstract Syntax Notation One (ASN.1): Information object

specification.

[ITU-T X.682] Recommendation ITU-T X.682 (2015) | ISO/IEC 8824-3:2015, Information

technology – Abstract Syntax Notation One (ASN.1): Constraint specification.

[ITU-T X.683] Recommendation ITU-T X.683 (2015) | ISO/IEC 8824-4:2015, Information

technology – Abstract Syntax Notation One (ASN.1): Parameterization of

ASN.1 specifications.

[ITU-T X.690] Recommendation ITU-T X.690 (2015) | ISO/IEC 8825-1:2015, Information

technology – ASN.1 encoding rules: Specification of Basic Encoding Rules

(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules

(DER).

[ITU-T X.691] Recommendation ITU-T X.691 (2015) | ISO/IEC 8825-2:2015, Information

technology – ASN.1 encoding rules: Specification of Packed Encoding Rules

(PER).

[ITU-T X.693] Recommendation ITU-T X.693 (2015) | ISO/IEC 8825-4:2015, Information

technology – ASN.1 encoding rules: XML Encoding Rules (XER).

[ITU-T X.696] Recommendation ITU-T X.696 (2015) | ISO/IEC 8825-7:2015, Information

technology – ASN.1 encoding rules: Specification of Octet Encoding Rules

(OER).

[ITU-T Z.100] Recommendation ITU-T Z.100 (2016), Specification and Description

Language 2008 – Overview of SDL-2010.

[ITU-T Z.101] Recommendation ITU-T Z.101 (2016), Specification and Description

Language – Basic SDL-2010.

[ITU-T Z.102] Recommendation ITU-T Z.102 (2016), Specification and Description

Language – Comprehensive SDL-2010.

[ITU-T Z.103] Recommendation ITU-T Z.103 (2016), Specification and Description

Language – Shorthand notation and annotation in SDL-2010.

[ITU-T Z.105] Recommendation ITU-T Z.105 (2016), Specification and Description

Language – SDL-2010 combined with ASN.1 modules.

 Rec. ITU-T Z.104 (04/2016) 3

[ITU-T Z.106] Recommendation ITU-T Z.106 (2016), Specification and Description

Language – Common interchange format for SDL-2010.

[ITU-T Z.107] Recommendation ITU-T Z.107 (2016), Specification and Description

Language – Object-oriented data in SDL-2010.

[ITU-T Z.111] Recommendation ITU-T Z.111 (2016), Notations and guidelines for the

definition of ITU-T languages.

[ISO/IEC 10646] ISO/IEC 10646:2012, Information technology – Universal Coded Character

Set (UCS).

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere: the definitions of [ITU-T Z.100]

apply.

3.2 Terms defined in this Recommendation

3.2.1 decode (process): The process to construct an SDL-2010 data value from a text string or

bit-pattern that is assumed to be an encoding of the SDL-2010 data value using the same encoding

rules as those used in the decode.

3.2.2 decoding: The result of a decode process.

3.2.3 encode (process): The process of producing an encoding.

3.2.4 encoding: The text string or bit-pattern resulting from the application of a set of encoding

rules to an SDL-2010 data value.

3.2.5 set of encoding rules: One of the sets of (ASN.1) encoding rules (defined in [ITU-T X.690],

[ITU-T X.691], [ITU-T X.693] and [ITU-T X.696]) or the set of text encoding rules defined in

clause 10.7.1 and Annex B of this Recommendation, or an implementation-dependant or

application-dependant set of encoding rules defined by a procedure invoked according to this

Recommendation (see clause 10.7).

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms: the abbreviations defined in

[ITU-T Z.100] apply. In addition the following abbreviation applies:

ASN.1 Abstract Syntax Notation One (as defined in [ITU-T X.680], [ITU-T X.681],

[ITU-T X.682] and [ITU-T X.683]).

5 Conventions

The conventions defined in [ITU-T Z.100] apply, which includes the conventions defined in

[ITU-T Z.111].

4 Rec. ITU-T Z.104 (04/2016)

Where an abstract or concrete syntax rule is defined in this Recommendation with the same name as

a rule in [ITU-T Z.101], [ITU-T Z.102] or [ITU-T Z.103], the rule given here replaces the rule in

[ITU-T Z.101], [ITU-T Z.102] or [ITU-T Z.103]. Any Abstract grammar or Concrete grammar

conditions, Semantics and Model defined on a named rule in [ITU-T Z.101], [ITU-T Z.102] or

[ITU-T Z.103] apply to the redefined rule, unless specifically defined otherwise in this

Recommendation. Any contradiction between [ITU-T Z.101] or [ITU-T Z.102] or [ITU-T Z.103] and

this Recommendation is an error in the definition of SDL-2010 that needs to be resolved by further

study.

Some numbered clauses are included so that this Recommendation has the general structure and

numbering of [ITU-T Z.101], and in the text the feature is as described in [ITU-T Z.101]. Any

extensions described in [ITU-T Z.102] or [ITU-T Z.103] are also allowed.

6 General rules

The general rules of [ITU-T Z.101], [ITU-T Z.102] and [ITU-T Z.103] apply.

However, <operation definition> is an alternative textual concrete syntax to <operation diagram> and

therefore defines a scope unit.

7 Organization of Specification and Description Language specifications

7.1 Framework

The framework of specifications is as defined in [ITU-T Z.101].

7.2 Package

Concrete grammar

<package use clause> ::=

 [<data binding>]

 use <package identifier> [/ <definition selection list>] <end>

<data binding> ::=

 default <package identifier>

The <package use clause> of Basic SDL-2010 is extended to include an optional <data binding>.

Each diagram that uses the native SDL-2010 defined concrete syntax for data and actions implicitly

or explicitly includes default Predefined in its <package use clause>. If the language <data

binding> implicitly or explicitly includes a package defined in Annex C for language binding, each

rule identified in Annex C as a concrete syntax variation replaces the rule of the same name wherever

it is used, and the rule represents the abstract grammar as defined in Annex C. Each diagram that uses

a particular syntax linked to a package name by a language <data binding>, implicitly or explicitly

includes a <data binding> for that package name in its <package use clause>. A referenced diagram

that is logically included in another diagram implicitly includes the <data binding> of the enclosing

diagram, unless a different <data binding> is given. Therefore it is only usually necessary to give the

<data binding> for the package for the system type or for the <system specification>.

If the language <data binding> is omitted for the diagram and enclosing diagrams, the implicit

language <data binding> is default Predefined if not otherwise specified. It is allowed to specify

the implicit <data binding> by means such as analysis directives or tool features not defined by

SDL-2010, but the concrete grammar including how it represents the SDL-2010 abstract grammar

shall be one of the concrete grammars defined in Annex C.

 Rec. ITU-T Z.104 (04/2016) 5

Model

When an ASN.1 module is used as a package, and a <definition selection> in the <package use

clause> referring to the ASN.1 has the <selected entity kind> interface and the <name> is the name

of a CHOICE data type, there is an implied interface. This implied interface has the same name as

the CHOICE and defines signals equivalent to the CHOICE alternatives.

7.3 Referenced definition

The concrete syntax is extended to include operations that are defined textually.

Concrete grammar

<definition> ::=

 <macro definition>

 | <procedure definition>

 | <operation definition>

The <definition> of [ITU-T Z.103] is extended to include <operation definition>. Each <operation

definition> shall have corresponding <operation reference> in the associated <package diagram> or

<system specification>.

8 Structural concepts

The structural concepts are as defined in [ITU-T Z.101] with the addition of the optional identification

of a set of encoding rules for gates and channels. Otherwise, the structural concepts are as defined in

[ITU-T Z.101].

8.1 Types, instances and gates

This Recommendation adds the optional identification of a set of encoding rules to the definition of

gates.

8.1.1 Structural type definitions

The structural type definitions are as defined in [ITU-T Z.101].

8.1.2 Type expressions

Type expressions are as defined in [ITU-T Z.101].

8.1.3 Abstract types

Abstract types are as defined in [ITU-T Z.102].

8.1.4 Gates with encoding rules

A gate is allowed to have a set of encoding rules. An output of signal from an agent via the gate is

encoded as specified by the set of encoding rules. Information received via the gate is decoded

according to the set of encoding rules. If no specific set of encoding rules is given, the encoding is

not defined by the SDL-2010 specification.

A gate definition defines an anonymous choice data type, which is not described in Basic SDL-2010.

Abstract grammar

Gate-definition :: Gate-name

 [Encoding-rules]

 In-signal-identifier-set

 Out-signal-identifier-set

Basic SDL-2010 is extended to allow Gate-definition to have Encoding-rules.

6 Rec. ITU-T Z.104 (04/2016)

If an external channel with a set of Encoding-rules is connected to the gate of an agent or composite

state, the Encoding-rules of the Gate-definition for the gate shall be the same as the Encoding-rules

for the channel. There shall be, at most, one such channel connected to the gate and the signals

conveyed in a direction for the gate shall be the same as the signals conveyed in the corresponding

direction in the channel.

If an internal channel of an agent or agent type is connected to the gate of the agent or agent type that

has a Gate-definition with a set of Encoding-rules, the Encoding-rules of the channel shall be the

same. The signals conveyed in a direction for the gate shall be the same as the signals conveyed in

the corresponding direction in the channel. More than one such internal channel is allowed.

Concrete grammar

<gate definition> ::=

 { { <gate symbol 1> | <inherited gate symbol 1> }

 is associated with
 { <gate> [<encoding rules>] [<signal list area>] } set

 | { <gate symbol 2> | <inherited gate symbol 2> }

 is associated with
 { <gate> [<encoding rules>] [<signal list area> <signal list area>] } set

 } [is connected to <endpoint constraint>]

Shorthand SDL-2010 <gate definition> is extended to include <encoding rules>.

A specification of <encoding rules> that is associated with an <inherited gate symbol 1> or <inherited

gate symbol 2> shall specify the same set of Encoding-rules as the Encoding-rules of the

corresponding gate definition in the supertype if that gate has Encoding-rules. If there is no set of

<encoding rules> that is associated with an <inherited gate symbol 1> or <inherited gate symbol 2>,

and there is a set of Encoding-rules for the gate in the supertype, the inherited gate has this set of

Encoding-rules. If there is no set of Encoding-rules for the gate in the supertype, the presence and

value of the inherited gate Encoding-rules is determined by the presence and value of the <encoding

rules>.

NOTE  To keep the language grammar simple only one <encoding rules> is allowed for a bi-directional

channel (<gate symbol 2> or <inherited gate symbol 2>); therefore, if a different encoding is required in each

direction, the communication has to be specified by two gates that each carry signals in one direction and each

connected to a different channel.

<interface gate definition> ::=

 { <gate symbol 1> | <inherited gate symbol 1> }

 is associated with { <interface identifier> [<encoding rules>] }

 [is connected to <endpoint constraint>]

Shorthand SDL-2010 <interface gate definition> is extended to include <encoding rules>.

<as gate> ::=

 as gate <gate identifier>

A <gate definition> defines a Data-type-definition of a choice data type with a unique anonymous

Sort name in the context that the Gate-definition is visible. A <basic sort> that is <as gate>

where <gate identifier> identifies the Gate-definition represents this Data-type-definition. The

Data-type-definition is equivalent to defining a choice data type with a <choice of sort> for each

distinct Signal-definition identified by the In-signal-identifier-set and Out-signal-identifier-set. Each

<choice of sort> has as its <field sort> the data type denoted by <as signal> for the identified signal

definition (the NULL sort for a signal without parameters; otherwise a structure data type with an

anonymous unique name – for an identified signal signal_id with parameters the <choice of sort>

has a <field sort> with identity as denoted by as signal signal_id). If an identified

Signal-definition has a name distinct from any other identified distinct Signal-definition, the <choice

of sort> has the same <field name> as the name of the corresponding identified signal. If an identified

Signal-definition has the same name as another identified Signal-definition, the <choice of sort> has

 Rec. ITU-T Z.104 (04/2016) 7

<field name> with the same name as the anonymous unique name for the <as signal> structure data

type.

Semantics

The set of Encoding-rules of a Gate-definition of an agent type or composite state type corresponds

to the set of Encoding-rules of the channel in the enclosing scope in (the set of) instance

specifications.

Model

The set of Encoding-rules of a Gate-definition of the implied agent type of an <agent diagram> (or the

implied composite state type of a <composite state diagram>) is the same as the set of Encoding-rules

of the external channel (explicit or implied) from which the Gate-definition is derived. There is no

Encoding-rules item in this Gate-definition if there is none in the external channel.

The set of Encoding-rules of an implied Gate-definition of a system Agent-type-definition (whether

defined by a <system type diagram> or implied from a <system diagram>) is the same as the set of

Encoding-rules of the internal channel (explicit or implied) from which the Gate-definition is derived.

There is no Encoding-rules item in this Gate-definition if there is none in the internal channel.

If an explicit <gate on diagram> is given for the <system type diagram>, the set of Encoding-rules of

the corresponding Gate-definition of the Agent-type-definition is determined by the <encoding rules>

of the <gate on diagram> if the <encoding rules> is present. If the <encoding rules> is absent, the set

of Encoding-rules is determined from the internal channel in the same way as for an implied

Gate-definition.

8.2 Type references and operation references

Type references are as defined in [ITU-T Z.101].

NOTE – A <gate property area> in a type reference is a <gate definition> or <interface gate definition> and

therefore optionally contains an <encoding rules> specification, which has to be consistent with the definition

given with the type.

Concrete grammar

<operation kind> ::=

 { operator | method }

Basic SDL-2010 <operation kind> is extended to allow an operation to be a method.

8.3 Context parameters

Context parameters (including gate context parameters) are as defined in [ITU-T Z.102].

NOTE  When a gate in parameterized type is defined by a formal context parameter, the set of encoding rules

of the gate in a specialized type used to define instances will be determined by the actual gate definition

identified by the actual context parameter.

8.4 Specialization

Specialization is as defined in [ITU-T Z.102] with the additional rules for shorthand notation in

[ITU-T Z.103].

9 Agents

Agents are as defined in [ITU-T Z.101] or as in [ITU-T Z.102] or [ITU-T Z.103], if they are being

used.

8 Rec. ITU-T Z.104 (04/2016)

10 Communication

Encoding of data extends the definition of channels and connections.

10.1 Channel

A channel connecting two agents determines the encoding (if any) to be used for communication

between the agents. A channel that is connected to the environment of an agent has the encoding

defined (if any) for that gate connecting it with the environment.

A channel definition defines an anonymous choice data type, which is not described in

Basic SDL-2010.

Abstract grammar

Channel-definition :: Channel-name

 [Encoding-rules]

 [NODELAY]

 Channel-path-set

The Originating-gate or Destination-gate shall have the same Encoding-rules as the

Channel-definition. If the Channel-definition has no Encoding-rules, neither the Originating-gate nor

Destination-gate shall have Encoding-rules.

NOTE 1  In the Concrete grammar it is allowed to omit the <encoding rules> if the channel is connected to

gates with encoding, and the Encoding-rules derived from the gates are as described in the Model below.

Concrete grammar

<channel definition area> ::=

 <channel symbol 1>

 is associated with
 { [<channel name> [<encoding rules>]] [<signal list area>] } set

 is connected to {

 { <agent area> | <state machine area> | <gate on diagram>

 | <external channel identifiers> }

 { <agent area> | <state machine area> | <gate on diagram>

 | <external channel identifiers> } } set

 | <channel symbol 2>

 is associated with
 { [<channel name> [<encoding rules>]] [<signal list area>] [<signal list area>] } set

 is connected to {

 { <agent area> | <state machine area> | <gate on diagram>

 | <external channel identifiers> }

 { <agent area> | <state machine area> | <gate on diagram>

 | <external channel identifiers> } } set

Shorthand SDL-2010 <channel definition area> is extended to allow <encoding rules> to be specified

for a channel.

NOTE 2  To keep the language grammar simple only one <encoding rules> is allowed for a bi-directional

channel (<channel symbol 2>; therefore if a different encoding is required in each direction, the

communication has to be specified by two channels that each carry signals in one direction.

<as channel> ::=

 as channel <channel identifier>

A Channel-definition implicitly defines a Data-type-definition of a choice data type with a unique

anonymous Sort name in the context that the Channel-definition is visible. A <basic sort> that is

<as channel> where <channel identifier> identifies the Channel-definition represents this

Data-type-definition. The Data-type-definition is equivalent to defining a choice data type with a

<choice of sort> for each distinct Signal-definition identified by each Signal-identifier-set of the

Channel-path-set. The <field name> and <field sort> for each <choice of sort> is determined in the

 Rec. ITU-T Z.104 (04/2016) 9

same way as a <choice of sort> for each distinct Signal-definition of the Data-type-definition defined

by a <gate definition>.

Semantics

The Encoding-rules of a Channel-definition connected to a set of instance specifications is used in

the behaviour of the instances.

Model

If the <encoding rules> item is omitted and the <channel symbol 1> or <channel symbol 2> is

connected to a <gate on diagram> with <encoding rules>, the Channel-definition has the same

Encoding-rules as the Gate-definition of the <gate on diagram>. If the Gate-definition has no

Encoding-rules, the Channel-definition has no Encoding-rules.

Implicit channels have no Encoding-rules if the gates they are connected to have no Encoding-rules;

otherwise, the implicit channel has the same Encoding-rules as each of the gates.

NOTE 3  If the channel is connected to the frame of the enclosing diagram and there is no <gate on diagram>,

this represents a connection.

10.2 Connection

Model

The Encoding-rules of an implicit gate of a connection is the same as the connected external channel.

A channel without an <encoding rules> (or an implicit channel) that is connected to a gate that has

an Encoding-rules has the same Encoding-rules.

10.3 Signal

Signal is extended so that a signal definition introduces a structure data type (optionally with field

names) and use of a structure data type to define the sorts of the signal.

Concrete grammar

<signal definition> ::=

 <type preamble>

 <signal name>

 [<formal context parameters>]

 [<virtuality constraint>]

 [<specialization>]

 [<sort list> | <named fields sort list> | struct <sort identifier>]

Comprehensive SDL-2010 <signal definition list> is extended to allow a <named fields sort list>.

The <sort identifier> of struct <sort identifier> of a <signal definition> shall identify the sort of a

structure data type.

In a <signal definition>, a <sort identifier> (after struct) adds an Aggregation-kind and

Sort-reference-identifier for each field of the structure as the Aggregation-kind and Sort-reference-

identifier of a Signal-parameter to the end of the Signal-parameter list of the Signal-definition. The

Aggregation-kind for a Signal-parameter corresponding to a field is the same as the

Result-aggregation for the operator to obtain the value of that field. The Sort-reference-identifier for

a Signal-parameter corresponding to a field is the same as the Operation-result for the operator to

obtain the value of that field.

<named fields sort list> ::=

 [<visibility>]

 ([<visibility>] <aggregation kind> <field name> <sort>

 { , [<visibility>] <aggregation kind> <field name> <sort>}*)

10 Rec. ITU-T Z.104 (04/2016)

Each <aggregation kind> and <sort> in a <named fields sort list> of the <signal definition> adds the

corresponding Aggregation-kind and Sort-reference-identifier of a Signal-parameter to the end of the

Signal-parameter list of the Signal-definition.

<as signal> ::=

 as signal <signal identifier>

A <signal definition> that defines a Signal-definition with an empty Signal-parameter list (a signal

definition> without a <sort list> or <named fields sort list> or struct <sort identifier>), defines in the

same context as the Signal-definition a Syntype-definition with a unique anonymous Syntype-name,

NULL, as the Parent-sort-identifier, and empty Range-condition and no Default-initialization. In this

case, an <as signal> (for the signal definition) when used as a <basic sort> denotes the data type NULL.

A <signal definition> that defines a Signal-definition with a non-empty Signal-parameter list defined

by a <sort list> or <named fields sort list>, defines in the same context as the Signal-definition a

Data-type-definition for a structure data type with a unique anonymous Sort name. In this case, an

<as signal> (for the signal definition) when used as a <basic sort> denotes the Sort of the Data-type-

definition. The Data-type-definition is equivalent to defining a structure data type with an optional

<field> for each <aggregation kind> and <sort> item (in order) of the <sort list> or <named fields

sort list>, where the <aggregation kind> and <field sort> is the same as those of the <sort list> or

<named fields sort list>. If the <signal definition> has a <sort list>, each field has a unique anonymous

name and therefore has to be identified using a <field number> and the field present operation is not

accessible because its name is unknown. If the <signal definition> has a <named fields sort list>, each

<field> has the name given by the <field name> of the <named fields sort list> item. If there is

<visibility> before the bracketed list of <named fields sort list> items, this is equivalent to <visibility>

before the keyword struct of a <structure definition>. If there is <visibility> before the <aggregation

kind> and <field name> of a <named fields sort list> item, this is equivalent to <visibility> in the

<fields of sort> of a <structure definition>. The meaning of <visibility> in <fields of sort> and

<structure definition> is explained in clause 12.1.8.4.

For a <signal definition> that defines a Signal-definition with a non-empty Signal-parameter list

defined by struct <sort identifier>, an <as signal> (for the signal definition) when used as a <basic

sort> denotes the same Sort as the <sort identifier> of struct <sort identifier>.

10.4 Signal list area

Signal list area is as defined in [ITU-T Z.101] and as in [ITU-T Z.102] and [ITU-T Z.103] if those

are being used.

10.5 Remote procedures

Remote procedures are as defined in [ITU-T Z.102].

10.6 Remote variables

Remote variables are as defined in [ITU-T Z.102].

10.7 Communication path encoding rules, encode and decode

The set of encoding rules specifies which set of encoding rules is used to encode and decode data

conveyed by a particular channel or gate.

Abstract grammar

Encoding-rules :: Rules-identifier

Encoding-expression :: Signal-identifier

 [Expression]*

 Encoding-path

 Rec. ITU-T Z.104 (04/2016) 11

Encoding-path :: { Gate-identifier |

 | Data-type-identifier Rules-identifier

 }

Decoding-expression :: Expression

 Encoding-path

Rules-identifier :: Literal-identifier

The Rules-identifier shall be one of the literal identifiers of the data type Encoding (see below in

Semantics). If the actual rule identified corresponds to an encoding defined in [ITU-T X.690],

[ITU-T X.691], [ITU-T X.693] and [ITU-T X.696], the set of signals carried by an Encoding-path

shall correspond to elements of an ASN.1 CHOICE type that is carried by the channel, or the channel

shall define a choice type that is equivalent to an ASN.1 CHOICE type. The Encoding-path and

ASN.1 CHOICE type correspond in one direction if each signal name corresponds to a CHOICE

name and for each signal the (single) parameter of the signal is the same as the data type of the

corresponding CHOICE.

The data type Encoding shall be the Predefined data type Encoding or a data type with the name

Encoding that is a specialization (direct or indirect) of the Predefined data type Encoding. The

specialization shall only add literal names to the Predefined data type Encoding and shall not change

any other properties.

If the Rules-identifier corresponds (by Name) to an Encoding literal defined in the package

Predefined, built-in procedures implied by the standardized sets of encoding rules are invoked (and

other procedures – even if visible with names corresponding as below – are ignored).

If the Rules-identifier corresponds to an additional literal added to a specialization of the predefined

data type Encoding, there shall be a visible procedure with the appropriate signature for each

invocation (implicit or explicit) of the Encoding-expression or Decoding-expression.

The name of the procedure for encode is the name encode concatenated with the name of an

additional Encoding literal (for example, encodemyprotocol where the additional Encoding literal

is myprotocol). This procedure shall have one parameter of the implicit choice type for the relevant

path for the invocation (see below in Semantics). The procedure shall return a Charstring,

Bitstring or Octetstring.

The name of the procedure for decode is the name decode concatenated with the name of an

additional Encoding literal (for example, decodemyprotocol where the additional Encoding literal

is myprotocol). This procedure shall have one parameter of the same type (Charstring, Bitstring

or Octetstring) as the corresponding procedure for encode, and shall return the choice type for the

relevant path for the invocation (see below in Semantics).

Each encode or decode procedure shall be functional (that is, it shall not contain states and shall not

change the value of any variable external to the procedure when it is interpreted).

The length of the optional Expression list of an Encoding-expression shall be the same as the number

of Sort-reference-identifiers in the Signal-definition denoted by the Signal-identifier.

Each Expression in an Encoding-expression shall be sort compatible to the corresponding

(by position) Sort-reference-identifier in the Signal-definition denoted by the Signal-identifier.

For a Gate-identifier of an Encoding-path of an agent's Encoding-expression, the gate shall be a gate

of the agent or reachable via a channel with the Signal-identifier of the Encoding-expression from the

agent, and the Out-signal-identifier-set of the gate shall include the Signal-identifier.

The Data-type-identifier of an Encoding-path shall identify an Interface-definition.

For an Encoding-path of an Encoding-expression with a Data-type-identifier that identifies an

Interface-definition, the Signal-identifier shall identify one of the signals defined or inherited by the

interface identified.

12 Rec. ITU-T Z.104 (04/2016)

The Expression in a Decoding-expression shall be compatible with the sort generated by an

Encoding-expression using the same Encoding-path in a context where the context of the

Decoding-expression is reachable via the Encoding-path.

Concrete grammar

<encoding rules> ::=

 encode <rules identifier>

<rules identifier> ::=

 <literal>

<encoding expression> ::=

 encode { <signal identifier> [<actual parameters>] | <expression> }

 [<encoding path>]

<encoding path> ::=

 as { [channel] <channel identifier>

 | [gate] <gate identifier>

 | [interface] <interface identifier> with <rules identifier> }

<decoding expression> ::=

 decode <expression> [<encoding path>]

The set of encoding rules of the path identified by the <channel identifier> or <gate identifier> (or in

the case of an <interface identifier>, by the <rules identifier>) is used. A <channel identifier> in an

<encoding path> is a shorthand that represents a (possibly anonymous) gate.

If an <encoding expression> contains an <expression> (rather than a signal), the actual signal is

derived from the <expression> as described in the model below. The sort of the <expression> shall

be the sort of the choice data type corresponding to the set of signals for the <encoding path>:

normally the choice data type defined for the channel, gate or interface.

The <encoding path> shall only be omitted from <encoding expression> if there is exactly one path

(channel or gate) with encoding for output of the signal in the context of the <encoding expression>

and, in this case, the encoding for that path is used.

The <encoding path> shall only be omitted from <decoding expression> if there is exactly one path

(channel or gate) with encoding for input in the context of the decoding expression and, in this case,

the encoding for that path is used.

The <interface identifier> and <rules identifier> of an <encoding path> represents the Data-type-

identifier and Rules-identifier of an Encoding-path.

Semantics

The Encoding-rules item determines the set of rules used to change the implementation-dependent

encoding for internal data:

– either to a standardized implementation-independent encoding (for one of the data type

Encoding literals text to OER, or PER as a synonym for APER),

– or to a defined implementation or application encoding (for a literal added to a specialization

of the data type Encoding).

Encode is invoked whenever a signal is output via a path with a set of encoding rules specified and

the corresponding encode procedure is called. When a signal is input from such a path, decode of the

data into the internal encoding is invoked by calling the corresponding decode procedure. This encode

and decode therefore has no impact on the semantics of SDL, as defined in [ITU-T Z.101], but

requires specific encoding of signals for the specified paths and, therefore, enables different parts of

the system to be implemented separately.

When an Encoding-expression or Decoding-expression is interpreted, the appropriate procedure is

called.

 Rec. ITU-T Z.104 (04/2016) 13

Encode relative to the set of encoding rules for a path is invoked in an Encoding-expression to produce

a Charstring, Bitstring or Octetstring depending on the context and the set of encoding rules

used. The Charstring, Bitstring or Octetstring produced by encode is decoded by a

Decoding-expression using the same set of encoding rules for the same path. The set of encoding

rules of the encoding path identified by the Gate-identifier or Rules-identifier (after an interface

Data-type-identifier) is used.

For an Encoding-expression, the data is encoded as if it were going to be output on that path. The

result is a data type corresponding to the set of encoding rules for the path.

For a Decoding-expression, the data is decoded as if it had been received on the specified path. The

result is an expression corresponding to the implicit data type for input from that channel in the decode

context as defined below. If decoding fails, the InvalidReference exception is raised.

For a channel, gate or interface that conveys the signals signal1, signal2 and signal3, a choice

data type with a unique, anonymous name is defined that corresponds to the SDL-2010:
value type UniqueAnon /* representing the unique anononymous name */

{ choice

 signal1 as signal signal1;

 signal2 as signal signal2;

 signal3 NULL;

}

where
as signal signal1

represents the structure data type with a unique, anonymous name
 value type signal1UniqueAnon

 { struct

 Ua11 Sort11 optional;

 Ua12 Sort12 optional;

 Ua13 Sort13 optional;

 /* ... and so on for each parameter of signal1 */

 } ;

as a consequence of the signal definition
 signal signal1 (Sort11, Sort12, Sort13 /* ... and so on */);

and Ua11, Ua12 and Ua13 are unique, anonymous field names for the structure data type, and similarly
as signal signal2

represents the structure data type with a unique, anonymous name
 value type signal2UniqueAnon

 { struct

 Ua21 Sort21 optional;

 Ua22 Sort22 optional;

 } ;

as a consequence of the signal definition
 signal signal2 (Sort21, Sort22);

and signal3 is defined by
 signal signal3;

The anonymous identifier of the choice data type associated with a path is denoted by the as channel

<channel identifier> or as gate <gate identifier> for the path, so that a legal variable declaration is:
 dcl message as gate user_input;

where user_input is the name of a channel or gate with encoding and a valid assignment is:
 message := decode encoded_value as user_input;

Similarly, the anonymous identifier of the data type associated with an interface is denoted by the as

interface <interface identifier>, so that a legal variable declaration is:
 dcl if_message as interface user_interface;

where user_interface is the name of an interface and a valid assignment (assuming the information

was encoded using PER) is:
 if_message := decode encoded_value as user_interface with PER;

The enumerated data type for the standardized set of encoding rules is defined in the package

Predefined (see clause 14).

14 Rec. ITU-T Z.104 (04/2016)

Model

If an <encoding expression> contains an <expression>, the choice present is determined from the

expression, and the signal with the same name as the choice is output with the values of the signal

parameters given by the expression.

If an <encoding path> contains a <channel identifier>, this is transformed to the (possibly

anonymous) <gate identifier> for the gate of the identified channel nearest to the agent containing the

<encoding path>.

10.7.1 The set of text encoding rules

The set of text encoding rules is provided so that it is possible to convey information on

communication paths by means of text strings between elements in the system, and between the

system and the environment. The encoding of characters is not defined. Though the text strings are,

in general, readable by humans, that is not the purpose of the text encoding rules.

Semantics

If the set of encoding rules is specified as text the result of an encoding is a Charstring.

The actual string is determined as follows:

– LEFT CURLY BRACKET and RIGHT CURLY BRACKET { } delimit the values of data

types and show where the values start and stop, except where they occur within the encoding

of a Charstring in which case they represent the actual <left curly bracket> or <right curly

bracket> characters of [ITU-T Z.101];

– COMMA characters are used to delimit elements within a list (for example, in a struct

encoding);

– Otherwise the actual string of characters is determined for each data type as defined in Annex

B and illustrated as the 'Generated Charstring' in the examples in Annex B.

A complete signal is encoded as a list of values and is treated as a choice encoding of the data type

for the path with encoding.

The full details of text encoding are given in Annex B.

10.7.2 The sets of encoding rules standardized in the ITU-T X.69x series

The use of one of the names BER, CER, DER, PER, APER, UPER, CAPER, CUPER, BXER, CXER, EXER or OER

(corresponding to [ITU-T X.690], [ITU-T X.691], [ITU-T X.693] and [ITU-T X.696] encoding rules

– see Semantics in clause 10.7 above and clause 14.17 below) shall only be specified if the signals

carried by the path or included in the interface are defined by an ASN.1 CHOICE data type or are

able to be expressed as an ASN.1 CHOICE data type. The values are encoded according to this data

type treated as an ASN.1 ABSTRACT-SYNTAX.

NOTE – Whether it is possible to express a set of signals not defined by an ASN.1 CHOICE as an ASN.1

CHOICE is not currently further defined.

11 Behaviour

11.1 Start

Start is as defined in [ITU-T Z.101].

 Rec. ITU-T Z.104 (04/2016) 15

11.2 State

Semantics

If during the consideration of the signals on the input port, the signal being considered does not

correspond to any of the signals valid for any of the states of the agent because it is not possible to

decode the message received (as in clause 10.7) to a valid signal, the InvalidReference exception

is raised.

11.3 Input

Input is extended to allow a choice value to be stored for the signal that was input, and is also extended

so that it is possible to store signals received on paths with encoding in the encoded form.

If an <encoded input> is given for a path (a channel or gate), the messages received from that path

are received and stored in the variable given in their encoded form. It is allowed to specify these

signals in other inputs or saves of the same state only if a <via path> is specified. Although the model

given below describes the signals as first being decoded and then encoded again, it is expected that

real implementations will optimize this to copying the encoded value to the variable given in the

<encoded input>.

Abstract grammar

Input-node :: [Priority-name]

 Signal-identifier [Gate-identifier]

 [Provided-expression]

 [In-choice]

 [Variable-identifier]*

 Transition

The Input-node of Comprehensive SDL-2010 is extended to include an optional In-choice to allow

the storing of the signal value.

In-choice :: Variable-identifier

The Variable-identifier of an In-choice shall have a choice data type that includes a field for the signal

type of the Signal-identifier.

Concrete grammar

<input list> ::=

 <stimulus> [<in choice>] [<priority clause>]

 { , <stimulus> [<in choice>] [<priority clause>] }*

 | <asterisk input list> [<in choice>] [<priority clause>]

 | <encoded input>

The <input list> syntax of Comprehensive SDL-2010 is extended to allow the storing the signal value

according to an <in choice> and to allow an <encoded input>.

<in choice> ::=

 in { <choice variable> | <signal expression> }

The <choice variable> of an <in choice> shall have a choice data type that includes fields where all

the signals that are mentioned in the <stimulus> are covered: that is, for each signal (for example,

with the identity signal_id) there shall be a field with the unique name denoted by an <as signal>

for the signal (as signal signal_id) and the data type defined by <as signal> for the signal

(as signal signal_id).

A <signal expression> of a <in choice> represents the implicit anonymous choice variable of the

agent with the choice data type that is capable of holding any of the values of signals in the valid

input signal set of the agent.

16 Rec. ITU-T Z.104 (04/2016)

NOTE 1 – If the <encoding path> is specified by an <interface identifier> with <rules identifier>, because the

<encoded input> is transformed into inputs for the signals of the identified interface, no other input or save of

the state is allowed to mention the same signals.

<encoded input> ::=

 encode <variable> [<encoding path>]

If the <encoding path> is omitted from <encoded input>, there shall be exactly one path with encoding

leading to the context of the input that has a set of encoding rules that produces the sort (Charstring,

Octetstring or Bitstring) of the <variable>. Otherwise the <encoding path> shall have a set of

encoding rules that produces the sort (Charstring, Octetstring or Bitstring) of the <variable>.

Semantics

If the signal specified in the input is received via a channel that has a set of encoding rules specified,

the signal is decoded according to that set of encoding rules.

If the Input-node has an In-choice, the values conveyed by signal are assigned to the choice variable.

The field of the choice variable corresponding to the signal (the choice field) receives the signal: that

is, each value conveyed by the signal is assigned to the corresponding field of the choice field. If the

signal conveys no values, there is an assignment of NULL to the field of the choice variable

corresponding to the signal.

Model

When applying the model for <asterisk input list>, the <in choice> is added after each <stimulus>.

When applying the model for an <interface identifier> as a <signal list item> of a <stimulus> the <in

choice> is added after each <stimulus>.

If the <encoding path> is omitted from <encoded input>, the encoding path is the unique path for the

<encoded input>.

For each of the signals that are receivable from the gate or channel specified in an <encoded input>,

there is an implied input with a <via path> for the gate or channel. For each of the signals of an

interface identified by an <interface identifier> of an <encoding path> of an <encoded input>, there

is an implied input for the signal.

NOTE 2 – If the <encoding path> is specified by an <interface identifier> with <rules identifier>, because the

<encoded input> is transformed into inputs for the signals of the identified interface, no other input or save of

the state is allowed to mention the same signals.

Each implied input for <encoded input> is equivalent to assigning the values conveyed by the signal

to implicit local variables of appropriate types followed by transformed transition that is an implied

task followed by the original transition for the <encoded input>. The implied task assigns the

<variable> the value of an encoding expression for the signal and values received from the implicit

variables using the set of encoding rules for the path of the <encoded input>.

11.4 Priority input

Priority input is as defined in [ITU-T Z.102] and is not allowed to contain an <encoded input>.

11.5 Continuous signal

Continuous signal is as defined in [ITU-T Z.102].

11.6 Enabling condition

Semantics

If the signal specified is received via a channel that has a set of encoding rules specified, the signal is

decoded according to that set of encoding rules.

 Rec. ITU-T Z.104 (04/2016) 17

11.7 Save

Save is as defined in [ITU-T Z.101].

11.8 Implicit transition

Implicit transition is as defined in [ITU-T Z.101].

11.9 Spontaneous transition

Spontaneous transition is as defined in [ITU-T Z.101].

11.10 Label

Label is as defined in [ITU-T Z.101].

11.11 State machine and composite state

State machine and composite state are as defined in [ITU-T Z.101].

11.12 Transition

Transition is as defined in [ITU-T Z.101].

11.13 Action

11.13.1 Task

Task is as defined in [ITU-T Z.101].

11.13.2 Create

Create is as defined in [ITU-T Z.101].

11.13.3 Procedure call

Procedure call is as defined in [ITU-T Z.101].

11.13.4 Output

If an <expression output> is given for a path (a channel or gate), the expression is a choice value used

to derive the signal to output. The choice sort corresponds to the set of signals for the path.

If an <encoded output> is given for a path (a channel or gate), the expression given is used as the

signal to output. In the model given below the expression is decoded to check the signal being sent.

Abstract grammar

Output-node :: { Signal-identifier Actual-parameters | Expression | Encoded-expression}

 Activation-delay

 Signal-priority

 [Signal-destination]

 Direct-via

Encoded-expression = Expression

The Basic SDL-2010 Output-node is extended to allow Expression or Encoded-expression (instead

of Signal-identifier followed by Actual-parameters).

If an Output-node has an Expression (instead of Signal-identifier followed by Actual-parameters) the

sort of the Expression shall be the sort of a choice data type, where choice fields correspond to

outgoing signals carried from the local agent by one of the gates of the agent. A choice field of the

choice data type corresponds if its field name is the same as:

a) a signal name that unambiguously identifies an outgoing signal; or

18 Rec. ITU-T Z.104 (04/2016)

b) the unique anonymous Sort name for a Data-type-definition for a structure data type, denoted

by an <as signal> that identifies an outgoing signal;

and the sort of the choice field is a structure data type where the sort of each field of the structure is

the same as the corresponding (by position) parameter of the identified outgoing signal.

If an Output-node has an Encoded-expression (instead of Signal-identifier followed by

Actual-parameters) the sort of the Expression of the Encoded-expression shall be Charstring,

Octetstring or Bitstring. The Direct-via shall have exactly one Gate-identifier, and this shall

identify a gate that has Encoding-rules with the same sort (Charstring, Octetstring or Bitstring)

as the Expression of the Encoded-expression.

Concrete grammar

<output body item> ::=

 { <signal identifier> [<actual parameters>]

 | <expression output>

 | <encoded output> }

 [<activation delay>] [<signal priority>]

The Basic SDL-2010 <output body item> is extended to allow <expression output> or <encoded

output> (instead of <signal identifier> followed by optional <actual parameters>).

<expression output> ::=

 <expression>

<encoded output> ::=

 encode <expression>

Semantics

A signal output via a path that has a set of encoding rules specified is encoded according to that set

of encoding rules (regardless of whether the Output-node has a Signal-identifier, Expression or

Encoded-expression). The pid of the originating agent, the availability Time (if greater than now),

and any non-zero signal priority value are also conveyed by the signal instance, but are not part of

the encoded information.

If the Output-node has an Expression, and the value of the choice is undefined (that is, undefined(e)

is true, where e is the expression), no signal is output. Otherwise if the Output-node has an

Expression with a defined choice value, the name of the field present in the choice determines the

signal to be considered for output. The signal name with the Signal-destination and Direct-via

determine the destination agent instance as defined for an Output-node with a Signal-identifier in

Basic SDL-2010. If there is a process instance that contains both the sender and the receiver, the data

items conveyed by the signal instance are the values of corresponding present fields of the structure

data type of the choice field. Otherwise, the data items conveyed by the signal instance are newly

created replicates of these values (which for PART aggregation is the same as the value). Each

conveyed data item is equal to the corresponding actual parameter of the output. If the field of the

structure data type of the choice field is absent, the corresponding signal data item is "undefined".

The signal instance is delivered to the destination agent in the same way as for an Output-node with

a Signal-identifier in Basic SDL-2010, or is discarded if there is no agent instance or the agent is

unreachable. The Activation-delay and Signal-priority are handled in the same way as for an

Output-node with a Signal-identifier in Basic SDL-2010.

If an Output-node has an Encoded-expression, the signal is determined by decoding the contents of

the expression according to the Encoding-rules for the gate identified by the Direct-via. The signal is

the signal with the same name as the choice present in the decoding. If the signal is not valid for the

path, or decoding fails for any reason (for example, if the string of the expression does not validly

correspond to one of the signals for the path), the OutOfRange exception is raised and no signal is

sent. If a Signal-destination is given and a destination instance does not exist or is unreachable, the

signal is discarded. Otherwise the signal is conveyed in the encoded form over the path. The

 Rec. ITU-T Z.104 (04/2016) 19

Activation-delay and Signal-priority are handled in the same way as for an Output-node with a

Signal-identifier in Basic SDL-2010.

NOTE – If the Output-node has an Encoded-expression, because the expression is already encoded as a string

for the path, it is possible to send the string value with no further conversion. It is not therefore expected that

an implementation would normally decode and re-encode an <encoded output>.

11.13.5 Decision

Decision is as defined in [ITU-T Z.101].

11.14 Statement list

Statement list is as defined in [ITU-T Z.101].

11.15 Timer

Timer is as defined in [ITU-T Z.101].

12 Data

The concept of data in SDL-2010 is defined in this clause. This includes the data terminology, the

concepts to define new data types and the predefined data.

Data in SDL-2010 is principally concerned with data types. A data type defines a set of elements or

data items, referred to as sort, and a set of operations that are allowed to be applied to these data items.

The sorts and operations define the properties of the data type. These properties are defined by data

type definitions.

A data type consists of a set, which is the sort of the data type, and one or more operations. As an

example, consider the predefined data type Boolean. The sort Boolean of the data type Boolean

consists of the elements true and false. Among the operations of the data type Boolean are "="

(equal), "/=" (not equal), "not", "and", "or", "xor", and "=>" (implies). As a further example,

consider the predefined data type Natural. It has the sort Natural consisting of the elements 0, 1, 2,

etc., and the operations "=", "/=", "+", "–", "*", "/", "mod", "rem", "<", ">", "<=", ">=", and

power.

The Specification and Description Language provides several predefined data types, which are

familiar in both their behaviour and syntax. The predefined data types are described in clause 13.

Variables are objects that are associated with an element of a sort by assignment. When the variable

is accessed, the associated data item is returned.

The elements of the sort of a data type are either values, or pids, which are references to agents. The

sort of a data type is defined in the following ways:

a) Explicitly enumerating the elements of the sort.

b) Forming the Cartesian product of sorts S1, S2, … Sn; the sort is equal to the set that consists

of all tuples formed by taking the first element from sort S1, taking the second element from

sort S2, … , and finally, taking the last element from sort Sn.

c) For the sorts of pids, by defining an interface (see clause 12.1.2).

d) As one of several sorts that are predefined and form the basis of the predefined data types

described in Annex D. The predefined sort Pid is described in clause 12.1.5.

The elements of a value sort are values. The elements of a pid sort are pids.

Operations are defined from and to elements of sorts. For instance, the application of the operation

for summation ("+") from and to elements of the Integer sort is valid, whereas summation of

elements of the Boolean sort is not.

20 Rec. ITU-T Z.104 (04/2016)

Each data item belongs to exactly one sort. That is, sorts never have data items in common.

For most sorts there are literal forms to denote elements of the sort: for example, for Integers, "2" is

used rather than "1 + 1". It is allowed that more than one literal denote the same data item; for

example, 12 and 012 are used to denote the same Integer data item. It is also allowed that the same

literal denotation is used for more than one sort; for example, 'A' is both a Character and a Character

String of length one. Some sorts have no literal forms to denote the elements of the sort; for example,

the sorts that are formed as the Cartesian product of other sorts. In that case, the elements of these

sorts are denoted by operations that construct the data item from elements of the component sort(s).

An expression denotes a data item. If an expression does not contain a variable or an imperative

expression, e.g., if it is a literal of a given sort, each occurrence of the expression will always denote

the same data item. These "passive" expressions correspond to a functional use of the language.

An expression that contains variables or imperative expressions is interpreted as having (usually)

different results during the interpretation of a Specification and Description Language system,

depending on the data item associated with the variables. The active use of data includes assignment

to variables, use of variables, and initialization of variables. The difference between active and

passive expressions is that the result of a passive expression is independent of when it is interpreted,

whereas an active expression has (usually) different results depending on the current values or pids

associated with variables or the current system state.

12.1 Data definitions

Data definitions are used to define data types. The basic mechanisms to define data are data type

definitions (see clause 12.1.1) and interfaces (see clause 12.1.2). Definition of additional operations

is described in clause 12.1.4. The definition of the sort of the data type as well as operations implied

for the sort are given by data type constructors (see 12.1.6). Clause 12.1.7 shows how to define the

behaviour of the operations of a data type. Clause 12.1.8 details a variety of features related to data

definitions including syntypes, synonyms and visibility restriction. Specialization (see clause 12.1.9)

allows the definition of a data type to be based on another data type, referred to as its supertype.

Concrete grammar

<sort> ::=

 <basic sort> [(<range condition>)]

 | <anchored sort>

 | <pid sort>

 | <inline data type definition>

 | <inline syntype definition>

An <range condition> after a <basic sort> of a sort is only valid if the <basic sort> has been

constructed using the literal data type constructor and the constants (<range condition>) is valid as

a <constraint> for the <basic sort>, or if the size (<range condition>) is valid as a <constraint> for

the <basic sort>.

<inline data type definition> ::=

 value [<data type specialization>]

 [[<comment body>] <left curly bracket> <data type definition body>

 <right curly bracket>]

<inline syntype definition> ::=

 syntype <basic sort>

 [[<comment body>] <left curly bracket>

 { <default initialization> [[<end>] <constraint>] | <constraint> } <end>

 <right curly bracket>]

 Rec. ITU-T Z.104 (04/2016) 21

<basic sort> ::=

 <datatype type expression>

 | <as signal>

 | <as interface>

 | <as channel>

 | <as gate>

 | <as signallist>

 | <syntype>

The <basic sort> of Basic SDL-2010 is extended to include <as signal>, <as interface>, <as channel>,

<as gate> and <as signallist>.

An <as signal> represents the sort of the structure data type introduced by the identified signal

definition.

An <as interface> represents the sort of the choice data type introduced by the identified interface

definition.

An <as channel> represents the sort of the choice data type introduced by the identified channel

definition.

An <as gate> represents the sort of the choice data type introduced by the identified gate definition.

An <as signallist> represents the sort of the implicit read-only string variable that it is assumed is

used for storing unconsumed signal instances that have arrived at the agent.

<anchored sort> ::=

 this [<basic sort>]

 | parent [<basic sort>]

An <anchored sort> with <basic sort> is only allowed within the definition of <basic sort>.

An <anchored sort> is legal concrete syntax only if it occurs within a <data type definition>. The

<basic sort> in the <anchored sort> shall name the <sort> introduced by the <data type definition>.

The meaning of an <anchored sort> is given in Model of clause 12.1.9.

Model

An <anchored sort> without a <basic sort> is a shorthand for specifying a <basic sort> with the name

of the data type definition or syntype definition in the context of which the <anchored sort> occurs.

A <sort> that is a <basic sort> with a <range condition> is derived concrete syntax for a <syntype>

of an implied <syntype definition> having an anonymous name for the <syntype name> and the

<basic sort> as the <parent sort identifier>. This anonymously named <syntype definition> is defined

with no <default initialization> and with its elements restricted by a <constraint> based on the

<range condition>. If the <basic sort> has been constructed using the literal data type constructor the

<range condition> is transformed to a <constraint> of the <syntype definition> that is constants

(<range condition>); otherwise, the <range condition> is is transformed to a <constraint> of the

<syntype definition> that is size (<range condition>).

An <inline data type definition> is derived concrete syntax for a <basic sort> of an implied

<data type definition> having an anonymous name. This anonymously named <data type definition>

is derived from the <inline data type definition> by inserting type and the anonymous name after

value in the <inline data type definition>. Each <inline data type definition> defines a different

implied <data type definition>.

An <inline syntype definition> is derived concrete syntax for a <basic sort> of an implied

<syntype definition> having an anonymous name. This anonymously named <syntype definition> is

derived from the <inline syntype definition> by inserting the anonymous name and <equals sign>

after syntype in the <inline syntype definition>.

22 Rec. ITU-T Z.104 (04/2016)

12.1.1 Data type definition

Although SDL-2010 does not include generators for data types, parameterized data types in package

Predefined of SDL-2010 replace the generators such as Array that were included in the package

Predefined in SDL-92. The legacy data type definition below includes legacy generators syntax so

that these parameterized data types are allowed to be used with SDL-92 syntax.

Concrete grammar

<entity in data type> ::=

 <data type definition>

 | <syntype definition>

 | <synonym definition>

 | <legacy data type definition>

 | <legacy syntype definition>

The alternatives <synonym definition>, <legacy syntype definition> and <legacy data type

definition> extend <entity in data type> compared with Basic SDL-2010. The legacy forms are

alternative syntax to represent a Data-type-definition or Syntype-definition. The alternative <synonym

definition> is explained in clause 12.1.8.3.

<data type definition> ::=

 {<package use clause>}*

 <type preamble> <data type heading> [<data type specialization>]

 { <end>

 | [<comment body>] <left curly bracket> <data type definition body>

 <right curly bracket> }

The <data type specialization> is added to <data type definition> so that it is possible to define a data

type inheriting and specializing another data type (see clause 12.1.9). If the <type preamble> is

virtual or redefined, a virtual data type is defined.

<data type heading> ::=

 value type <data type name>

 [<formal context parameters>] [<virtuality constraint>]

The <data type heading> is extended compared with Basic SDL-2010 to include <formal context

parameters>, to allow use of a data type with context parameters.

<legacy data type definition> ::=

 newtype <sort name>

 [<formal context parameters>]

 [<data type specialization>

 |<legacy generators>

 |<structure definition>]

 [<literal list>]

 [<legacy operator signatures>]

 { <legacy operator definition>

 | <legacy operator reference>

 | <legacy external operator definition> }*

 [<default initialization> [<end>]]

 [constants <range condition>]

 endnewtype [<sort name>]

<legacy generators> ::=

 <sort identifier> (<legacy generator actual> { , <legacy generator actual> }*)

The <sort identifier> of <legacy generators> should identify one of the parameterized data types in

package Predefined. The <legacy generator actual> should be an appropriate actual parameter for

the parameterized data types.

 Rec. ITU-T Z.104 (04/2016) 23

<legacy generator actual> ::=

 <sort>

 | <literal signature>

 | <operator name>

 | <constant expression>

To be consistent with SDL-92, the <data type specialization> in a <legacy data type definition>

should contain a <legacy data inheritance>.

To be consistent with SDL-92, the <structure definition> in a <legacy data type definition> should

not contain <visibility>, optional or <field default initialization>.

To be consistent with SDL-92, the <literal list> in a <legacy data type definition> should not contain

<visibility> or <named number>.

If a <legacy data type definition> definition contains a <range condition>, it represents the definition

of syntype and an anonymous parent data type.

The definition of a legacy operator shall be defined either by the <legacy operator definition> or the

operator referenced by a <legacy operator reference> or <legacy external operator definition>.

A <formal context parameter> of <formal context parameters> of a <data type heading> or <legacy

data type definition> shall be either a <sort context parameter> or a <synonym context parameter

list>.

Basic SDL-2010 is extended so that in an <operation signature> of <operation signatures> there shall

be one and only one corresponding definition (<operation reference> or

<external operation definition>) in the <operation definitions> of the <operations>. An

<external operation definition> is an additional alternative to <operation reference> compared with

Basic SDL-2010.

Semantics

A Value-data-type-definition describes the elements of the sort and operations induced by the way

the sort is constructed, and operations each characterized by an operation signature and the

corresponding Procedure-definition. The operations are the set of operations that are allowed for the

elements of a sort (see clause 12.1.4). The data type identified by the Data-type-identifier of the data

type definition is the inherited data type. That is, the defined data type is a specialization

(see clause 12.1.3) of the identified data type.

12.1.2 Interface definition

An interface is used to define a set of signals, remote procedures and remote variables provided by

or used on a gate of an agent. The defining context of entities defined in the interface is the scope unit

of the interface, and the entities defined are visible where the interface is visible. An interface is also

allowed to refer to signals, remote procedures, or remote variables defined outside the interface

through the <interface use list>.

An interface is used in a signal list to denote that the signals, remote procedure calls and remote

variables of the interface definition are included in the signal list.

An interface definition defines an anonymous choice data type, which is not described in

Basic SDL-2010.

24 Rec. ITU-T Z.104 (04/2016)

Concrete grammar

<interface definition> ::=

 {<package use clause>}*

 [<virtuality>] <interface heading>

 [<interface specialization>]

 { <end>

 | [<comment body>]

 <left curly bracket>

 <entity in interface>*

 <right curly bracket>

 }

 | <signal list definition>

Basic SDL-2010 is extended to allow <virtuality> to be specified for an <interface definition>, and

<interface specialization> to allow the interface definition to be a specialization of another interface

definition. Basic SDL-2010 is also extended with <end> for an empty set of entities defined in the

interface, in which case there shall be an <interface specialization>; otherwise the interface has no

identified signals, remote procedures or remote variables.

<interface heading> ::=

 interface <interface name>

 [<formal context parameters>] [<virtuality constraint>]

The <formal context parameters> shall only contain parameters specified by a

<signal context parameter list>, or a <remote procedure context parameter>, or a

<remotevariable context parameter list> or a <sort context parameter>.

<entity in interface> ::=

 <signal definition list>

 | <interface use list>

 | <interface variable definition>

 | <interface procedure definition>

The Basic SDL-2010 <entity in interface> is extended to allow <interface variable definition> entities

for remote variables and <interface procedure definition> entities for remote procedures.

<interface variable definition> ::=

 dcl <remote variable name> { , <remote variable name>}* <sort> <end>

<interface procedure definition> ::=

 procedure <remote procedure name> <procedure signature> <end>

NOTE  The <remote variable name> or <interface procedure definition> each has to be a <name>, whereas

in SDL-2000 each is allowed to be a name or a number (an <integer name> or a <real name>).

The semantics of <virtuality> is defined in clause 8.4.2 of [ITU-T Z.102].

The content of an interface is the set of all signals, remote procedures and remote variables that are

defined in an <entity in interface> of the interface or referenced in the <interface use list> or included

in the interface by specialization (that is, inheritance or context parameterization).

<as interface> ::=

 as interface <interface identifier>

An <interface definition> defines a Data-type-definition of a choice data type with a unique

anonymous Sort name in the context that the Interface-definition is visible. A <basic sort> that is <as

interface> where <interface identifier> identifies the Interface-definition represents this Data-type-

definition. The Data-type-definition is equivalent to defining a choice data type with a <choice of

sort> for each distinct Signal-definition identified by the Signal-identifier-set of the Interface-

definition. The <field name> and <field sort> for each <choice of sort> is determined in the same

way as a <choice of sort> for each distinct Signal-definition of the Data-type-definition defined by a

<gate definition>.

 Rec. ITU-T Z.104 (04/2016) 25

Model

The inclusion of an <interface identifier> in a <signal list> means the content of the interface (that is,

all signal identifiers, all remote procedure identifiers and remote variable identifiers forming part of

the <interface definition>) are included in the <signal list>.

Internally connected gates of an agent (or agent type) are explicit or implicit gates of the agent

(or agent type respectively) that are connected via implicit or explicit channels to the gates of either

the state machine of the agent (or agent type respectively) or a contained agent. The interface defined

by an agent or agent type contains in its <interface specialization> all interfaces given in the incoming

signal list associated with internally connected gates. The interface contains in its <interface use list>

all signals, remote variables and remote procedures given in the incoming signal list associated with

internally connected gates. In addition, the interface for an agent type that inherits another agent type

also contains in its <interface specialization> the implicit interface defined by the inherited agent

type.

The implicit interface for an agent type that inherits another agent type also contains in its interface

specialization the implicit interface defined by the inherited agent type.

If the containing entity is an agent type that inherits another agent type, then the interface of the state

machine of the agent type also contains in its interface specialization the implicit interface of the state

machine of the inherited agent type.

12.1.3 Operation signature

Basic SDL-2010 is extended to include methods, legacy syntax and operation visibility. A method is

an operation that is applied to a variable and is able (but does not have to) modify the value associated

with a variable.

Concrete grammar

<operation signatures> ::=

 [<operator list>] [<method list>]

The Basic SDL-2010 <operation signatures> is extended to allow a <method list>.

<legacy operator signatures> ::=

 operators

 <legacy operator signature> { <end> <legacy operator signature> }* [<end>]

A <legacy data type definition> has <legacy operator signatures> instead of <operation signatures>

for the concrete syntax of operation signatures.

<legacy operator signature> ::=

 <operator name> : <arguments> -> <sort>

A <legacy operator signature> represents an Operation-signature.

The <sort> of a <legacy operator signature> represents the Result of the Operation-signature.

<method list> ::=

 methods <operation signature> { <end> <operation signature> }* <end>

<operation signature> ::=

 <operation preamble>

 <operation name>

 [<arguments>] [<result>]

The Basic SDL-2010 <operation signature> is extended to include an <operation preamble> that

defines the visibility scope of the operation. Omitting the <result> is allowed for a method, as

explained below.

<operation preamble> ::=

 [<visibility>]

26 Rec. ITU-T Z.104 (04/2016)

The <operation preamble> of an <operation signature> in a <sort signature> of a <sort constraint>

shall be empty.

<result> in <operation signature> shall be omitted only if the <operation signature> occurred in a

<method list>.

Model

If <operation signature> is contained in a <method list>, this is derived syntax and is transformed as

follows: an <argument> is constructed from the <parameter kind> in/out, and the <sort identifier> of

the sort being defined by the enclosing <data type definition>. If there are no <arguments> (that is,

the original argument list was empty), <arguments> is formed from the constructed <argument> and

inserted into the <operation signature>. If there are <arguments>, the constructed <argument> is

added to the start of the original list of <argument>s in the <arguments>. If the <result> was omitted,

the <result> is the <sort identifier> of the sort being defined by the enclosing <data type definition>.

NOTE  An empty <parameter kind> is allowed and has the same meaning as the <parameter kind> in

(see Procedure in [ITU-T Z.103]).

12.1.4 Generic data type operations

These are as defined in Basic SDL-2010.

12.1.5 Pid and pid sorts

These are as defined in Basic SDL-2010, except specialization is allowed so the output compatibility

check (b) in clause 12.1.5 of [ITU-T Z.101] applies.

12.1.6 Data type constructors

12.1.6.1 Literals

Concrete grammar

<literal list> ::=

 [<visibility>] literals <literal signature> { , <literal signature> }* <end>

The Basic SDL-2010 <literal list> is extended to allow restricting visibility of the literals.

Semantics

The meaning of <visibility> in <literal list> is explained in clause 12.1.8.4.

12.1.6.2 Structure data types

The concrete syntax of structure data types is extended to include visibility constraints and a

shorthand for several consecutive fields of the same sort.

Concrete grammar

<structure definition> ::=

 [<visibility>] struct [<field list>] <end>

The Basic SDL-2010 <structure definition> is extended to allow restricting <visibility> of the

structure data type.

<fields of sort> ::=

 [<visibility>]

 <aggregation kind> <field name>{ , <aggregation kind> <field name> }* <field sort>

The Basic SDL-2010 <fields of sort> is extended to allow restricting <visibility> of fields of the

structure. The Basic SDL-2010 <fields of sort> is also extended to allow two or more adjacent fields

of the same sort to be defined more concisely.

 Rec. ITU-T Z.104 (04/2016) 27

The meaning of <visibility> in <fields of sort> and <structure definition> is explained in

clause 12.1.8.4.

The <structure definition> for a structure S represents (in the Operation-signature set of the

Data-type-definition for S):

a) in the absence of data type specialization, if no operator named Make is given with an

Operation-result that is the Sort-reference-identifier of the S structure sort, an

Operation-signature for a generic operator named Make as in [ITU-T Z.101] clause 12.1.6.2

Concrete grammar.

b) if S has a <data type specialization> and no Operation-signature for an operator named Make

is given with an Operation-result that is the Sort-reference-identifier of the S structure sort

(an S structure result), represents (in the Operation-signature set of the Data-type-definition

for S) an Operation-signature for a generic operator named Make for each inherited

Operation-signature for an operator named Make with:

i. a Formal-argument list that begins with Sort-reference-identifier items of the

Formal-argument list of the inherited Make operator and where each subsequent item is

the Sort-reference-identifier of the corresponding (in order) <field name> if the

referenced <field> does not contain optional and does not contain a

<field default initialization>;

ii. an Operation-result that is the S structure result;

iii. the procedure identified by the Operation-signature having each formal parameter of its

Parameter-aggregation derived from the <aggregation kind> of the corresponding <field

name>, and a Result-aggregation that is PART.

c) field extract operators as in [ITU-T Z.101] clause 12.1.6.2 Concrete grammar.

d) field modify operators as in [ITU-T Z.101] clause 12.1.6.2 Concrete grammar.

e) field present operators as in [ITU-T Z.101] clause 12.1.6.2 Concrete grammar.

f) a generic operator named Undefined as in [ITU-T Z.101] clause 12.1.6.2 Concrete grammar.

The generic operations to create structure values are applied as operators.

The generic operations for structure values that have an initial in/out parameter (to modify fields,

access fields, test for the presence of field and test for the structure value being undefined) are treated

as methods.

Semantics

Where there is a Make operation that corresponds to a Make operation in a parent type, the Make

operation in the parent type is invoked first with the actual arguments corresponding to the parameters

of that Make operation given as actual arguments before associating the fields of the data type with

the results of the remaining formal parameters.

Model

A <field list> containing a <field> that has a <fields of sort> with an <aggregation kind>

<field name> pair list is derived concrete syntax where this <field> is replaced by a list of <field>s

separated by <end>, one for each <aggregation kind> <field name> pair in the order of occurrence of

each <aggregation kind> <field name> pair. Each <field> in the replacement list has a <fields of sort>

with same <visibility> and <field sort> as the original <fields of sort>. Each <field> in the

replacement list is optional if the original <field> was optional, or has the <field default

initialization> of the original <field> if there was one.

After transforming any <aggregation kind> <field name> pair list as above, a <structure definition>

introducing a sort named S implies for each field fn the following in the <method list> of S:
 fnExtract -> fs;

28 Rec. ITU-T Z.104 (04/2016)

 fnModify (fs) -> S;
 fnPresent -> <<package Predefined>>Boolean;

These are transformed according to the model for methods in clause 12.1.4 to:
 fnExtract (in/out S) -> fs;

 fnModify (in/out S, fs) -> S;
 fnPresent (in/out S) -> <<package Predefined>>Boolean;

12.1.6.3 Choice data types

The concrete syntax of choice data types is extended to include visibility constraints.

Concrete grammar

<choice definition> ::=

 [<visibility>] choice [<choice list>] <end>

The Basic SDL-2010 <choice definition> is extended to allow restricting visibility of the choice data

type.

<choice of sort> ::=

 [<visibility>]

 <aggregation kind> <field name>{ , <aggregation kind> <field name> }* <field sort>

The Basic SDL-2010 <choice of sort> is extended to allow restricting visibility of the choice field.

The Basic SDL-2010 <choice of sort> is also extended to allow two or more adjacent fields of the

same sort to be defined more concisely.

The meaning of <visibility> in <choice of sort> and <choice definition> is explained in

clause 12.1.8.4.

The generic operations to create choice values are applied as operators.

The generic operations for choice values that have an initial in/out parameter (to modify fields, access

fields, test for the presence of a particular field, test for which field is present in the choice value, and

test for a choice value being undefined) are treated as methods.

Model

A <choice list> containing a <choice of sort> with an <aggregation kind> <field name> pair list is

derived concrete syntax where this <choice of sort> is replaced by a list of <choice of sort> items

separated by <end>, one for each <aggregation kind> <field name> pair in the order of occurrence of

each <aggregation kind> <field name> pair. Each <choice of sort> in the replacement list has the

same <visibility> and <field sort> as the original <choice of sort>.

After transforming any <aggregation kind> <field name> pair list as above, a <choice definition>

introducing a sort named C implies for each field fn the following in the <operator list> of C:
 fn (fs) -> C;

After transforming any <aggregation kind> <field name> pair list as above, a <choice definition>

introducing a sort named C implies for each field fn the following in the <method list> of C:
 fnExtract -> fs;
 fnModify (fs) -> C;
 fnPresent -> <<package Predefined>>Boolean;

These are transformed according to the model for methods in clause 12.1.4 to:
 fnExtract (in/out C) -> fs;
 fnModify (in/out C, fs) -> C;

 fnPresent (in/out C) -> <<package Predefined>>Boolean;

12.1.7 Behaviour of operations

The syntax for the definition of operations is extended compared with Basic SDL-2010.

 Rec. ITU-T Z.104 (04/2016) 29

Concrete grammar

<operation definition item> ::=

 <operation definition>

 | <operation reference>

 | <external operation definition>

The Basic SDL-2010 <operation definition item> is extended to allow operations to be defined

textually and to allow operations to be defined external to the <sdl specification> possibly in another

notation.

<operation definition> ::=

 {<package use clause>}*

 <operation heading>

 [<end> <entity in operation>+]

 [<comment body>] <left curly bracket>

 <statements>

 <right curly bracket>

<operation heading> ::=

 <operation kind> <operation preamble> [<qualifier>] <operation name>

 [<formal operation parameters>]

 [<operation result>]

The Basic SDL-2010 <operation heading> is extended with <operation preamble> and the extension

of <operation kind> (in clause 8.2) allows operations to be methods. If the <operation kind> is

operator, each item in the <formal operation parameters> represents an item (in the same order) in

the Procedure-formal-parameter list of the Procedure-definition for the operator. If the <operation

kind> is method, the first item in the Procedure-formal-parameter list of the Procedure-definition

for the method is an Inout-parameter with an anonymous Variable-name and a Sort-reference-

identifier that identifies the sort for the data type in which the method is defined. Each item in the

<formal operation parameters> of a method represents a subsequent item (in the same order) in the

Procedure-formal-parameter list of the Procedure-definition for the method.

NOTE 1 – <operation preamble> is placed after <operation kind> to avoid ambiguity with the optional

<operation signatures> which also sometimes starts with an <operation preamble>. The initial keyword of

<operation definitions> is never the same as the initial keyword of an <operation signature>.

If the <operation heading> begins with the keyword operator, then <operation definition> defines

the behaviour of an operator. If the <operation heading> begins with the keyword method, then

<operation definition> defines the behaviour of a method. Whether an operation is an operator or

method is part of the operation signature and therefore part of the identity of the operation.

<formal operation parameters> ::=

 (<formal variable parameters> {, <formal variable parameters> }*)

 | [<end>] fpar <formal variable parameters> {, <formal variable parameters> }*

The Basic SDL-2010 <formal operation parameters> is extended to allow a bracketed list as an

alternative.

<entity in operation> ::=

 <data definition>

 | <variable definition>

 | <select definition>

 | <macro definition>

<operation result> ::=

 { <result sign> | returns } <result aggregation> [<variable name>] <sort>

NOTE 2  The <variable name> has to be a <name>, whereas in SDL-2000 it is allowed to be a name or a

number (an <integer name> or a <real name>).

30 Rec. ITU-T Z.104 (04/2016)

The Basic SDL-2010 <operation result> is extended to allow the use of <result sign> instead of

returns and a <variable name> for the result. If the result is named, the derived procedure has a result

named with this name.

<external operation definition> ::=

 <operation kind> <operation signature> external <end>

It is allowed to omit <arguments> and <result> in <external operation definition> if there is no other

<external operation definition> within the same sort which has the same name, and an

<operation signature> is present. In this case, the <arguments> and the <result> are derived from the

<operation signature>.

An <external operation definition> is an operator or method whose behaviour body is not included in

the <sdl specification> and is not necessarily defined in the SDL-2010 or any previous version of the

Specification and Description Language. An <external operation definition> is treated as if written in

SDL-2010, and the <operation signature> represents Operation-signature and Procedure-definition

for the operation. How the abstract grammar for external operations is derived is not further defined

by SDL-2010.

For each <operation signature>, at most one corresponding <operation definition> shall be given.

No operation shall have both an <operation diagram> and an <operation definition>.

The <statement>s in <operation definition> shall contain neither an <imperative expression> nor an

<identifier> defined outside the enclosing <operation definition> or <operation diagram>,

respectively, except for <synonym identifier>s, <operation identifier>s, <literal identifier>s and

<sort>s.

<operation diagram> ::=

 { <operation page> }+

The Basic SDL-2010 <operation diagram> is extended to allow more than one page. The same

<qualifier> shall be present on all pages or be omitted in the <operation heading> on every page.

If the operation is unambiguously identified from the <operation heading> by <operation name> or

<qualifier> and <operation name>, the <formal operation parameters> and <operation result> need

to be included in the <operation heading> of at least one page. The <formal operation parameters>

and <operation result> of the <operation heading> shall be the same on every page on which they are

included. Similarly, the <package use area> needs to be included for at least one page, and shall be

the same for every page for which it is included.

<operation text area> ::=

 <text symbol> contains

 { <data definition>

 | <variable definition>

 | <macro definition>

 | <select definition> }*

The Basic SDL-2010 <operation text area> is extended to allow <macro definition> and <select

definition>.

The <start area> in <operation diagram> shall not contain <virtuality>.

The restriction on an <operation body area> containing an <identifier> (in Basic SDL-2010), does

not apply for any <synonym identifier>.

NOTE 3 – <synonym identifier> is not mentioned in [ITU-T Z.101] because synonym is not included in

Basic SDL-2010.

Any <statement> in <operation definition> shall contain neither an <imperative expression> nor an

<identifier> defined outside the enclosing <operation definition>, except for <synonym identifier>s,

<operation identifier>s, <literal identifier>s and <sort>s.

 Rec. ITU-T Z.104 (04/2016) 31

The following syntax provides compatibility with SDL-92 models: <legacy operator definition>,

<legacy operator reference> and <legacy external operator definition>. These are used instead of

<operation definitions> within a <legacy data type definition> (see clause 12.1.8).

<legacy operator definition> ::=

 {<package use clause>}*

 <operation heading> <end>

 { <entity in operation> }*

 <start>

 endoperator

 [{<operation identifier> | <operation name> }] <end>

<start> is defined in [ITU-T Z.106].

The body of the transition for <start> in a <legacy operator definition> shall contain only items that

are allowed in an operation definition.

<legacy operator reference> ::=

 <operation heading> referenced <end>

<legacy external operator definition> ::=

 operator <operation name> [<legacy procedure signature>] external <end>

An <operation heading> in a <legacy operator definition> or <legacy operator reference> shall use

the keyword operator.

A <legacy operator definition> corresponds to an <operation definition>.

A <legacy operator reference> corresponds to an <operation reference>.

A <legacy external operator definition> corresponds to an <external operation definition>.

Semantics

An operator is a constructor for elements of the sort identified by the result. It returns a value, or an

agent identity. A method acts on a variable (through the implicit in/out parameter of the procedure

for the method) and therefore is able to modify the variable it acts on. In addition, a method optionally

produces a result.

An operator shall not modify items that are reachable by the actual parameters. An item is considered

modified in an operator if there is a potential control flow inside the operator resulting in modification.

Therefore an operator with an Inout-parameter (in the procedure for the operator) shall not assign a

value to the parameter or call a method or procedure that modifies the parameter.

NOTE 4 – For an operator there is no practical difference between an In-parameter and an Inout-parameter

(though they will be probably have different implementations); an Out-parameter has no practical use, and an

operator returns only a single value (whereas for a procedure each Inout-parameter or Out-parameter returns

a value so a procedure is able to return multiple values).

Model

If an <operation diagram> has more than one <operation page>, this is transformed to a single page

that contains every <operation text area> and <operation body area> on the pages. This

transformation takes place before the contents of the page are transformed.

For every <operation definition> or <operation diagram> which does not have a corresponding

<operation signature>, an <operation signature> is constructed.

A <operation definition> is derived syntax for an <operation diagram> that is a single <operation

page> having the same <operation heading> and the <package use area> of the <operation diagram>

containing the <package use clause> of the <operation definition>. The <transition area> of the

<procedure start area> of the <operation page> consists of a <task area> containing the <statements>

of the <operation definition> followed by an unlabelled <return area>. The <entity in operation>

32 Rec. ITU-T Z.104 (04/2016)

items of the <operation definition> are inserted into an <operation text area> of the <operation

diagram> and allow local items (such as variables) of the operation to be defined. This transformation

takes place after handling any <select definition> or <macro definition> in the <operation definition>.

12.1.8 Additional data definition constructs

This clause covers further constructs for data.

12.1.8.1 Syntypes

Concrete grammar

<syntype definition> ::=

 {<package use clause>}* { <syntype definition syntype> | <syntype definition data type> }

<syntype definition data type> ::=

 <type preamble> <data type heading> [<data type specialization>]

 { [<comment body>] <left curly bracket> <data type definition body> <constraint> <end>

 <right curly bracket>

 }

The Basic SDL-2010 <syntype definition> is extended to allow definition in the form of a data type

definition with a constraint. Such a <syntype definition> with a <syntype definition data type> and

the keywords value type is derived syntax defined below. In addition there is a legacy form used in

legacy data type definitions.

<legacy syntype definition> ::=

 syntype

 <syntype name> <equals sign> <parent sort identifier>

 [<default initialization> [<end>]]

 [constants <range condition>]

 endsyntype [<syntype name>]

NOTE  See also <legacy data type definition> for syntype combined with a newtype.

Semantics

Specifying a syntype identifier is the same as specifying the parent sort identifier of the syntype,

except for the cases listed for Basic SDL-2010 in [ITU-T Z.101] and following cases:

a) remote variable or remote procedure definition if one of the sorts for derivation of implicit

signals is a syntype;

b) <any expression>, where the result will be within the range (see clause 12.3.4.6).

Model

A <syntype definition> with the keywords value type or newtype is distinguished from a

<data type definition> by the inclusion of a <constraint>. Such a <syntype definition> is shorthand

for introducing a <data type definition> with an anonymous name without the <constraint>, followed

by a <syntype definition> with <syntype definition syntype> based on this anonymously named sort

and including <constraint>.

12.1.8.2 Constraint

Constraint on data types is defined in Basic SDL-2010.

12.1.8.3 Synonym definition

A synonym allows the use of a name for a constant that represents one of the data items of a sort.

This is achieved by storing the value in a read-only variable.

Concrete grammar

<synonym definition> ::=

 synonym <synonym definition item> { , <synonym definition item> }*<end>

 Rec. ITU-T Z.104 (04/2016) 33

<synonym definition item> ::=

 <internal synonym definition item>

 | <external synonym definition item>

<internal synonym definition item> ::=

 <synonym name> [<sort>] <equals sign> <constant expression>

<external synonym definition item> ::=

 <synonym name> <predefined sort> <equals sign> external

NOTE 1  The <synonym name> has to be a <name>, whereas in SDL-2000 it is allowed to be a name or a

number (an <integer name> or a <real name>).

A <synonym definition> represents a Variable-definition in the context in which the synonym

definition appears with special property that the variable is read-only. The <synonym name>

represents the Variable-name.

NOTE 2  Writing to the variable is not possible, because <synonym> is not allowed where assignments could

take place.

The <constant expression> in the concrete syntax denotes a Constant-expression in the abstract

syntax as defined in [ITU-T Z.101].

If sort of the <constant expression> is unique (that is, the expression belongs to only one sort), it is

allowed to omit the <sort> in the <synonym definition> and the Sort-reference-identifier is derived

from the constant expression sort.

If a <sort> is specified, this determines the Sort-reference-identifier of the Variable-definition, and

the sort of the <constant expression> has to be compatible with this sort.

The <constant expression> shall not refer to the synonym defined by the <synonym definition>,

either directly or indirectly (via another synonym).

An <external synonym definition item> defines a <synonym> whose result is not defined in a

specification (see clause 13).

Semantics

The result that the synonym represents is determined by the context in which the synonym definition

appears.

A synonym has a value, which is the value of the constant expression associated with the variable for

the synonym definition.

A synonym has a sort, which is the sort of the variable for the synonym definition.

12.1.8.4 Restricted visibility

Concrete grammar

<visibility> ::=

 public | protected | private

A <visibility> keyword shall not precede a <literal list>, <structure definition>, or

<choice definition> in a <data type definition> containing <data type specialization>. A <visibility>

keyword shall not be used in an <operation signature> that redefines an inherited operation signature.

Semantics

<visibility> controls visibility of a literal name or operation name.

When a <literal list> is preceded by <visibility>, this <visibility> applies to all <literal signature>s.

When a <structure definition> or <choice definition> is preceded by <visibility>, then this

<visibility> applies to all implied <operation signatures>.

34 Rec. ITU-T Z.104 (04/2016)

When a <fields of sort> or <choice of sort> is preceded by a <visibility>, this <visibility> applies to

all implied <operation signatures>.

If a <literal signature> or <operation signature> contains the keyword private in <visibility>, then

the Operation-name derived from this <operation signature> is only visible within the scope of the

<data type definition> that contains the <operation signature>. When a <data type definition>

containing such <operation signature> is specialized, the <operation name> in <operation signature>

is implicitly renamed to an anonymous name. Every occurrence of this <operation name> within the

<operation definitions> or <operation diagram>s corresponding to this <operation signature> is

renamed to the same anonymous name, when the <operation signature> and the corresponding

operation definition are inherited by specialization.

NOTE 1  As a consequence, the operator or method defined by this <operation signature> is usable only in

operation applications within the data type definition that originally defined this <operation signature>, but

not in any subtype thereof.

If a <literal signature> or <operation signature> contains the keyword protected in <visibility>, then

the Operation-name derived from this <operation signature> is only visible within the scope of the

<data type definition> that contains the <operation signature>.

NOTE 2  Because inherited operators and methods are copied into the body of the subtype, the operator or

method defined by this <operation signature> is accessible within the scope of any <data type definition> that

is a subtype of the <data type definition> that originally defined this <operation signature>.

NOTE 3  If a <literal signature> or <operation signature> does not contain <visibility>, the Operation-name

derived from this <operation signature> is visible everywhere where the <sort name> that is defined in the

enclosing <data type definition> is visible.

Model

If a <literal signature> or <operation signature> contains the keyword public in <visibility>, this is

derived syntax for a signature having no visibility protection.

12.1.9 Specialization of data types

Specialization allows the definition of a data type based on another (super) type.

Concrete grammar

<data type specialization> ::=

 inherits <data type type expression> [<renaming> | <legacy data inheritance>] [adding]

<interface specialization> ::=

 inherits <interface type expression> { , <interface type expression> }* [adding]

<renaming> ::=

 (<rename list>)

<rename list> ::=

 <rename pair> { , <rename pair> }*

<rename pair> ::=

 <rename pair operation name>

 | <rename pair literal name>

<rename pair operation name> ::=

 <operation name> <equals sign> <base type operation name>

<rename pair literal name> ::=

 <literal name> <equals sign> <base type literal name>

The Data-type-identifier in the Data-type-definition represented by the <data type definition> in

which <data type specialization> (or <interface specialization>) is contained identifies the data type

represented by the <data type type expression> in its <data type specialization> (see also

clause 8.1.2).

 Rec. ITU-T Z.104 (04/2016) 35

An Interface-definition is allowed to contain a list of Data-type-identifier items. The interface denoted

by an Interface-definition is a specialization of all the interfaces denoted by the Data-type-identifier

list items.

The resulting content of a specialized interface definition (<interface specialization>) consists of the

content of the supertypes with the content of the specialized definition. This implies that the set of

signals, remote procedures and remote variables of the specialized interface definition is the union of

those given in the specialized definition itself and those of the supertypes. The resulting set of

definitions shall obey the rules for visibility and naming.

The <data type constructor> with the <data type specialization> shall not be a <choice definition>.

The <data type constructor> with the <data type specialization> shall be of the same kind as the

<data type constructor> used in the <data type definition> of the sort referenced by

<data type type expression> in the <data type specialization>: if the <data type constructor> used in

a (direct or indirect) supertype was a <literal list>, the <data type constructor> shall be a <literal list>;

if the supertype <data type constructor> was a <structure definition>, the subtype

<data type constructor> shall be a <structure definition>.

Renaming changes the name of inherited literals, operators and methods in the derived data type.

All <literal name>s and all <base type literal name>s in a <rename list> shall be distinct.

All <operation name>s and all <base type operation name>s in a <rename list> shall be distinct.

A <base type operation name> specified in a <rename list> shall be an operation with

<operation name> defined in the data type definition defining the <base type> of

<data type type expression>.

A subtype with <renaming> of a sort is not allowed as an actual sort parameter constrained to be

atleast that sort.

<legacy data inheritance> ::=

 [<legacy literal renaming>]

 [[operators] { all | (<legacy inheritance list>) } [<end>]]

<legacy literal renaming> ::=

 literals <rename pair> { , <rename pair> }* <end>

<legacy inheritance list> ::=

 <legacy inherited operator> { , <legacy inherited operator> }*

<legacy inherited operator> ::=

 <operation name> | <rename pair>

To be consistent with SDL-92, the <operation name> as <legacy inherited operator> should refer to

an operation defined in the base type. Specifying operators all or a named operation without

renaming has no influence on the inherited operations, which are determined according to the

SDL-2010 rules.

Semantics

The sort defined by the specialization is a subsort of the sort defined by the base type. The sort defined

by the base type is a supersort of the sort defined by the specialization.

Sort compatibility determines when a sort is allowed to be used in place of another sort, and when it

is not allowed. This relation is used for assignments (see clause 12.3.3), for parameter passing (see

clause 12.2.7 and clause 9.4 in [ITU-T Z.101]), for re-declaration of parameter types during

inheritance (see clause 12.1.2), and for actual context parameters.

Let P and R be two sorts. P is sort compatible with R if and only if one of the following apply:

a) P and R are the same sort;

b) P is directly sort compatible with R (see below);

36 Rec. ITU-T Z.104 (04/2016)

c) R is denoted by a <sort identifier>, and the <sort identifier> is defined by an interface (a pid

sort) and, for some sort Q, P is sort compatible with Q, and Q is sort compatible with R.

NOTE 1  Sort compatibility is transitive only for sorts defined by interfaces, not for sorts defined by value

types.

Let Y and Z be different sorts. Y is directly sort compatible with Z if and only if any of the following

applies:

a) Y is denoted by an <anchored sort> of the form this Z;

b) Y is denoted by a <pid sort> (see clause 12.1.2 and clause 12.1.2 of [ITU-T Z.101]) and Zis

a supersort of Y.

Model

The model for specialization in clause 8.4 of [ITU-T Z.102] is used, augmented as follows.

A specialized data type is based on another (base) data type by using a <data type definition> in

combination with a <data type specialization>. The sort defined by the specialization is disjoint from

the sort defined by the base type.

If the sort defined by the base type has literals defined, the literal names are inherited as names for

literals of the sort defined by the specialized type unless literal renaming has taken place for that

literal. Literal renaming has taken place for a literal if the base type literal name appears as the second

name in a <rename pair>, in which case the literal is renamed to the first name in that pair.

If the base type has operators or methods defined, the operation names are inherited as names for

operators or methods of the sort being defined, unless the operator or method has been declared as

private (see clause 12.1.8.4) or operation renaming has taken place for that operator or method.

Operation renaming has taken place for an operator or method if the inherited operation name appears

as the second name in a <rename pair>, in which case the operator or method is renamed to the first

name in that pair.

When several operators or methods of the <base type> of <sort type expression> have the same name

as the <base type operation name> in a <rename pair>, all of these operators or methods are renamed.

In the following paragraphs ST is a subsort that is a specialization of a data type T, and Tid is an

<identifier> for data type T.

For every occurrence of a <basic sort> of the form Tid in a specialization of T, the <basic sort> is

replaced by the <basic sort> of the subsort: that is, the <identifier> for the subsort ST. Every

occurrence of an <anchored sort> of the form parent T in a specialization of T, the <anchored sort>

is replaced by an unambiguous qualified <basic sort> for the base type T: that is, the qualified

<identifier> for T. Every occurrence of an <anchored sort> of the form this T in a specialization of

T, the <anchored sort> is replaced by the <basic sort> of the subsort: that is, the <identifier> for the

subsort ST. The signature of the operator is considered only after applying these models.

NOTE 2  An <anchored sort> of the form this T has the same meaning as a <basic sort> of the form T in a

specialization of T.

The argument sorts and result of an inherited operator or method are the same as those of the

corresponding operator or method of the base type, except that every <argument> in T that is a

<basic sort> T or an <anchored sort> of the form this T, in the inherited operator or method the

<anchored sort> is replaced by the subsort ST.

NOTE 3  From the specialization semantics in clause 8.4 of [ITU-T Z.102], an operator of T is inherited if

the signature of the specialized operator is not the same as the signature of the base type operator, which is

only the case if the signature is not already present in the subtype (a generic operator or matching user defined

operator) or renaming had taken place, or contains one <sort> that is: a <basic sort> of the form T, or an

<anchored sort> of the form this T.

 Rec. ITU-T Z.104 (04/2016) 37

12.2 Use of data

The following clauses define how sorts, literals, operators, methods and synonyms are interpreted in

expressions.

12.2.1 Expression and expressions as actual parameters

Abstract grammar

Constant-expression :: Literal

 | Conditional-expression

 | Equality-expression

 | Operation-application

 | Range-check-expression

 | Agent-instance-pid-value

The Basic SDL-2010 Constant-expression is extended to include Agent-instance-pid-value to allow

initialization of variables to the pid values of agent instances.

Agent-instance-pid-value = Agent-instance*

Agent-instance = Agent-name Instance-number

Instance-number = Expression

The leftmost item in the Agent-instance list of an Agent-instance-pid-value shall have an Agent-name

that is the Agent-name of an Agent-definition directly contained by the Agent-definition for the

system. The Agent-definition for the system has an Agent-type-identifier for an Agent-type-definition

with the Agent-kind SYSTEM.

Except the leftmost item, each other item in the list Agent-instance list of an Agent-instance-pid-value

shall have an Agent-name that is the Agent-name of an Agent-definition directly contained by the

Agent-instance item immediately to the left.

The Instance-number of an Agent-instance in the Agent-instance-pid-value of a Constant-expression

shall be a positive Natural Constant-expression less than or equal to the Initial-number of the

Number-of-instances of the Agent-definition for the Agent-name in the same Agent-instance.

Active-expression = Variable-access

 | Conditional-expression

 | Operation-application

 | Equality-expression

 | Imperative-expression

 | Range-check-expression

 | Value-returning-call-node

 | Encoding-expression

 | Decoding-expression

 | Agent-instance-pid-value

The Basic SDL-2010 Active-expression is extended to include Encoding-expression and

Decoding-expression to allow the use of encoding rules in expressions, and is extended to include

Agent-instance-pid-value to allow the pid value for an agent instance to be dynamically determined.

The Instance-number of an Agent-instance in the Agent-instance-pid-value of a Active-expression

shall be a positive Natural Constant-expression less than or equal to the Active-agents-expression of

the Agent-definition for the Agent-name in the same Agent-instance.

Concrete grammar

For simplicity of description, no distinction is made between the concrete syntax of

Constant-expression and Active-expression.

38 Rec. ITU-T Z.104 (04/2016)

<expression0> ::=

 <operand>

 | <create expression>

 | <value returning procedure call>

 | <decoding expression>

 | <encoding expression>

 | <agent instance pid value>

The Basic SDL-2010 <expression0> is extended to allow a <create expression>, <decoding

expression>, <encoding expression> and <agent instance pid value>. An <expression0> that contains

a <create expression>, <decoding expression> or <encoding expression> is not a <constant

expression0> and represents an Active-expression. An <expression0> that contains a <agent instance

pid value> is an Agent-instance-pid-value of an Active-expression if (and only if) any of the <Natural

expression> items of an <agent instance> of the <agent instance pid value> represents an

Active-expression. Otherwise an <expression0> that contains a <agent instance pid value> is an

Agent-instance-pid-value of a Constant-expression and is evaluated only once when the system is

initialized.

<agent instance pid value> ::=

 system [< name>]

 [value < agent instance> endvalue

 | <left curly bracket> <agent instance> <right curly bracket>]

<agent instance> ::=

 { < agent instance> }*

 [block | process] <agent name>

 [<left square bracket> <Natural expression> <right square bracket>]

If a <name> is given in an <agent instance pid value>, it shall be the name of the system.

If an optional keyword block or process is given in an < agent instance> it shall match the kind of

the agent (block or process).

If the square brackets and <Natural expression> of an <agent instance pid value> is omitted, this

represents the Natural number "1". If the <Natural expression> value of an <agent instance pid

value> is zero or greater than the number of active instances of the agent instance set, the <agent

instance pid value> represents the Pid value Null.

Special visibility rules apply for an <agent name> within an <agent instance>. The <agent instance>

list before the <agent name> in an <agent instance> identifies the heirarchical context for the <agent

name>. The <agent name> is visible if it is visible in the last item of the <agent instance> list to the

immediate left of the <agent name>, or if it visible in the system. The <agent instance> list items to

the left can be omitted provided the agent instance is uniquely identifiable (in the same way as

omitting parts of a <qualifier> of an <identifier>) and each omitted <agent instance> list item

represents the correponding Agent-name with an Instance-number for the Natural number "1".

<primary> ::=

 <operation application>

 | <literal>

 | (<expression>)

 | <conditional expression>

 | <extended primary>

 | <active primary>

 | <synonym>

The Basic SDL-2010 <primary> is extended to allow a <synonym>.

Semantics

An Agent-instance-pid-value is a pid value of the implicit pid sort for the type of the agent instance

set and is compatible with the predefined Pid sort. If the Agent-instance list is empty, the

Agent-instance-pid-value is the Pid value of the state machine of the system: that is signals sent to

 Rec. ITU-T Z.104 (04/2016) 39

this Pid value are sent to the system state machine. Otherwise an Agent-instance-pid-value is the

unique pid value for the agent instance given by the rightmost item of the Agent-instance list, so that

signals output to this pid value are received by the agent instance. If the rightmost item of the

Agent-instance list does not identify a valid agent instance, the Agent-instance-pid-value is the Pid

value Null.

NOTE  An Agent-instance-pid-value that is a Constant-expression is interpreted once during initialization of

the system, and the result of the interpretation is preserved. Whenever the value of the Agent-instance-pid-

value is needed during interpretation, a replicate of the computed value is used. If the initial agent instance no

longer exists signals sent to this instance are discarded.

12.2.2 Literal

Literal is as defined in Basic SDL-2010.

12.2.3 Extended primary

Extended variable for an indexed primary is as defined in Basic SDL-2010, but for a field primary it

is extended.

Concrete grammar

<field primary> ::=

 <primary> <exclamation mark> { <field name> | <field number> | <as signal> }

 | <primary> <full stop> { <field name> | <field number> | <as signal> }

 | <field name>

The <field primary> of Basic SDL-2010 is extended to allow the field to be identified by a <field

number> or <as signal>, and to allow the short form <field name> (without a <primary>) in the

context of the data type definition of a structure or choice data type.

<field number> ::=

 <integer name>

The <field number> shall represent a non-zero, positive integer less than or equal to the number of

fields in the sort of the variable.

Model

A <field number> is a shorthand for the <field name> of a field of the sort of <field primary> or

<field variable>, where the value 1 represents the first field, the value 2 the second field and the value

n the nth field.

NOTE 1 – A <field number> has to be used to denote a field of a structure data type with a unique anonymous

name introduced by a <signal definition> with a <sort list>.

An <as signal> in a <field primary> is a shorthand for the <field name> of a field of the sort of the

<field primary>, where the <field name> is the same as the unique anonymous name of the structure

data type defined by the <signal definition> identified by the <signal identifier> of <as signal>.

NOTE 2 – An <as signal> has to be used to denote a field of a choice data type introduced by a <gate

definition>, <channel definition area> or <interface definition>.

When the <field primary> has the form <field name>, this is derived syntax for
 this ! <field name>

12.2.4 Equality expression

Equality expression is as defined in Basic SDL-2010.

12.2.5 Conditional expression

Conditional expression is as defined in Basic SDL-2010.

40 Rec. ITU-T Z.104 (04/2016)

12.2.6 Operation application

Operation application is extended to include the syntax for method application

Concrete grammar

<operation application> ::=

 <operator application>

 | <method application>

<method application> ::=

 <primary> <full stop> <operation identifier> [<actual parameters>]

A <method application> is legal concrete syntax only if <operation identifier> represents a method.

When the operation application in an operation has the syntactical form:
 <operation identifier> [<actual parameters>]

then, during derivation of the Operation-identifier from context, the form:
 this <full stop> <operation identifier> [<actual parameters>]

is also considered if the <operation identifier> could identify a method. The model in clause 12.3.2

is applied before resolution by context is attempted.

An <expression> in <actual parameters> corresponding to an Inout-parameter or Out-parameter in

the Procedure-definition associated with the Operation-signature shall not be omitted and shall be a

<variable access> or <extended primary>.

NOTE  Omission of <actual parameters> is allowed in an <operation application> if all actual parameters

have been omitted.

Model

The concrete syntax form:
 <expression> <full stop> <operation identifier> [<actual parameters>]

is derived concrete syntax for:
 <operation identifier> new-actual-parameters

where new-actual-parameters is <actual parameters> containing only <expression>, if

<actual parameters> was not present; otherwise, new-actual-parameters is obtained by inserting

<expression> followed by a comma before the first optional expression in <actual parameters>.

If the <primary> of a <method application> is not a variable or this, one of the transformations below

is applied before replacing the <full stop> as above, and there is an implicit assignment of the

<primary> to an implicit variable with the sort of the first parameter of the operation (that is, the

method sort) and this variable is used instead of the <primary>.

If the <method application> is in a statement, the following transformation is applied. The

<statement> in which the <method application> occurs is replaced by a <left curly bracket> followed

by a <variable definition> for the implicit variable, followed by an <assignment statement> assigning

the <primary> to the implicit variable, followed by the original <statement> where the implicit

variable replaces the <primary> in the <method application>. This is then either a <compound

statement> or a <loop compound statement> depending on context.

If the <method application> is in an action that is not in a statement (for example, in the <question>

of a <decision area>), the implicit variable is at the enclosing context and <task area> is placed in the

flow immediately before the action. The task area contains the <assignment statement> and the

implicit variable replaces the <primary> in the <method application>.

12.2.7 Range check expression

Range check expression is as defined in Basic SDL-2010.

 Rec. ITU-T Z.104 (04/2016) 41

12.2.8 Synonym

Concrete grammar

<synonym> ::=

 <synonym identifier>

A <synonym> represents the Variable-identifier for the identified synonym.

Semantics

The synonym gives the Constant-expression associated with the variable.

12.3 Active use of data

This clause extends the active use of data defined in Basic SDL-2010.

12.3.1 Variable definition

Variable definition is as defined in Basic SDL-2010 and (for exported) Comprehensive SDL-2010

with the extension to include remote variables defined in an interface definition.

Concrete grammar

The <remote variable identifier> of an <exported variable> is defined by a <remote variable

definition> (as in Comprehensive SDL-2010), or in an <interface variable definition> of an explicit

<interface definition>.

12.3.2 Variable access

Variable access is extended from Basic SDL-2010 and (for import expression)

Comprehensive SDL-2010 to allow the use of this.

Concrete grammar

<variable access> ::=

 <variable identifier>

 | <import expression>

 | this

this shall only occur in method definitions.

Model

The transformation for <import expression> is given in Comprehensive SDL-2010.

A <variable access> using the keyword this is replaced by the anonymous name introduced as the

name of the leading parameter in <arguments> according to clause 12.1.3.

12.3.3 Assignment

Assignment is as defined in Basic SDL-2010.

12.3.3.1 Extended variable

Extended variable for an indexed variable is as defined in Basic SDL-2010, but for a field variable it

is extended to allow the field to be identified by an integer instead of a name.

Concrete grammar

<field variable> ::=

 <variable> <exclamation mark> { <field name> | <field number> | <as signal> }

 | <variable> <full stop> { <field name> | <field number> | <as signal> }

The <field variable> of Basic SDL-2010 is extended to allow the field to be identified by a <field

number> or <as signal>.

42 Rec. ITU-T Z.104 (04/2016)

Model

An <as signal> in a <field variable> is a shorthand for the <field name> of a field of the sort of the

<field variable>, where the <field name> is the same as the unique anonymous name of the structure

data type defined by the <signal definition> identified by the <signal identifier> of <as signal>.

NOTE – An <as signal> has to be used to denote a field of a choice data type introduced by a <gate definition>,

<channel definition area> or <interface definition>.

12.3.3.2 Default initialization

Default initialization of Basic SDL-2010 is extended to include virtuality.

Default initialization of instances of a data type is specified to be virtual by means of the keyword

virtual in <virtuality>. Redefinition of a virtual default initialization is allowed in specializations.

This is indicated by a default initialization with the keyword redefined or finalized in <virtuality>.

If the derived type contains no <constant expression> in its default initialization, then the derived

type does not have a default initialization.

Concrete grammar

<default initialization> ::=

 default [<virtuality>] [<constant expression>]

The <constant expression> shall only be omitted if <virtuality> is redefined or finalized. In that case

the Data-type-definition or Syntype-definition for the <data type definition> or <syntype definition>

including the <default initialization> has no Default-initialization.

Semantics

Redefinition of a virtual default initialization corresponds closely to redefinition of virtual types

(see clause 8.4.2 of [ITU-T Z.102]).

12.3.4 Imperative expression

The transformations described in the Model of this clause are made at the same time as the expansion

for import is made. A label attached to an action in which an imperative expression appears is moved

to the first task inserted during the described transformation. If several imperative expressions appear

in an expression, the tasks are inserted in the same order as the imperative expressions appear in the

expression.

Abstract grammar

Imperative-expression = Now-expression

 | Pid-expression

 | Timer-active-expression

 | Timer-remaining-duration

 | Active-agents-expression

 | Any-expression

 | State-expression

 | Signal-expression

 | Signallist-expression

The grammar is extended to include Any-expression, State-expression, Signal-expression and

Signallist-expression.

 Rec. ITU-T Z.104 (04/2016) 43

Concrete grammar

<imperative expression> ::=

 <now expression>

 | <pid expression>

 | <timer active expression>

 | <timer remaining duration>

 | <active agents expression>

 | <any expression>

 | <state expression>

 | <signal expression>

 | <signallist expression>

12.3.4.1 Now expression

Now expression is as defined in Basic SDL-2010.

12.3.4.2 Pid expression

The Pid expression is extended to describe the <create expression> that returns the offspring pid

value.

Concrete grammar

<create expression> ::=

 create <create body>

A <create body> of a <create expression> represents the Create-request-node of the Create-request-

node as a Graph-node as described in [ITU-T Z.101] in the model for <create expression>.

Model

The use of <create expression> in an expression is shorthand for inserting a Create-request-node just

before the action where the <create expression> occurs, followed by an assignment of offspring to

an implicitly declared anonymous variable with a Pid sort. An access to the implicit variable then

replaces the <create expression> in the expression. If <create expression> occurs several times in an

expression, one distinct variable is used for each occurrence. In this case, the order of the inserted

create requests and variable assignments is the same as the order of the <create expression> items.

If the <create expression> contains an <agent type identifier>, then the transformations that are

applied to a create statement that contains an <agent type identifier> are also applied to the implicit

create statements resulting from the transformation of a <create expression>.

12.3.4.3 Timer active expression and timer remaining duration

The timer active expression and timer remaining duration are as defined in Basic SDL-2010.

12.3.4.4 Active agents expression

The active agents expression is as defined in Basic SDL-2010.

12.3.4.5 Import expression

Concrete grammar

The concrete syntax for an import expression is defined in [ITU-T Z.102].

Semantics

In addition to the semantics defined in [ITU-T Z.102], an import expression is interpreted as a variable

access (see clause 12.3.2) to the implicit variable for the import expression.

44 Rec. ITU-T Z.104 (04/2016)

Model

The import expression has implied syntax for the importing of the result as defined in [ITU-T Z.102]

and also has an implied Variable-access of the implied variable for the import in the context where

the <import expression> appears.

The use of <import expression> in an expression is shorthand for inserting a task just before the

action, where the expression occurs which assigns to an implicit variable the result of the

<import expression> and then uses that implicit variable in the expression. If <import expression>

occurs several times in an expression, one variable is used for each occurrence.

12.3.4.6 Any expression

Any-expression is useful for modelling behaviour, where stating a specific data item would imply

over-specification. From a result returned by an Any-expression, no assumption should be made on

other results returned by subsequent or previous interpretation of the Any-expression.

Abstract grammar

Any-expression :: Sort-reference-identifier

If the Sort-reference-identifier references the Sort of a Value-data-type-definition there shall be at

least one element in the set of values for the data type.

If the Sort-reference-identifier denotes a Syntype-identifier, the Parent-sort-identifier of the

identified Syntype-definition shall identify the Sort of a Value-data-type-definition for which there is

at least one element in the set of values for the data type.

Concrete grammar

<any expression> ::=

 any (<sort>)

Semantics

An Any-expression returns an unspecified element of the sort or syntype designated by

Sort-reference-identifier, if that sort or syntype is a value sort. If Sort-reference-identifier denotes a

Syntype-identifier, the result will be within the range of that syntype. If the sort or syntype designated

by Sort-reference-identifier is a pid sort, the Any-expression returns Null.

12.3.4.7 State expression

Abstract grammar

State-expression :: { }

Concrete grammar

<state expression> ::=

 state

Semantics

A state expression is interpreted as a Charstring that contains the spelling of the name of the most

recently entered state of the nearest enclosing scope unit. If there is no such state, <state expression>

denotes the empty string ('').

12.3.4.8 Signal expression

A Signal-expression accesses the last signal value stored by an In-choice of an Input-node for the

implicit anonymous choice variable that is capable of holding any of the values of signals in the valid

input signal set of the agent.

 Rec. ITU-T Z.104 (04/2016) 45

Abstract grammar

Signal-expression :: { }

Concrete grammar

<signal expression> ::=

 signal

Semantics

Every agent instance has an implicit anonymous choice variable that is capable of holding any of the

values of signals in the valid input signal set of the agent. When the agent is initialized this variable

is undefined. The variable is updated by an Input-node with an In-choice with a Variable-identifier

that identifies the implicit anonymous choice variable. The implicit anonymous choice variable is not

updated if the Input-node does not have an In-choice or the Variable-identifier of the In-choice

identifies another variable.

A Signal-expression accesses the implicit anonymous choice variable of the agent with the choice

data type that is capable of holding any of the values of signals in the valid input signal set of the

agent: that is, the data type defined by "as interface agent_id" where agent_id is the identifier

for the agent.

12.3.4.9 Signallist expression

A Signallist-expression represents a variable that holds the unconsumed, available signals in the agent

input port.

Abstract grammar

Signallist-expression :: { }

Concrete grammar

<signallist expression> ::=

 signallist

<as signallist> ::=

 as signallist

The <as signallist> represents the data type of the implicit read-only string variable that it is assumed

is used for storing unconsumed signal instances that have arrived at the agent.

Semantics

Every agent instance has an input port that holds the unconsumed, available signal instances that have

arrived at the agent.

If the name of the agent is agent_name, it has an implicitly defined interface with the name

agent_name with the valid input signal set of the agent as the Signal-identifier-set of the interface.

There is a choice data type defined for the interface with a choice of sort for each distinct

Signal-definition identified by the Signal-identifier-set of the Interface-definition (see clause 12.1.2,

Interface definition). Given that the name of the agent is agent_name, the anonymous implicit name

of this choice data type is denoted by "as interface agent_name".

The signal instances in the input port are assumed to be stored in order of arrival in an implicit

read-only string variable with a data type that is
value type AnonSignalString

 inherits String < as interface agent_name > (empty = emptystring)

endvalue type AnonSignalString;

where AnonSignalString is an anonymous unique name.

The Signallist-expression has a sort, which is the string sort defined as above. The

Signallist-expression represents the implicit variable.

46 Rec. ITU-T Z.104 (04/2016)

The Signallist-expression provides access to each of the unconsumed available signals in the input

port as an element of the implicit read-only string variable by indexing the Signallist-expression with

a positive Batural Expression.

length(signallist) is the number of available signals (signal instances with availability time >

now are ignored) and has the value zero if there are no available signals in the input port.

signallist = empty if and only if there are no available signals in the input port.

first(signallist) is the first signal instance to be considered in a state, and has the same meaning

as signallist[1]. Whether this signal instance is consumed depends on whether for the current

state this signal saved, or whether there are inputs with higher priority.

signallist[n] where n is a Natural expression is the nth available signal in the input port –

a choice value.

signallist[n]!Present gives a literal that is the name of the nth available signal in the input port

and one of the literals for the anonymous data type with the field names of the choice sort as

interface, and can be used to make a decision based on the signal name.

Once the name of the nth signal in the input port has been determined, the parameters of the signal

can be extracted using a field name (if one was given in the signal definition) or field number.

For example:
signal signal1 (Pid, Integer);

signal signal2 (b2 Boolean, i2 Integer);

value type sig3struct { struct c3 Charstring; } endvalue type sig3struct;

signal signal3 struct sig3struct;

dcl agent1 Pid; dcl n Integer (>= 1) ;

dcl routeNumber2 Integer;

dcl sig3copy sig3struct;

Given the definitions above
if signallist[n]!Present= signal1 /* is it a signal1 signal */

then agent1 := signallist[n]!as signal signal1!1;

 /* yes, determined by PresentExtract() of the choice value,

 from the choice for signal1 – selected by <as signal>

 (must use <as signal> if signal1 not a unique signal name) -

 extract the first struct field (the Pid field) using <field number>,

 and assign the Pid value */

/* */

if signal2Present (signallist[n]) /* is it a signal2 signal */

then routeNumber2:= signallist[n].signal2!i2;

 /* yes, determined by testing the choice value for signal2

 from the choice for signal2 – selected by unique signal2

 (assumes signal2 is a unique field name) -

 extract the named i2 field of the struct value for the signal,

 and assign the Integer value */

/* */

if signal3Present (signallist[n]) /* is it a signal3 signal */

then sig3copy:= signallist[n]!signal3;

 /* yes, determined by testing the choice value for signal3

 assign the choice for signal3*/

NOTE – As well as having a signal type and the actual parameters of the instance, a signal instance in the input

port has additional information associated with it: the sender Pid, the availability time (always <= now), the

signal priority and the arrival gate. None of these are accessible using Signal-expression. In a particular

application it is suggested to place this information in signal parameters to make it available – probably the

best way if ASN.1 and encoding is being used.

12.3.5 Value returning procedure call

The value returning procedure call is extended to cover remote procedures, additional constraints and

transformation models.

 Rec. ITU-T Z.104 (04/2016) 47

Concrete grammar

<value returning procedure call> ::=

 [call] <procedure call body>

 | [call] <remote procedure call body>

A <value returning procedure call> shall not occur in the <Boolean expression> of a

<continuous signal area> or <enabling condition area>.

An <expression> in <actual parameters> corresponding to a formal in/out or out parameter shall not

be omitted and shall be a <variable identifier>.

After the Model for this has been applied, the <procedure identifier> shall denote a procedure that

contains a start transition.

If this is used, <procedure identifier> shall denote an enclosing procedure.

The <remote procedure call body> represents a Value-returning-call-node, where

Procedure-identifier contains only the Procedure-identifier of the procedure implicitly defined by the

Model below.

Model

If the <procedure identifier> is not defined within the enclosing agent, the procedure call is

transformed into a call of a local, implicitly created, subtype of the procedure.

this implies that when the procedure is specialized, the <procedure identifier> is replaced by the

identifier of the specialized procedure.

When the <value returning procedure call> contains a <remote procedure call body>, a procedure

with an anonymous name is implicitly defined, where <sort> in <procedure result> of the procedure

definition denoted by the <procedure identifier> is the return sort of this anonymous procedure. This

anonymous procedure has a single <start area> containing a <return area> with

<remote procedure call body> as its <expression>.

NOTE  This transformation is not applied again to the implicit procedure definition.

13 Generic system definition

See [ITU-T Z.102] and [ITU-T Z.103].

14 Package Predefined

In the following definitions, all references to names defined in the package Predefined are considered

to be treated as prefixed by the qualification <<package Predefined>>. To increase readability, this

qualification is omitted.

The extensions defined in Annex A are used in this package. It is not allowed to use these extensions

in a user defined package.
/* */

package Predefined

/*

14.1 Boolean sort

14.1.1 Definition
*/

value type Boolean;

 literals true, false;

 operators

 "not" (this Boolean) -> this Boolean;

 "and" (this Boolean, this Boolean) -> this Boolean;

 "or" (this Boolean, this Boolean) -> this Boolean;

 "xor" (this Boolean, this Boolean) -> this Boolean;

48 Rec. ITU-T Z.104 (04/2016)

 "=>" (this Boolean, this Boolean) -> this Boolean;

axioms

 not(true) == false;

 not(false) == true ;

/* */

 true and true == true ;

 true and false == false;

 false and true == false;

 false and false == false;

/* */

 true or true == true ;

 true or false == true ;

 false or true == true ;

 false or false == false;

/* */

 true xor true == false;

 true xor false == true ;

 false xor true == true ;

 false xor false == false;

/* */

 true => true == true ;

 true => false == false;

 false => true == true ;

 false => false == true ;

endvalue type Boolean;

/*

14.1.2 Usage

The Boolean sort is used to represent true and false values. Often it is used as the result of a

comparison.

The Boolean sort is used widely throughout SDL.

14.2 Character sort

14.2.1 Definition
*/

value type Character;

 literals

 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

 BS, HT, LF, VT, FF, CR, SO, SI,

 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

 CAN, EM, SUB, ESC, IS4, IS3, IS2, IS1,

 ' ', '!', '"', '#', '$', '%', '&', '''',

 '(', ')', '*', '+', ',', '-', '.', '/',

 '0', '1', '2', '3', '4', '5', '6', '7',

 '8', '9', ':', ';', '<', '=', '>', '?',

 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',

 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',

 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',

 'X', 'Y', 'Z', '[', '\', ']', '^', '_',

 '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',

 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',

 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',

 'x', 'y', 'z', '{', '|', '}', '~', DEL;

/* '''' is an apostrophe, ' ' is a space, '~' is a tilde */

/* */

 operators

 chr (Integer) -> this Character;

/* "<", "<=", ">", ">=", and "num" are implicitly defined (see clause 12.1.6.1). */

axioms

 for all a,b in Character (

 for all i in Integer (

/* definition of Chr */

 chr(num(a)) == a;

 chr(i+128) == chr(i);

));

endvalue type Character;

/*

 Rec. ITU-T Z.104 (04/2016) 49

14.2.2 Usage

The Character sort is used to represent characters of the International Reference Alphabet

[ITU-T T.50].

14.3 String sort

14.3.1 Definition
*/

value type String < type Itemsort >;

/* Strings are "indexed" from one */

 operators

 emptystring -> this String;

 mkstring (Itemsort) -> this String;

 Make (Itemsort) -> this String;

 length (this String) -> Integer;

 first (this String) -> Itemsort;

 last (this String) -> Itemsort;

 "//" (this String, this String) -> this String;

 Extract (this String, Integer) -> Itemsort raise InvalidIndex;

 Modify (this String, Integer, Itemsort) -> this String;

 substring (this String, Integer, Integer) -> this String raise InvalidIndex;

 /* substring (s,i,j) gives a string of length j starting from the ith element */

 remove (this String, Integer, Integer) -> this String;

 /* remove (s,i,j) gives a string with a substring of length j starting from

 the ith element removed */

axioms

 for all e in Itemsort (/*e – element of Itemsort*/

 for all s,s1,s2,s3 in String (

 for all i,j in Integer (

/* constructors are emptystring, mkstring, and "//" */

/* equalities between constructor terms */

 s // emptystring == s;

 emptystring // s == s;

 (s1 // s2) // s3 == s1 // (s2 // s3);

/* */

/* definition of length by applying it to all constructors */

 <<type String>>length(emptystring) == 0;

 <<type String>>length(mkstring(e)) == 1;

 <<type String>>length(s1 // s2) == length(s1) + length(s2);

 Make(s) == mkstring(s);

/* */

/* definition of Extract by applying it to all constructors,

 error cases handled separately */

 Extract(mkstring(e),1) == e;

 i <= length(s1) ==> Extract(s1 // s2,i) == Extract(s1,i);

 i > length(s1) ==> Extract(s1 // s2,i) == Extract(s2,i-length(s1));

 i<=0 or i>length(s) ==> Extract(s,i) == raise InvalidIndex;

/* */

/* definition of first and last by other operations */

 first(s) == Extract(s,1);

 last(s) == Extract(s,length(s));

/* */

/* definition of substring(s,i,j) by induction on j,

 error cases handled separately */

 i>0 and i-1<=length(s) ==>

 substring(s,i,0) == emptystring;

/* */

 i>0 and j>0 and i+j-1<=length(s) ==>

 substring(s,i,j) == substring(s,i,j-1) // mkstring(Extract(s,i+j-1));

/* */

 i<=0 or j<0 or i+j-1>length(s) ==>

 substring(s,i,j) == raise InvalidIndex;

/* */

/* definition of Modify by other operations */

 Modify(s,i,e) == substring(s,1,i-1) // mkstring(e) // substring(s,i+1,length(s)-i);

/* definition of remove */

 remove(s,i,j) == substring(s,1,i-1) // substring(s,i+j,length(s)-i-j+1);

)));

endvalue type String;

50 Rec. ITU-T Z.104 (04/2016)

/*

14.3.2 Usage

The Make, Extract, and Modify operators will typically be used with the shorthand forms defined in

clause 12.2.3 of [ITU-T Z.101] and clause 12.3.3.1 of [ITU-T Z.101] for accessing the values of

strings and assigning values to strings.

14.4 Charstring sort

14.4.1 Definition

*/

value type Charstring

 inherits String < Character > ('' = emptystring)

 adding ;

 operators ocs in nameclass

 '''' ((' ':'&') or '''''' or ('(': '~'))+ '''' -> this Charstring;

/* character strings of any length of any characters from a space ' ' to a tilde '~' */

axioms

 for all c in Character nameclass (

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

/* string 'A' is formed from character 'A' etc. */

 spelling(cs) == spelling(cs1) // spelling(cs2),

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type Charstring;

/*

14.4.2 Usage

The Charstring sort defines strings of characters.

A Charstring literal is allowed to contain printing characters and spaces.

A non-printing character is usable as a string by using mkstring, for example, mkstring(DEL).

Example:
synonym newline_prompt Charstring = mkstring(CR) // mkstring(LF) // '$>';

14.5 Integer sort

14.5.1 Definition
*/

value type Integer;

 literals unordered nameclass (('0':'9')*) ('0':'9'));

 operators

 "-" (this Integer) -> this Integer;

 "+" (this Integer, this Integer) -> this Integer;

 "-" (this Integer, this Integer) -> this Integer;

 "*" (this Integer, this Integer) -> this Integer;

 "/" (this Integer, this Integer) -> this Integer raise DivisionByZero;

 "mod" (this Integer, this Integer) -> this Integer raise DivisionByZero;

 "rem" (this Integer, this Integer) -> this Integer;

 "<" (this Integer, this Integer) -> Boolean;

 ">" (this Integer, this Integer) -> Boolean;

 "<=" (this Integer, this Integer) -> Boolean;

 ">=" (this Integer, this Integer) -> Boolean;

 power (this Integer, this Integer) -> this Integer;

 integer (Integer) -> this Integer;

 num (this Integer) -> Integer;

 bs in nameclass '''' ((('0' or '1')*'''B') or ((('0':'9') or ('A':'F'))*'''H'))

 -> this Integer;

axioms noequality

 for all a,b,c in this Integer (

/* constructors are 0, 1, +, and unary - */

/* equalities between constructor terms */

 (a + b) + c == a + (b + c);

 Rec. ITU-T Z.104 (04/2016) 51

 a + b == b + a;

 0 + a == a;

 a + (- a) == 0;

 (- a) + (- b) == - (a + b);

 <<type Integer>> - 0 == 0;

 - (- a) == a;

/* */

/* definition of binary "-" by other operations */

 a - b == a + (- b);

/* */

/* definition of "*" by applying it to all constructors */

 0 * a == 0;

 1 * a == a;

 (- a) * b == - (a * b);

 (a + b) * c == a * c + b * c;

/* */

/* definition of "<" by applying it to all constructors */

 a < b == 0 < (b - a);

 <<type Integer>> 0 < 0 == false;

 <<type Integer>> 0 < 1 == true ;

 0 < a == true ==> 0 < (- a) == false;

 0 < a and 0 < b == true ==> 0 < (a + b) == true ;

/* */

/* definition of ">", "equal", "<=", and ">=" by other operations */

 a > b == b < a;

 equal(a, b) == not(a < b or a > b);

 a <= b == a < b or a = b;

 a >= b == a > b or a = b;

/* */

/* definition of "/" by other operations */

 a / 0 == raise DivisionByZero;

 a >= 0 and b > a == true ==> a / b == 0;

 a >= 0 and b <= a and b > 0 == true ==> a / b == 1 + (a-b) / b;

 a >= 0 and b < 0 == true ==> a / b == - (a / (- b));

 a < 0 and b < 0 == true ==> a / b == (- a) / (- b);

 a < 0 and b > 0 == true ==> a / b == - ((- a) / b);

/* */

/* definition of "rem" by other operations */

 a rem b == a - b * (a/b);

/* */

/* definition of "mod" by other operations */

 a >= 0 and b > 0 ==> a mod b == a rem b;

 b < 0 ==> a mod b == a mod (- b);

 a < 0 and b > 0 and a rem b = 0 ==> a mod b == 0;

 a < 0 and b > 0 and a rem b < 0 ==> a mod b == b + a rem b;

 a mod 0 == raise DivisionByZero;

/* */

/* definition of power by other operations */

 power(a, 0) == 1;

 b > 0 ==> power(a, b) == a * power(a, b-1);

 b < 0 ==> power(a, b) == power(a, b+1) / a;);

/* */

/* definition of literals */

 <<type Integer>> 2 == 1 + 1;

 <<type Integer>> 3 == 2 + 1;

 <<type Integer>> 4 == 3 + 1;

 <<type Integer>> 5 == 4 + 1;

 <<type Integer>> 6 == 5 + 1;

 <<type Integer>> 7 == 6 + 1;

 <<type Integer>> 8 == 7 + 1;

 <<type Integer>> 9 == 8 + 1;

/* */

/* literals other than 0 to 9 */

 for all a,b,c in this Integer nameclass (

 spelling(a) == spelling(b) // spelling(c),

 length(spelling(c)) == 1 ==> a == b * (9 + 1) + c;

);

/* */

/* hex and binary representation of Integer */

 for all b in Bitstring nameclass (

 for all i in bs nameclass (

52 Rec. ITU-T Z.104 (04/2016)

 spelling(i) == spelling(b) ==> i == <<type Bitstring>>num(b);

));

/* integer makes parent sort into subsort */

/* num makes subsort into parent sort */

 for all i in this Integer (

 for all p in Integer (

 spelling(i) == spelling(p) ==> num(i) == p ;

));

 integer(num(i)) == i;

endvalue type Integer;

/*

14.5.2 Usage

The Integer sort is used for mathematical integers with decimal, hex, or binary notation.

14.6 Natural syntype

14.6.1 Definition

*/

syntype Natural = Integer constants >= 0; endsyntype Natural;

/*

14.6.2 Usage

The natural syntype is used when positive integers only are required. All operators will be the integer

operators but when a value is used as a parameter or assigned, the value is checked. A negative value

will be an error.

14.7 Real sort

14.7.1 Definition

*/

value type Real;

 literals unordered nameclass

 (('0':'9')* ('0':'9'))

 or (('0':'9')* '.'('0':'9')+

 ('' or ('e' or 'E') ('' or '+' or '-') ('0':'9')* ('0':'9')));

 /*that is, integer notation, or decimal notation with an optional exponent */

 operators

 "-" (this Real) -> this Real;

 "+" (this Real, this Real) -> this Real;

 "-" (this Real, this Real) -> this Real;

 "*" (this Real, this Real) -> this Real;

 "/" (this Real, this Real) -> this Real raise DivisionByZero;

 "<" (this Real, this Real) -> Boolean;

 ">" (this Real, this Real) -> Boolean;

 "<=" (this Real, this Real) -> Boolean;

 ">=" (this Real, this Real) -> Boolean;

 float (Integer) -> this Real;

 fix (this Real) -> Integer;

axioms noequality

 for all r,s in Real (

 for all a,b,c,d in Integer (

/* constructors are float and "/" */

/* equalities between constructor terms allow to reach always a form

 float(a) / float(b) where b > 0 */

 r / float(0) == raise DivisionByZero;

 r / float(1) == r;

 c /= 0 ==> float(a) / float(b) == float(a*c) / float(b*c);

 b /= 0 and d /= 0 ==>

 (float(a) / float(b)) / (float(c) / float(d)) == float(a*d) / float(b*c);

/* */

/* definition of unary "-" by applying it to all constructors */

 - (float(a) / float(b)) == float(- a) / float(b);

/* */

/* definition of "+" by applying it to all constructors */

 Rec. ITU-T Z.104 (04/2016) 53

 (float(a) / float(b)) + (float(c) / float(d)) ==float(a*d + c*b) / float(b*d);

/* */

/* definition of binary "-" by other operations */

 r - s == r + (- s);

/* */

/* definition of "*" by applying it to all constructors */

 (float(a) / float(b)) * (float(c) / float(d)) == float(a*c) / float(b*d);

/* */

/* definition of "<" by applying it to all constructors */

 b > 0 and d > 0 ==>

 (float(a) / float(b)) < (float(c) / float(d)) == a * d < c * b;

/* */

/* definition of ">", "equal", "<=", and ">=" by other operations */

 r > s == s < r;

 equal(r, s) == not(r < s or r > s);

 r <= s == r < s or r = s;

 r >= s == r > s or r = s;

/* */

/* definition of fix by applying it to all constructors */

 a >= b and b > 0 ==> fix(float(a) / float(b)) == fix(float(a-b) / float(b)) + 1;

 b > a and a >= 0 ==> fix(float(a) / float(b)) == 0;

 a < 0 and b > 0 ==> fix(float(a) / float(b)) == - fix(float(-a)/float(b)) - 1;));

/* */

for all r,s in Real nameclass (

 for all i,j,k in Integer nameclass (

 spelling(r) == spelling(i) ==> r == float(i);

/* */

 spelling(r) == spelling(i) ==> i == fix(r);

/* */

 spelling(r) == spelling(i) // spelling(s),

 spelling(s) == '.' // spelling(j) ==> r == float(i) + s;

/* */

 spelling(r) == '.' // spelling(i),

 length(spelling(i)) == 1 ==> r == float(i) / 10;

/* */

 spelling(r) == '.' // spelling(i) // spelling(j),

 length(spelling(i)) == 1,

 spelling(s) == '.' // spelling(j) ==> r == (float(i) + s) / 10;

/* */

 spelling(r) == spelling(i) // '.' // spelling(j) // 'e' // spelling (k),

 spelling(s) == spelling(i) // '.' // spelling(j) ==> r == s * float(power(10,k));

/* */

 spelling(r) == spelling(i) // '.' // spelling(j) // 'E' // spelling (k),

 spelling(s) == spelling(i) // '.' // spelling(j) ==> r == s * float(power(10,k));

/* */

 spelling(r) == spelling(i) // '.' // spelling(j) // 'e+' // spelling (k),

 spelling(s) == spelling(i) // '.' // spelling(j) ==> r == s * float(power(10,k));

/* */

 spelling(r) == spelling(i) // '.' // spelling(j) // 'E+' // spelling (k),

 spelling(s) == spelling(i) // '.' // spelling(j) ==> r == s * float(power(10,k));

/* */

 spelling(r) == spelling(i) // '.' // spelling(j) // 'e-' // spelling (k),

 spelling(s) == spelling(i) // '.' // spelling(j) ==> r == s / float(power(10,k));

/* */

 spelling(r) == spelling(i) // '.' // spelling(j) // 'E-' // spelling (k),

 spelling(s) == spelling(i) // '.' // spelling(j) ==> r == s / float(power(10,k));

));

endvalue type Real;

/*

14.7.2 Usage

The real sort is used to represent real numbers.

The real sort represents all numbers which are able to be represented as one integer divided by

another.

Numbers which are not able to be represented in this way (irrational numbers – for example, the

square root of 2) are not part of the real sort. However, for practical engineering a sufficiently accurate

approximation is usually usable.

54 Rec. ITU-T Z.104 (04/2016)

14.8 Array sort

14.8.1 Definition

*/

value type Array < type Index; type Itemsort >;

 operators

 Make -> this Array ;

 Make (Itemsort) -> this Array ;

 Modify (this Array,Index,Itemsort) -> this Array ;

 Extract(this Array,Index) -> Itemsort raise InvalidIndex;

axioms

 for all item, itemi, itemj in Itemsort (

 for all i, j in Index (

 for all a, s in Array (

 <<type Array>>Extract(make,i) == raise InvalidIndex;

 <<type Array>>Extract(make(item),i) == item ;

 i = j ==> Modify(Modify(s,i,itemi),j,item) == Modify(s,i,item);

 i = j ==> Extract(Modify(a,i,item),j) == item ;

 i = j == false ==> Extract(Modify(a,i,item),j) == Extract(a,j);

 i = j == false ==> Modify(Modify(s,i,itemi),j,itemj) ==

 Modify(Modify(s,j,itemj),i,itemi);

/*equality*/

 <<type Array>>Make(itemi) = Make(itemj) == itemi = itemj;

 a=s == true, i=j == true, itemi = itemj ==>

 Modify(a,i,itemi) = Modify(s,j,itemj) == true;

/* */

 Extract(a,i) = Extract(s,i) == false ==> a = s == false;)));

endvalue type Array;

/*

14.8.2 Usage

An array is used to define one sort which is indexed by another. For example:
 value type indexbychar inherits Array< Character, Integer >

 endvalue type indexbychar;

defines an array containing integers and indexed by characters.

Arrays are usually used in combination with the shorthand forms of Make, Modify, and Extract

defined in clause 12.2.3 of [ITU-T Z.101] and clause 12.3.3.1 of [ITU-T Z.101]. For example:
 dcl charvalue indexbychar;

task charvalue := (. 12 .);

 task charvalue('A') := charvalue('B')-1;

14.9 Vector

14.9.1 Definition

*/

value type Vector < type Itemsort; synonym MaxIndex >

 inherits Array< Indexsort, Itemsort >;

syntype Indexsort = Integer constants 1:MaxIndex endsyntype;

endvalue type Vector;

/*

14.10 Powerset sort

14.10.1 Definition

*/

value type Powerset < type Itemsort >;

 operators

 empty -> this Powerset;

 "in" (Itemsort, this Powerset) -> Boolean; /* is member of */

 incl (Itemsort, this Powerset) -> this Powerset; /* include item in set */

 del (Itemsort, this Powerset) -> this Powerset; /* delete item from set */

 "<" (this Powerset, this Powerset) -> Boolean; /* is proper subset of */

 ">" (this Powerset, this Powerset) -> Boolean; /* is proper superset of */

 "<=" (this Powerset, this Powerset) -> Boolean; /* is subset of */

 Rec. ITU-T Z.104 (04/2016) 55

 ">=" (this Powerset, this Powerset) -> Boolean; /* is superset of */

 "and" (this Powerset, this Powerset) -> this Powerset; /* intersection of sets */

 "or" (this Powerset, this Powerset) -> this Powerset; /* union of sets */

 length (this Powerset) -> Integer;

 take (this Powerset) -> Itemsort raise Empty;

axioms

 for all i,j in Itemsort (
 for all p,ps,a,b,c in Powerset (

/* constructors are empty and incl */

/* equalities between constructor terms */

 incl(i,incl(j,p)) == incl(j,incl(i,p));

 i = j ==> incl(i,incl(j,p)) == incl(i,p);

/* definition of "in" by applying it to all constructors */

 i in <<type Powerset>>empty == false;

 i in incl(j,ps) == i=j or i in ps;

/* definition of del by applying it to all constructors */

 <<type Powerset>>del(i,empty) == empty;

 i = j ==> del(i,incl(j,ps)) == del(i,ps);

 i /= j ==> del(i,incl(j,ps)) == incl(j,del(i,ps));

/* definition of "<" by applying it to all constructors */

 a < <<type Powerset>>empty == false;

 <<type Powerset>>empty < incl(i,b) == true;

 incl(i,a) < b == i in b and del(i,a) < del(i,b);

/* definition of ">" by other operations */

 a > b == b < a;

/* definition of "=" by applying it to all constructors */

 empty = incl(i,ps) == false;

 incl(i,a) = b == i in b and del(i,a) = del(i,b);

/* definition of "<=" and ">=" by other operations */

 a <= b == a < b or a = b;

 a >= b == a > b or a = b;

/* definition of "and" by applying it to all constructors */

 empty and b == empty;

 i in b ==> incl(i,a) and b == incl(i,a and b);

 not(i in b) ==> incl(i,a) and b == a and b;

/* definition of "or" by applying it to all constructors */

 empty or b == b;

 incl(i,a) or b == incl(i,a or b);

/* definition of length */

 length(<<type Powerset>>empty) == 0;

 i in ps ==> length(ps) == 1 + length(del(i, ps));

/* definition of take */

 take(empty) == raise Empty;

 i in ps ==> take(ps) == i;

));

endvalue type Powerset;

/*

14.10.2 Usage

Powersets are used to represent mathematical sets. For example:
 value type Boolset inherits Powerset< Boolean > endvalue type Boolset;

is used for a variable which is allowed to be empty or contain (true), (false) or (true, false).

14.11 Duration sort

14.11.1 Definition

*/

value type Duration;

 literals unordered nameclass ('0':'9')+ or (('0':'9')* '.' ('0':'9')+);

 operators

 protected duration (Real) -> this Duration;

 "+" (this Duration, this Duration) -> this Duration;

 "-" (this Duration) -> this Duration;

 "-" (this Duration, this Duration) -> this Duration;

 ">" (this Duration, this Duration) -> Boolean;

 "<" (this Duration, this Duration) -> Boolean;

 ">=" (this Duration, this Duration) -> Boolean;

 "<=" (this Duration, this Duration) -> Boolean;

56 Rec. ITU-T Z.104 (04/2016)

 "*" (this Duration, Real) -> this Duration;

 "*" (Real, this Duration) -> this Duration;

 "/" (this Duration, Real) -> Duration;

axioms noequality

/* constructor is duration(Real)*/

 for all a, b in Real nameclass (

 for all d, e in Duration nameclass (

/* definition of "+" by applying it to all constructors */

 duration(a) + duration(b) == duration(a + b);

/* */

/* definition of unary "-" by applying it to all constructors */

 - duration(a) == duration(-a);

/* */

/* definition of binary "-" by other operations */

 d - e == d + (-e);

/* */

/* definition of "equal", ">", "<", ">=", and "<=" by applying it to all constructors */

 equal(duration(a), duration(b)) == a = b;

 duration(a) > duration(b) == a > b;

 duration(a) < duration(b) == a < b;

 duration(a) >= duration(b) == a >= b;

 duration(a) <= duration(b) == a <= b;

/* */

/* definition of "*" by applying it to all constructors */

 duration(a) * b == duration(a * b);

 a * d == d * a;

/* */

/* definition of "/" by applying it to all constructors */

 duration(a) / b == duration(a / b);

/* */

 spelling(d) == spelling(a) ==>

 d == duration(a);

));

endvalue type Duration;

/*

14.11.2 Usage

The duration sort is used for the value to be added to the current time to set timers. The literals of the

sort duration are the same as the literals for the real sort. The meaning of one unit of duration will

depend on the system being defined.

Duration values are allowed be multiplied and divided by real values. Unless otherwise specified, the

time unit is 1 second.

14.12 Time sort

14.12.1 Definition

*/

value type Time;

 literals unordered nameclass ('0':'9')+ or (('0':'9')* '.' ('0':'9')+);

 operators

 protected time (Duration) -> this Time;

 "<" (this Time, this Time) -> Boolean;

 "<=" (this Time, this Time) -> Boolean;

 ">" (this Time, this Time) -> Boolean;

 ">=" (this Time, this Time) -> Boolean;

 "+" (this Time, Duration) -> this Time;

 "+" (Duration, this Time) -> this Time;

 "-" (this Time, Duration) -> this Time;

 "-" (this Time, this Time) -> Duration;

axioms noequality

/* constructor is time */

 for all t, u in Time nameclass (

 for all a, b in Duration nameclass (

/* definition of ">", "equal" by applying it to all constructors */

 time(a) > time(b) == a > b;

 equal(time(a), time(b)) == a = b;

/* */

 Rec. ITU-T Z.104 (04/2016) 57

/* definition of "<", "<=", ">=" by other operations */

 t < u == u > t;

 t <= u == (t < u) or (t = u);

 t >= u == (t > u) or (t = u);

/* */

/* definition of "+" by applying it to all constructors */

 time(a) + b == time(a + b);

 a + t == t + a;

/* */

/* definition of "-" : Time, Duration by other operations */

 t - b == t + (-b);

/* */

/* definition of "-" : Time, Time by applying it to all constructors */

 time(a) - time(b) == a - b;

/* */

 spelling(a) == spelling(t) ==>

 a == time(t);

));

endvalue type Time;

/*

14.12.2 Usage

The now expression returns a value of the time sort. It is allowed that time value has a duration added

or subtracted from it to give another time value. A time value subtracted from another time value

gives a duration. Time values are used to set the expiry time of timers.

The origin of time is system dependent. A unit of time is the amount of time represented by adding

one duration unit to a time. Unless otherwise specified, the time unit is 1 second.

14.13 Bag sort

14.13.1 Definition

*/

value type Bag < type Itemsort >;

 operators

 empty -> this Bag;

 "in" (Itemsort, this Bag) -> Boolean; /* is member of */

 incl (Itemsort, this Bag) -> this Bag; /* include item in set */

 del (Itemsort, this Bag) -> this Bag; /* delete item from set */

 "<" (this Bag, this Bag) -> Boolean; /* is proper subbag of */

 ">" (this Bag, this Bag) -> Boolean; /* is proper superbag of */

 "<=" (this Bag, this Bag) -> Boolean; /* is subbag of */

 ">=" (this Bag, this Bag) -> Boolean; /* is superbag of */

 "and" (this Bag, this Bag) -> this Bag; /* intersection of bags */

 "or" (this Bag, this Bag) -> this Bag; /* union of bags */

 length (this Bag) -> Integer;

 take (this Bag) -> Itemsort raise Empty;

axioms

 for all i,j in Itemsort (
 for all p,ps,a,b,c in Bag (

/* constructors are empty and incl */

/* equalities between constructor terms */

 incl(i,incl(j,p)) == incl(j,incl(i,p));

/* definition of "in" by applying it to all constructors */

 i in <<type Bag>>empty == false;

 i in incl(j,ps) == i=j or i in ps;

/* definition of del by applying it to all constructors */

 <<type Bag>>del(i,empty) == empty;

 i = j ==> del(i,incl(j,ps)) == ps;

 i /= j ==> del(i,incl(j,ps)) == incl(j,del(i,ps));

/* definition of "<" by applying it to all constructors */

 a < <<type Bag>>empty == false;

 <<type Bag>>empty < incl(i,b) == true;

 incl(i,a) < b == i in b and del(i,a) < del(i,b);

/* definition of ">" by other operations */

 a > b == b < a;

/* definition of "=" by applying it to all constructors */

 empty = incl(i,ps) == false;

58 Rec. ITU-T Z.104 (04/2016)

 incl(i,a) = b == i in b and del(i,a) = del(i,b);

/* definition of "<=" and ">=" by other operations */

 a <= b == a < b or a = b;

 a >= b == a > b or a = b;

/* definition of "and" by applying it to all constructors */

 empty and b == empty;

 i in b ==> incl(i,a) and b == incl(i,a and b);

 not(i in b) ==> incl(i,a) and b == a and b;

/* definition of "or" by applying it to all constructors */

 empty or b == b;

 incl(i,a) or b == incl(i,a or b);

/* definition of length */

 length(<<type Bag>>empty) == 0;

 i in ps ==> length(ps) == 1 + length(del(i, ps));

/* definition of take */

 take(empty) == raise Empty;

 i in ps ==> take(ps) == i;));

endvalue type Bag;

/*

14.13.2 Usage

Bags are used to represent multi-sets. For example:
 value type Boolset inherits Bag< Boolean > endvalue type Boolset;

is used for a variable which allowed to be empty or contain (true), (false), (true, false) (true,

true), (false, false),... .

Bags are used to represent the SET OF construction of ASN.1.

14.14 ASN.1 Bit and Bitstring sorts

14.14.1 Definition

*/

value type Bit

 inherits Boolean (0 = false, 1 = true);

 adding;

 operators

 num (this Bit) -> Integer;

 bit (Integer) -> this Bit raise OutOfRange;

axioms

 <<type Bit>>num (0) == 0;

 <<type Bit>>num (1) == 1;

 <<type Bit>>bit (0) == 0;

 <<type Bit>>bit (1) == 1;

 for all i in Integer (

 i > 1 or i < 0 ==> bit (i) == raise OutOfRange;

)

endvalue type Bit;

/* */

value type Bitstring

 operators

 bs in nameclass

 '''' ((('0' or '1')*'''B') or ((('0':'9') or ('A':'F'))*'''H'))-> this Bitstring;

/*The following operators that are the same as String except Bitstring

 is indexed from zero*/

 mkstring (Bit) -> this Bitstring;

 Make (Bit) -> this Bitstring;

 length (this Bitstring) -> Integer;

 first (this Bitstring) -> Bit;

 last (this Bitstring) -> Bit;

 "//" (this Bitstring, this Bitstring) -> this Bitstring;

 Extract (this Bitstring, Integer) -> Bit raise InvalidIndex;

 Modify (this Bitstring, Integer, Bit) -> this Bitstring;

 substring (this Bitstring, Integer, Integer) -> this Bitstring raise InvalidIndex;

 /* substring (s,i,j) gives a string of length j starting from the ith element */

 remove (this Bitstring, Integer, Integer) -> this Bitstring;

 /* remove (s,i,j) gives a string with a substring of length j starting from

 the ith element removed */

 Rec. ITU-T Z.104 (04/2016) 59

/*The following operators are specific to Bitstrings*/

 "not" (this Bitstring) -> this Bitstring;

 "and" (this Bitstring, this Bitstring) -> this Bitstring;

 "or" (this Bitstring, this Bitstring) -> this Bitstring;

 "xor" (this Bitstring, this Bitstring) -> this Bitstring;

 "=>" (this Bitstring, this Bitstring) -> this Bitstring

 num (this Bitstring) -> Integer;

 bitstring (Integer) -> this Bitstring raise OutOfRange;

 octet (Integer) -> this Bitstring raise OutOfRange;

axioms

/* Bitstring starts at index 0 */

/* Definition of operators with the same names as String operators*/

 for all b in Bit (/*b is bit in string*/

 for all s,s1,s2,s3 in Bitstring (

 for all i,j in Integer (

/* constructors are ''B, mkstring, and "//" */

/* equalities between constructor terms */

 s // ''B == s;

 ''B// s == s;

 (s1 // s2) // s3 == s1 // (s2 // s3);

/* definition of length by applying it to all constructors */

 <<type Bitstring>>length(''B) == 0;

 <<type Bitstring >>length(mkstring(b)) == 1;

 <<type Bitstring >>length(s1 // s2) == length(s1) + length(s2);

 Make(s) == mkstring(s);

/* definition of Extract by applying it to all constructors,

 with error cases handled separately */

 Extract(mkstring(b),0) == b;

 i < length(s1) ==> Extract(s1 // s2,i) == Extract(s1,i);

 i >= length(s1) ==> Extract(s1 // s2,i) == Extract(s2,i-length(s1));

 i<0 or i=>length(s) ==> Extract(s,i) == raise InvalidIndex;

/* definition of first and last by other operations */

 first(s) == Extract(s,0);

 last(s) == Extract(s,length(s)-1);

/* definition of substring(s,i,j) by induction on j,

 error cases handled separately */

 i>=0 and i < length(s) ==>

 substring(s,i,0) == ''B;

/* */

 i>=0 and j>0 and i+j<=length(s) ==>

 substring(s,i,j) == substring(s,i,j-1) // mkstring(Extract(s,i+j));

/* */

 i<0 or j<0 or i+j>length(s) ==>

 substring(s,i,j) == raise InvalidIndex;

/* */

/* definition of Modify by other operations */

 Modify(s,i,b) == substring(s,0,i) // mkstring(b) // substring(s,i+1,length(s)-i);

/* definition of remove */

 remove(s,i,j) == substring(s,0,i) // substring(s,i+j,length(s)-i-j);

)));

/*end of definition of string operators indexed from zero*/

/* */

/* Definition of ''H and 'x'H in terms of ''B, 'xxxx'B for Bitstring*/

 <<type Bitstring>>''H == ''B;

 <<type Bitstring>>'0'H == '0000'B;

 <<type Bitstring>>'1'H == '0001'B;

 <<type Bitstring>>'2'H == '0010'B;

 <<type Bitstring>>'3'H == '0011'B;

 <<type Bitstring>>'4'H == '0100'B;

 <<type Bitstring>>'5'H == '0101'B;

 <<type Bitstring>>'6'H == '0110'B;

 <<type Bitstring>>'7'H == '0111'B;

 <<type Bitstring>>'8'H == '1000'B;

 <<type Bitstring>>'9'H == '1001'B;

 <<type Bitstring>>'A'H == '1010'B;

 <<type Bitstring>>'B'H == '1011'B;

 <<type Bitstring>>'C'H == '1100'B;

 <<type Bitstring>>'D'H == '1101'B;

 <<type Bitstring>>'E'H == '1110'B;

 <<type Bitstring>>'F'H == '1111'B;

/* */

60 Rec. ITU-T Z.104 (04/2016)

/* Definition of Bitstring specific operators*/

 <<type Bitstring>>mkstring(0) == '0'B;

 <<type Bitstring>>mkstring(1) == '1'B;

/* */

 for all s, s1, s2, s3 in Bitstring (

 s = s == true;

 s1 = s2 == s2 = s1;

 s1 /= s2 == not (s1 = s2);

 s1 = s2 == true ==> s1 == s2;

 ((s1 = s2) and (s2 = s3)) ==> s1 = s3 == true;

 ((s1 = s2) and (s2 /= s3)) ==> s1 = s3 == false;

/* */

 for all b, b1, b2 in Bit (

 not(''B) == ''B;

 not(mkstring(b) // s) == mkstring(not(b)) // not(s);

/* definition of or */

/* The length of or-ing two strings is the maximal length of both strings */

 ''B or ''B == ''B;

 length(s) > 0 ==> ''B or s == mkstring(0) or s;

 s1 or s2 == s2 or s1;

 (b1 or b2) // (s1 or s2) ==(mkstring(b1) // s1) or (mkstring(b2) // s2);

/* */

/* definition of remaining operators based on "or" and "not" */

 s1 and s2 == not (not s1 or not s2);

 s1 xor s2 == (s1 or s2) and not(s1 and s2);

 s1 => s2 == not (s1 and s2);

));

/* */

/*Definition of 'xxxxx'B literals, num, bitstring and octet */

 for all s in Bitstring (

 for all b in Bit (

 for all i in Integer (

 /* definition of num */

 <<type Bitstring>>num (''B) == 0;

 num (s // mkstring (b)) == num (b) + 2 * num (s);

 /* definition of bitstring */

 <<type Bitstring>>bitstring (0) == '0'B;

 <<type Bitstring>>bitstring (1) == '1'B;

 i > 1 ==> bitstring (i) == bitstring (i / 2) // bitstring (i mod 2);

 i < 0 ==> bitstring (i) == raise OutOfRange;

 /* definition of octet */

 i >= 128 and i <= 255 ==> octet (i) == bitstring (i) or '00000000'B;

 i >= 0 and i <= 127 ==> octet (i) ==

 substring('00000000',0,8-length(bitstring(i))// bitstring(i);

 /* the bitstring is extended to the left enough zero bits to make it an octet */

 i < 0 or i > 255 ==> octet (i) == raise OutOfRange;

)))

/*Definition of 'xxxxx'H literals */

 for all b1,b2,b3,h1,h2,h3 in bs nameclass (

 for all bs1, bs2, bs3, hs1, hs2, hs3 in Charstring (

 spelling(b1) = '''' // bs1 // '''B',

 spelling(b2) = '''' // bs2 // '''B',

 bs1 /= bs2 ==> b1 = b2 == false;

/* */

 spelling(h1) = '''' // hs1 // '''H',

 spelling(h2) = '''' // hs2 // '''H',

 hs1 /= hs2 ==> h1 = h2 == false;

 spelling(b1) = '''' // bs1 // '''B',

 spelling(b2) = '''' // bs2 // '''B',

 spelling(b3) = '''' // bs1 // bs2 // '''B',

 spelling(h1) = '''' // hs1 // '''H',

 spelling(h2) = '''' // hs2 // '''H',

 spelling(h3) = '''' // hs1 // hs2 // '''H',

 length(bs1) = 4,

 length(hs1) = 1,

 length(hs2) > 0,

 length(bs2) = 4 * length(hs2),

 h1 = b1 ==> h3 = b3 == h2 = b2;

/* */

/* connection to the String generator */

 for all b in Bit literals (

 Rec. ITU-T Z.104 (04/2016) 61

 spelling(b1) = '''' // bs1 // bs2 // '''B',

 spelling(b2) = '''' // bs2 // '''B',

 spelling(b) = bs1 ==> b1 == mkstring(b) // b2;

)));

endvalue type Bitstring;

/*

14.15 ASN.1 Octet and Octetstring sorts

14.15.1 Definition

*/

syntype Octet = Bitstring size (8);

endsyntype Octet;

/* */

value type Octetstring

 inherits String < Octet > (''B = emptystring)

 adding

 operators

 os in nameclass

 '''' (((('0' or '1')8)*'''B') or (((('0':'9') or ('A':'F'))2)*'''H'))

 -> this Octetstring;

 bitstring (this Octetstring) -> Bitstring;

 octetstring (Bitstring) -> this Octetstring;

axioms

 for all b,b1,b2 in Bitstring (

 for all s in Octetstring (

 for all o in Octet(

 <<type Octetstring>> bitstring(''B) == ''B;

 <<type Octetstring>> octetstring(''B) == ''B;

 bitstring(mkstring(o) // s) == o // bitstring(s);

/* */

 length(b1) > 0,

 length(b1) < 8,

 b2 == b1 or '00000000'B ==> octetstring(b1) == mkstring(b2);

/* */

 b == b1 // b2,

 length(b1) == 8 ==> octetstring(b) == mkstring(b1) // octetstring(b2);

)));

/* */

 for all b1, b2 in Bitstring (

 for all o1, o2 in os nameclass (

 spelling(o1) = spelling(b1),

 spelling(o2) = spelling(b2) ==> o1 = o2 == b1 = b2

));

endvalue type Octetstring;

/*

14.16 Pid sort

14.16.1 Definition

The data type Pid is the basis of all interface types.
*/

interface Pid { literals Null }

/*

14.17 Encoding sort

The following enumerated data type introduces the literals to support the encoding of data according

to the standardized set of encoding rules. The set of literals is allowed to be extended by specializing

Encoding.
*/

value type Encoding

 { literals text, BER, CER, DER, APER, UPER, CAPER, CUPER, BXER, CXER, EXER, OER }

/*

which is used to denote the required set of encoding rules as follows:

62 Rec. ITU-T Z.104 (04/2016)

text for the set of text encoding rules defined in this Recommendation and produces

a Charstring;

BER for the set of Basic Encoding Rules of ASN.1 (see [ITU-T X.690]) and produces

an Octetstring;

CER for the set of Canonical Encoding Rules of ASN.1 (see [ITU-T X.690]) and produces

an Octetstring;

DER for the set of Distinguished Encoding Rules of ASN.1 (see [ITU-T X.690]) and produces

an Octetstring;

APER for the basic ALIGNED variant of the Packed Encoding Rules of ASN.1

(see [ITU-T X.691]) and produces an Octetstring;

UPER for the basic UNALIGNED variant of the Packed Encoding Rules of ASN.1

(see [ITU-T X.691]) and produces a Bitstring;

CAPER for the ALIGNED variant of Canonical Packed Encoding Rules (CANONICAL-PER

ALIGNED) of ASN.1 (see [ITU-T X.691]) and produces an Octetstring;

CUPER for the UNALIGNED variant of Canonical Packed Encoding Rules (CANONICAL-

PER ALIGNED) of ASN.1 (see [ITU-T X.691]) and produces a Bitstring;

BXER for the Basic XML Encoding Rules (BASIC-XER) of ASN.1 (see [ITU-T X.693]) and

produces a Charstring;

CXER for the Canonical XML Encoding Rules (CANONICAL-XER) of ASN.1

(see [ITU-T X.693]) and produces a Charstring;

EXER for the Extended XML Encoding Rules (EXTENDED-XER) of ASN.1

(see [ITU-T X.693]) and produces a Charstring;

OER for the Octet Encoding Rules of ASN.1 (see [ITU T X.696]) and produces

an Octetstring.

The synonym PER is added to the package Predefined as an alternative for APER as follows:
*/

synonym PER Encoding = APER;

/*

The operator last of the data type Encoding is redefined to an unknown name, and therefore is

inaccessible, so that an application or implementation is able to extend the data type Encoding

without any change where only the above rules are used. It is possible to specialize the data type

Encoding by adding additional literals.

14.18 Support for ASN.1 character, symbol string and NULL types

The following definitions are specifically to support character, string types and the NULL type of

ASN.1. They have the same names in SDL-2010 and ASN.1.
*/

syntype NumericChar = Character constants

' ', '0', '1', '2', '3', '4', '5', '6',

'7', '8', '9' endsyntype;

/* */

/* NumericString sort */

/* Definition */

value type NumericString

 inherits String < NumericChar > ('' = emptystring)

 adding

 operators ocs in nameclass

 '''' (('0':'9') or '''''' or (' '))+ '''' -> this NumericString;

/* character strings of any length of any characters from a space ' ' to a '9' */

axioms

 for all c in NumericChar nameclass (

 Rec. ITU-T Z.104 (04/2016) 63

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

/* string 'A' is formed from character 'A' etc. */

 spelling(cs) == spelling(cs1) // spelling(cs2),

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type NumericString;

/* */

syntype PrintableChar = Character constants

' ', '0', '1', '2', '3', '4', '5', '6',

'7', '8', '9', 'A', 'B', 'C', 'D', 'E',

'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',

'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',

'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c',

'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',

'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',

't', 'u', 'v', 'w', 'x', 'y', 'z', '''',

'(', ')', '+', ',', '-', '.', '/', ':',

'=', '?'

endsyntype;

/* */

/* PrintableString sort */

/* Definition */

value type PrintableString

 inherits String < PrintableChar > ('' = emptystring)

 adding

 operators ocs in nameclass

 '''' ((' ':'&') or '''''' or ('(': '?'))+ '''' -> this PrintableString;

/* character strings of any length of any characters from a space ' ' to a '?' */

axioms

 for all c in PrintableChar nameclass (

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

/* string 'A' is formed from character 'A' etc. */

 spelling(cs) == spelling(cs1) // spelling(cs2),

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type PrintableString;

/* */

syntype TeletexChar = Character constants

/* TeletexString characters as in [ITU-T X.680] clause 41 Table 8 */

endsyntype;

/* */

/* TeletexString sort */

/* Definition */

value type TeletexString

 inherits String < TeletexChar > ('' = emptystring)

 adding

 operators ocs in nameclass

/* characters specified in [ITU-T X.680] clause 41 Table 8 for TeletexString */

 -> this TeletexString;

axioms

 for all c in TeletexChar nameclass (

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

/* string 'A' is formed from character 'A' etc. */

 spelling(cs) == spelling(cs1) // spelling(cs2),

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type TeletexString;

syntype VideotexChar = Character constants

/* VideotexString characters as in [ITU-T X.680] clause 41 Table 8 */

endsyntype;

/* */

/* VideotexString sort */

/* Definition */

value type VideotexString

64 Rec. ITU-T Z.104 (04/2016)

 inherits String < VideotexChar > ('' = emptystring)

 adding

 operators ocs in nameclass

/* VideotexString characters as in [ITU-T X.680] clause 41 Table 8 */

 -> this VideotexString;

axioms

 for all c in VideotexChar nameclass (

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

/* string 'A' is formed from character 'A' etc. */

 spelling(cs) == spelling(cs1) // spelling(cs2),

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type VideotexString;

syntype IA5Char = Character endsyntype;

syntype IA5String = Charstring endsyntype;

value type UniversalChar

 literals /* see [ITU-T X.680] clause 41.6 */

operators

 uchr (Integer) -> this UniversalChar;

endvalue type;

/* */

/* UniversalCharString sort */

/* Definition */

value type UniversalCharString

 inherits String < UniversalChar > ('' = emptystring)

 adding

 operators ocs in nameclass

/* see [ITU-T X.680] clause 41.6 */

 -> this UniversalCharString;

axioms

 for all c in UniversalChar nameclass (

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

/* string 'A' is formed from character 'A' etc. */

 spelling(cs) == spelling(cs1) // spelling(cs2),

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type UniversalCharString;

/* */

/* UTF8String sort */

syntype UTF8String = UniversalCharString endsyntype;

/* */

value type GeneralChar

 literals /* All G and all C sets + SPACE + DELETE

 See [ITU-T X.680] clause 41 Table 8 */

operators

 gchr (Integer) -> this GeneralChar;

endvalue type;

/* GeneralCharString sort */

/* Definition */

value type GeneralCharString

 inherits String < GeneralChar > ('' = emptystring)

 adding

 operators ocs in nameclass

/* All G and all C sets + SPACE + DELETE

 See [ITU-T X.680] clause 41 Table 8 */

 -> this GeneralCharString;

axioms

 for all c in GeneralChar nameclass (

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

/* string 'A' is formed from character 'A' etc. */

 spelling(cs) == spelling(cs1) // spelling(cs2),

 Rec. ITU-T Z.104 (04/2016) 65

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type GeneralCharString;

/* */

syntype GraphicChar = GeneralChar constants

/* All G sets +SPACE as specified in [ITU-T X.680] clause 41 Table 8 */

endsyntype;

/* */

/* GraphicCharString sort */

/* Definition */

value type GraphicCharString

 inherits String < GraphicChar > ('' = emptystring)

 adding

 operators ocs in nameclass

/* All G sets + SPACE as specified in [ITU-T X.680] clause 41 Table 8 */

 -> this GraphicCharString;

axioms

 for all c in GraphicChar nameclass (

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

 spelling(cs) == spelling(cs1) // spelling(cs2),

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type GraphicCharString;

syntype VisibleChar = Character constants

/* VisibleString characters specified in [ITU-T X.680] clause 41 Table 8 */

endsyntype;

/* */

/* VisibleString sort */

/* Definition */

value type VisibleString

 inherits String < VisibleChar > ('' = emptystring)

 adding

 operators ocs in nameclass

/* VisibleString characters specified in [ITU-T X.680] clause 41 Table 8*/

 -> this VisibleString;

axioms

 for all c in VisibleChar nameclass (

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

/* string 'A' is formed from character 'A' etc. */

 spelling(cs) == spelling(cs1) // spelling(cs2),

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type VisibleString;

syntype BMPChar = UniversalChar constants

/* see [ITU-T X.680] clause 41.15 */

endsyntype;

/* */

/* BMPCharString sort */

/* Definition */

value type BMPCharString

 inherits String < BMPChar > ('' = emptystring)

 adding

 operators ocs in nameclass

/* see [ITU-T X.680] clause 41.15 */

 -> this BMPCharString;

axioms

 for all c in BMPChar nameclass (

 for all cs, cs1, cs2 in ocs nameclass (

 spelling(cs) == spelling(c) ==> cs == mkstring(c);

/* string 'A' is formed from character 'A' etc. */

 spelling(cs) == spelling(cs1) // spelling(cs2),

 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;

));

endvalue type BMPCharString;

/* */

66 Rec. ITU-T Z.104 (04/2016)

value type NULL

literals NULL

endvalue type;

/*

14.19 Predefined exceptions

*/

exception

 OutOfRange, /* A range check has failed. */

 InvalidReference, /* Null was used incorrectly. Wrong Pid for this signal. */

 NoMatchingAnswer, /* No answer matched in a decision without else part. */

 UndefinedVariable, /* A variable was used that is "undefined". */

 UndefinedField, /* An undefined field of a choice or struct was accessed. */

 InvalidIndex, /* A String or Array was accessed with an incorrect index. */

 InvalidSort, /* Dynamic sort failure */

 InvalidCall, /* Dynamic call failure */

 DivisionByZero; /* An Integer or Real division by zero was attempted. */

 Empty; /* No element could be returned. */

/* */

endpackage Predefined;

 Rec. ITU-T Z.104 (04/2016) 67

Annex A

Abstract data types and axioms

(This annex forms an integral part of this Recommendation.)

A.1 Introduction

Predefined data items in the Specification and Description Language are based on abstract data types,

which are defined in terms of their abstract properties rather than in terms of some concrete

implementation. Even though the definition of an abstract data type gives one possible way of

implementing that data type, an implementation is not mandated to choose that way of implementing

the abstract data type, as long as the same abstract behaviour is preserved.

The predefined data types, including the Boolean sort that defines properties for two literals true and

false, are defined in this annex. The two Boolean terms true and false shall not be (directly or

indirectly) defined to be equivalent. Every Boolean constant expression that is used outside data type

definitions shall be interpreted as either true or false. If it is not possible to reduce such an expression

to true or false, then the specification is incomplete and allows more than one interpretation of the

data type.

A.2 Notation

For this purpose, this annex extends the concrete syntax of the Specification and Description

Language by means of describing the abstract properties of the operations added by a data type

definition. However, this additional syntax is used for explanation only and does not extend the syntax

defined in the main text. A specification using the syntax defined in this annex is therefore not valid

SDL-2010.

The abstract properties described here do not specify a specific representation of the predefined data.

Instead, an interpretation shall conform to these properties. When an <expression> is interpreted, the

evaluation of the expression produces a value (e.g., as the result of an <operation application>).

Two expressions, E1 and E2, are equivalent if:

a) there is an <equation> E1 == E2; or

b) one of the equations derived from the given set of <quantified equations>s is E1 == E2; or

c) i) E1 is equivalent to EA; and

ii) E2 is equivalent to EB; and

iii) there is an equation EA == EB or an equation derived from the given set of quantified

equations such that EA == EB; or

d) by substituting a sub-term of E1 by a term of the same class as the sub-term producing a term

E1A, it is possible to show that E1A is in the same class as E2.

Otherwise, the two expressions are not equivalent.

Two expressions that are equivalent represent the same value.

Interpretation of expressions conforms to these properties if two equivalent expressions represent the

same value, and two non-equivalent expressions represent different values.

A.2.1 Axioms

Axioms determine which terms represent the same value. From the axioms in a data type definition,

the relationship between argument values and result values of operators is determined and hence

meaning is given to the operators. Axioms are either given as Boolean axioms or in the form of

algebraic equivalence equations.

68 Rec. ITU-T Z.104 (04/2016)

An operation defined by <axiomatic operation definitions> is treated as a complete definition with

respect to specialization. That is, when a data type defined by the package Predefined is specialized

and an operation is redefined in the specialized type, all axioms mentioning the name of the operation

are replaced by the corresponding definition in the specialized type.

Concrete grammar

<axiomatic operation definitions> ::=

 axioms <axioms>

<axioms> ::=

 <equation> { <end> <equation>}* [<end>]

<equation> ::=

 <unquantified equation>

 | <quantified equations>

 | <conditional equation>

 | <literal equation>

 | <noequality>

<unquantified equation> ::=

 <term> == <term>

 | <Boolean axiom>

<term> ::=

 <constant expression>

 | <error term>

<quantified equations> ::=

 <quantification> (<axioms>)

<quantification> ::=

 for all <value name> { , <value name> }* in <sort>

NOTE – for is considered a keyword for the purpose of this Annex.

This annex changes <operations> (see clause 12.1.1) as described below.
<operations> ::=

 <operation signatures>

 { <operation definitions> | <axiomatic operation definitions> }

<axiomatic operation definitions> are only permitted for the description of the behaviour of

operators.

An <identifier> which is an unqualified name appearing in a <term> is one of the following:

a) an <operation identifier>;

b) <literal identifier>;

c) a <value identifier> if there is a definition of that name in a <quantification> of

<quantified equations> enclosing the <term>, which then shall have a suitable sort for the

context.

Semantics

A ground term is a term that does not contain any value identifiers. A ground term represents a

particular, known value. For each value in a sort there exists at least one ground term which represents

that value.

Each equation is a statement about the algebraic equivalence of terms. The left hand side term and

right hand side term are stated to be equivalent so that where one term appears, it is allowed to

substitute the other term. When a value identifier appears in an equation, simultaneous substitution is

allowed in that equation of the same term for every occurrence of the value identifier. For this

substitution, the term is any ground term of the same sort as the value identifier.

 Rec. ITU-T Z.104 (04/2016) 69

Value identifiers are introduced by the value names in quantified equations. A value identifier is used

to represent any data values belonging to the sort of the quantification. An equation will hold if the

same value is simultaneously substituted for every occurrence of the value identifier in the equation

regardless of the value chosen for the substitution.

In general, there is no need or reason to distinguish between a ground term and the result of the ground

term. For example, the ground term for the unity Integer element is (normally) written "1". Usually

there are several ground terms which denote the same data item, e.g., the Integer ground terms "0+1",

"3–2" and "(7+5)/12", and it is usual to consider a simple form of the ground term (in this case "1")

as denoting the data item.

A value name is always introduced by quantified equations, and the corresponding value has a value

identifier, which is the value name qualified by the sort identifier of the enclosing quantified

equations. For example:

 for all z in X (for all z in X ...)

introduces only one value identifier named z of sort X.

In the concrete syntax of axioms, it is not allowed to specify a qualifier for value identifiers.

Each value identifier introduced by quantified equations has a sort, which is the sort identified in the

quantified equations by the <sort>.

A term has a sort, which is the sort of the value identifier or the result sort of the (literal) operator.

Unless it is possible to deduce from the equations that two terms denote the same value, each term

denotes a different value.

A.2.2 Conditional equations

A conditional equation allows the specification of equations that only hold when certain restrictions

hold. The restrictions are written in the form of simple equations.

Concrete grammar

<conditional equation> ::=

 <restriction> { , <restriction> }* ==> <restricted equation>

<restricted equation> ::=

 <unquantified equation>

<restriction> ::=

 <unquantified equation>

Semantics

A conditional equation defines that terms denote the same data item only when any value identifier

in the restricted equation denotes a data item, which it is possible to show from other equations that

satisfy the restrictions.

The semantics of a set of equations for a data type that includes conditional equations is derived as

follows:

a) Quantification is removed by generating every possible ground term equation that is

derivable from the quantified equations. As this is applied to both explicit and implicit

quantification, a set of unquantified equations in ground terms only is generated.

b) Let a conditional equation be called a provable conditional equation if all the restrictions

(in ground terms only) are able to be proved to hold from unquantified equations that are not

restricted equations. If there exists a provable conditional equation, it is replaced by the

restricted equation of the provable conditional equation.

70 Rec. ITU-T Z.104 (04/2016)

c) If there are conditional equations remaining in the set of equations and none of these

conditional equations are a provable conditional equation, then these conditional equations

are deleted; otherwise, return to step b).

d) The remaining set of unquantified equations defines the semantics of the data type.

A.2.3 Equality

Concrete grammar

<noequality> ::=

 noequality

Model

Any <data type definition> introducing some sort named S has the following implied

<operation signature> in its <operator list>, unless <noequality> is present in the <axioms>:
 equal (S, S) -> Boolean;

where Boolean is the predefined Boolean sort.

Any <data type definition> introducing a sort named S such that it contains only

<axiomatic operation definitions> in <operator list> has an implied equation set:
 for all a,b,c in S (

 equal(a, a) == true;

 equal(a, b) == equal(b, a);

 equal(a, b) and equal(b, c) ==> equal(a, c) == true;

 equal(a, b) == true ==> a == b;)

and an implied <literal equation>:
 for all L1,L2 in S literals (

 spelling(L1) /= spelling(L2) ==> L1 = L2 == false;)

A.2.4 Boolean axioms

Concrete grammar

<Boolean axiom> ::=

 <Boolean term>

Semantics

A Boolean axiom is a statement of truth that holds under all conditions for the data type being defined.

Model

An axiom of the form:
 <Boolean term>;

is derived syntax for the concrete syntax equation:
 <Boolean term> == << package Predefined/type Boolean >> true;

A.2.5 Conditional term

Semantics

An equation containing a conditional term is semantically equivalent to a set of equations where all

the quantified value identifiers in the Boolean term have been eliminated. It is possible to form this

set of equations by simultaneously substituting, throughout the conditional term equation, each

<value identifier> in the <conditional expression> by each ground term of the appropriate sort. In this

set of equations, the <conditional expression> will always have been replaced by a Boolean ground

term. In the following, this set of equations is referred to as the expanded ground set.

A conditional term equation is equivalent to the equation set that contains:

a) for every equation in the expanded ground set for which the <conditional expression> is

equivalent to true, that equation from the expanded ground set with the

<conditional expression> replaced by the (ground) <consequence expression>; and

 Rec. ITU-T Z.104 (04/2016) 71

b) for every equation in the expanded ground set for which the <conditional expression> is

equivalent to false, that equation from the expanded ground set with the

<conditional expression> replaced by the (ground) <alternative expression>.

Note that in the special case of an equation of the form:
 ex1 == if a then b else c fi;

this is equivalent to the pair of conditional equations:
 a == true ==> ex1 == b;

 a == false ==> ex1 == c;

A.2.6 Error term

Errors are used to allow the properties of a data type to be fully defined even for cases when it is not

possible to give a specific meaning to the result of an operator.

Concrete grammar

<error term> ::=

 raise <exception name>

An <error term> shall not be used as part of a <restriction>.

It shall not be possible to derive from equations that a <literal identifier> is equal to <error term>.

Semantics

A term is allowed to be an <error term>, so that it is possible to specify the circumstances under

which an operator produces an error. If these circumstances arise during interpretation, then the

exception with <exception name> is raised.

A.2.7 Unordered literals

Concrete grammar

<unordered> ::=

 unordered

This annex changes the concrete syntax for the literal list type constructor (see clause 12.1.6.17)

as follows:
<literal list> ::=

 [<visibility>] literals [<unordered>]

 <literal signature> { , <literal signature> }* <end>

Model

If <unordered> is used, the Model in clause 12.1.6.17 is not applied. Consequentially, the ordering

operations "<", ">","<=",">=", first, last, pred, succ, and num are not implicitly defined for this data

type.

A.2.8 Literal equations

Concrete grammar

<literal equation> ::=

 <literal quantification>

 (<equation> { <end> <equation> }* [<end>])

<literal quantification> ::=

 for all <value name> { , <value name> }* in <sort> literals

 | for all <value name> { , <value name> }* in { <sort> | <value identifier> } nameclass

Semantics

Literal mapping is a shorthand for defining a large (possibly infinite) number of axioms ranging over

all the literals of a sort or all the names in a name class. The literal mapping allows the literals for a

sort to be mapped onto the values of the sort.

72 Rec. ITU-T Z.104 (04/2016)

<spelling term> is used in literal quantifications to refer to the character string that contains the

spelling of the literal. This mechanism allows the Charstring operators to be used to define literal

equations.

Model

A <literal equation> is shorthand for a set of <axioms>. In each of the <equation>s contained in a

<literal equation>, the <value identifier>s defined by the <value name> in the <literal quantification>

are replaced. In each derived <equation>, each occurrence of the same <value identifier> is replaced

by the same <literal identifier> of the <sort> of the <literal quantification> (if literals was used) or

by the same <literal identifier> of the nameclass referred to (if nameclass was used). The derived set

of <axioms> contains all possible <equation>s derivable in this way.

The derived <axioms> for <literal equation>s are added to <axioms> (if any) defined after the

keyword axioms.

If a <literal quantification> contains one or more <spelling term>s, then there is replacement of the

<spelling term>s with Charstring literals (see clause 14.4). The Charstring is used to replace the

<value identifier> after the <literal equation> containing the <spelling term> and is expanded as

defined below, using <value identifier> in place of <operation name>.

NOTE  Literal equations do not affect nullary operators defined in <operation signature>s.

A.2.9 Name class

A name class is shorthand for a (possibly infinite) set of literal names or operator names defined by

a regular expression.

A <name class literal> is an alternative way of specifying a <literal name>. A <name class operation>

is an alternative way of specifying an <operation name> of a nullary operation.

Concrete grammar

The syntax for <literal name> is extended with an alternative:

 | <name class literal>

<name class literal> ::=

 nameclass <regular expression>

The syntax for <operation name> is extended with an alternative:

 | <name class operation>

<name class operation> ::=

 <operation name> in nameclass <regular expression>

<regular expression> ::=

 <partial regular expression> { [or] <partial regular expression> }*

<partial regular expression> ::=

 <regular element> [<integer name> | <plus sign> | <asterisk>]

<regular element> ::=

 (<regular expression>)

 | <character string>

 | <regular interval>

<regular interval> ::=

 <character string> { <colon> | <range sign> } <character string>

The names formed by the <regular expression> shall satisfy the lexical rules for names or

<character string>, <hex string>, or <bit string>.

 Rec. ITU-T Z.104 (04/2016) 73

The <character string>s in a <regular interval> shall both have a length of one, excluding the leading

and trailing <apostrophe>s.

A <name class operation> is allowed only in an <operation signature>. An <operation signature>

containing <name class operation> shall only occur in an <operator list> and shall not contain

<arguments>.

When a name contained in the equivalent set of names of a <name class operation> occurs as the

<operation name> in an <operation application>, it shall not have <actual parameters>.

The equivalent set of names of a name class is defined as the set of names that satisfy the syntax

specified by the <regular expression>. The equivalent sets of names for the <regular expression>s

contained in a <data type definition> shall not overlap.

Model

A <name class literal> is equivalent to this set of names in the abstract syntax. When a

<name class operation> is used in an <operation signature>, a set of <operation signature>s is created

by substituting each name in the equivalent set of names for the <name class operation> in the

<operation signature>.

A <regular expression> which is a list of <partial regular expression>s without an or specifies that

the names are formed from the characters defined by the first <partial regular expression> followed

by the characters defined by the second <partial regular expression>.

When an or is specified between two <partial regular expression>s, then the names are formed from

either the first or the second of these <partial regular expression>s. or is more tightly binding than

simple sequencing.

If a <regular element> is followed by <Natural literal name>, the <partial regular expression> is

equivalent to the <regular element> being repeated the number of times specified by the

<Natural literal name>.

If a <regular element> is followed by '*' the <partial regular expression> is equivalent to the

<regular element> being repeated zero or more times.

If a <regular element> is followed by <plus sign> the <partial regular expression> is equivalent to

the <regular element> being repeated one or more times.

A <regular element> which is a bracketed <regular expression> defines the character sequences

defined by the <regular expression>.

A <regular element> which is a <character string> defines the character sequence given in the

character string (omitting the quotes).

A <regular element> which is a <regular interval> defines all the characters specified by the

<regular interval> as alternative character sequences. The characters defined by the

<regular interval> are all the characters greater than or equal to the first character and less than or

equal to the second character according to the definition of the Character sort (see clause A.2).

The names generated by a <name class literal> are defined first by length (a shorter literal comes

before any longer ones) then in lexicographical order according to the ordering of the character sort.

The characters are considered case sensitive.

NOTE  Examples exist in clause 14.

74 Rec. ITU-T Z.104 (04/2016)

A.2.10 Name class mapping

A name class mapping is shorthand for defining a (possibly infinite) number of operation definitions

ranging over all the names in a <name class operation>. The name class mapping allows behaviour

to be defined for the operators and methods defined by a <name class operation>. A name class

mapping takes place when an <operation name> that occurred in a <name class operation> within an

<operation signature> of the enclosing <data type definition> is used in <operation definitions> or

<operation diagram>s.

A spelling term in a name class mapping refers to the character string that contains the spelling of the

name. This mechanism allows the Charstring operations to be used to define name class mappings.

Concrete grammar

The syntax for <primary> is extended with an alternative

 | <spelling term>

<spelling term> ::=

 spelling ({ <operation name> | <value identifier> })

The <value identifier> in a <spelling term> shall be a <value identifier> defined by a

<literal quantification>.

A <spelling term> is legal concrete syntax only within an <operation definition> or

<operation diagram>, if a name class mapping has taken place.

Model

A name class mapping is shorthand for a set of <operation definition>s or a set of

<operation diagram>s. The set of <operation definition>s is derived from an <operation definition>

by substituting each name in the equivalent set of names of the corresponding <name class operation>

for each occurrence of <operation name> in the <operation definition>. The derived set of

<operation definition>s contains all possible <operation definition>s that are able to be generated in

this way. The same procedure is followed for deriving a set of <operation diagram>s.

The derived <operation definition>s and <operation diagram>s are considered legal even though a

<string name> is not allowed as an <operation name> in the concrete syntax.

The derived <operation definition>s are added to <operation definitions> (if any) in the same

<data type definition>. The derived <operation diagram>s are added to the list of diagrams where the

original <operation definition> had occurred.

If an <operation definition> or <operation diagram> contains one or more <spelling term>s, each

<spelling term> is replaced with a Charstring literal (see clause 14.4).

If, during the above transformation, the <operation name> in the <spelling term> had been replaced

by an <operation name>, the <spelling term> is shorthand for a Charstring derived from the

<operation name>. The Charstring contains the spelling of the <operation name>.

If, during the above transformation, the <operation name> in the <spelling term> had been replaced

by a <string name>, the <spelling term> is shorthand for a Charstring derived from the

<string name>. The Charstring contains the spelling of the <string name>.

 Rec. ITU-T Z.104 (04/2016) 75

Annex B

Specification of the set of text encoding rules

(This annex forms an integral part of this Recommendation.)

The data types are presented below with data types of the package Predefined in the order they

occur, followed by other data types.

In this Annex characters that appear in encoded text are identified by the names (in uppercase letters)

they are given in [ISO/IEC 10646]. For example: LATIN CAPITAL LETTER T identifies the

character in [ISO/IEC 10646] used to encode the Boolean value true.

B.1 Boolean

Boolean values, False and True shall be encoded as LATIN CAPITAL LETTER F and LATIN

CAPITAL LETTER T respectively.

Example

dcl Var_Boolean Boolean;

task Var_Boolean := true;

Generated CharString: T

B.2 Character

Character values shall be encoded as the actual Character with the exception of the ESC character,

which is encoded as two ESCAPE characters. An undefined or missing Character value shall be

encoded as an ESCAPE character followed by the NULL character.

NOTE – The Generated CharString is allowed to contain non-printing characters.

Example

dcl Var_Character Character;

task Var_Character := 'M';

Generated CharString: M

B.3 String

String has a parameter for the item sort and shall be encoded as a list of values of the item sort

enclosed in a LEFT CURLY BRACKET and a RIGHT CURLY BRACKET separated by COMMA

characters.

Example

value type IntString inherits String <Integer>;

dcl str IntString;

task str:= ''//mkstring(6)//mkstring(9)//mkstring(1948);

Generated CharString: {6,9,1948}

B.4 Charstring, IA5String, NumericString, PrintableString, VisibleString

Although Charstring is based on String, because it is a predefined data type and is commonly used,

it is given a special encoding. IA5String and Charstring cover the same range of characters and

have the same encoding. NumericString, PrintableString and VisibleString are subsets of

IA5String.

76 Rec. ITU-T Z.104 (04/2016)

These string types shall be encoded as a string of characters enclosed in APOSTROPHE (') characters

without change except the <apostrophe> (') which shall be encoded as two APOSTROPHE (')

characters.

NOTE 1 – Within a character string <comma>s, <left curly bracket>s and <right curly bracket>s are treated

as normal characters.

NOTE 2 – The Generated Charstring therefore possibly contains non-printing characters including end of

file or end of record characters.

Example

dcl Var_Charstring Charstring;

task Var_Charstring := 'Fred''s world;

Generated Charstring: 'Fred's world'

B.5 Integer

Integer shall be encoded as a decimal integer notation without leading DIGIT ZERO characters

where negative numbers are immediately preceded by a HYPHEN-MINUS without leading DIGIT

ZERO characters. Zero shall never be treated as a negative number.

Example

dcl i Integer;

task i := 2-7;

Generated Charstring: –5

B.6 Natural

Natural is a syntype of Integer and shall therefore have the same encoding as Integer.

B.7 Real

The value 0.0 shall be encoded as DIGIT ZERO followed by FULL STOP followed by DIGIT ZERO.

Any negative value shall be encoded as a HYPHEN-MINUS immediately followed by the encoding

of the value negated (a positive Real value).

A positive Real value shall be encoded as a single digit in the range 1 to 9, followed by a FULL

STOP, followed by at least one and up to 11 decimal fraction digits, followed by LATIN SMALL

LETTER E 'e', followed by an exponent. The exponent is the Integer encoding of the exponent value:

the power to the base 10 to apply to the first part of the number. A negative exponent is allowed.

It is allowed to omit trailing fractional zero digits. It is not possible to precisely encode some Real

values, and it is possible that unequal Real values that have very small difference have the same

encoding. In any case, whether a Real value is precisely correct within an application will depend on

how Real has been implemented. For example, if the Real value 2.0/7.0 is actually stored as the ratio

of two integers (2 and 7), this is absolutely precise, whereas a more conventional encoding could be

0.2857142857, which is only correct to 10 decimal places.

Examples

dcl p, q, r1, r2 Real := 2000.0, 7.0, 0, 0;

task r1:= p/q;

task r2:= q/p;

Generated Charstring for r1: 2.85714285714e2

Generated Charstring for r2: 3.5e-3

 Rec. ITU-T Z.104 (04/2016) 77

B.8 Array

Array has two parameters: an index sort and a component sort. Either sort in principle is any sort, but

usually the index sort has a finite number of values.

Where the index sort has a finite number of ordered values an Array shall be encoded as a list of

element encoding values, one for each element, separated by COMMA characters within a single pair

of LEFT CURLY BRACKET and RIGHT CURLY BRACKET characters.

Example

value type ABC {literals A, B, C};

value type A1 inherits Array <ABC, Integer>;

dcl avalue, bvalue A1;

task avalue:= (. 3 .);

task bvalue[A]:= 3;

task bvalue[B]:= 5;

task bvalue[C]:= 7;

Generated Charstring for avalue:{3,3,3}

Generated Charstring for bvalue:{3,5,7}

It is possible the index is not ordered (that is, the "<" operator is not defined, or for example the index

sort is a structure or choice). It is also possible the index sort does not have a finite number of values

(that is, no possible number of values is infinite for example Charstring or Real). For unordered or

infinite index sort, the Array shall be encoded as the most frequent value followed by pairs of values

for each element. If two or more values occur with the highest frequency one of these is chosen on

an arbitrary basis as the most frequent value. Each pair shall be between a LEFT CURLY BRACKET

and a RIGHT CURLY BRACKET and separated by a COMMA: the first value is an index value and

the second value is element value. No index values in the pairs shall be repeated.

Example

value type Dehashing inherits Array <Charstring, Charstring> := (.''.);

/* note that the default value is an empty string */

dcl hashtable Dehashing;

task htable ('ac'):= 'action';

task htable ('ab'):= 'ability';

task htable ('zzzz'):= 'end of document';

Generated Charstring for htable: {'',{'ab','ability'},{'ac','action'},{'zzzz','end of document'}}

B.9 Vector

Vector is a special case of Array that always has index sort that is a subset of Natural with a range

from 1 to a specified maximum value and any item sort. Vector shall therefore be encoded in the same

way as an Array with a finite number of ordered index values: that is a list of element encoding values,

one for each element, separated by COMMA characters within a single LEFT CURLY BRACKET

and RIGHT CURLY BRACKET pair.

78 Rec. ITU-T Z.104 (04/2016)

B.10 Powerset

A Powerset of a sort represents a mathematical set whose elements are all members of the sort.

Where the sort has a finite number of ordered values, the Powerset of the sort shall be encoded as a

bit string (a string of DIGIT ZERO and DIGIT 1 characters) enclosed in APOSTROPHE (')

characters. Each bit position in this bit string represents if a value of the sort is present or absent in

the set. A DIGIT 1 represents that the value is present and a DIGIT ZERO that the value is absent.

The leftmost bit represents the smallest value of the element sort, and each other bit represents a value

of the element sort larger than values for the bits to the left.

Example

value type Shortalpha {literals a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v};

/* note Shortalpha has 22 values */

value type Psa inherits Powerset<Shortalpha>;

dcl letters_used Psa;

task letters_used := (. h, c, u, r .);

Generated Charstring: '0010000100000000010010'

Where the sort does not have a finite number of ordered values, the Powerset of the sort shall be

encoded as the encoding of each element value present separated by COMMA characters enclosed in

a LEFT CURLY BRACKET and RIGHT CURLY BRACKET pair. The element values are allowed

to be in any order.

Example

value type Pchrstr inherits Powerset<Charstring>;

dcl strings_used Pchrstr;

task strings_used := (. 'me', 'you', 'us', 'me', 'again', 'hey', 'you' .);

Generated Charstring: {'again','hey','you','me','us'}

B.11 Duration

Duration is used to denote 'a time interval'. Unless specified otherwise, the default value of the unit

of Duration is one second.

Duration values shall be encoded as a pair of integers separated by a COMMA enclosed in a LEFT

CURLY BRACKET and RIGHT CURLY BRACKET pair: the first integer gives the number of units

and the second integer any fractional part in nano (10-9) units. By default these are seconds and

nano-seconds. A negative value is allowed, in which case the encoding of the negated value shall be

used with a HYPHEN-MINUS inserted immediately before the first integer.

Example

dcl dvar Duration;

task dvar := -17.00000007;

Generated Charstring: {-17,700}

B.12 Time

Time is used to denote 'a point in time'. The value of a unit of Time shall be the same as the value of

the unit of Duration. The origin of Time units is not specified by this Recommendation, but

corresponds to the system clock being at zero: that is, NOW gives the value 0.0. It is allowed for Time

values to be negative.

Time values shall be encoded in the same way as Duration.

 Rec. ITU-T Z.104 (04/2016) 79

Example

dcl tvar Time;

task tvar:= 17.0000017;

Generated Charstring: {17,17000}

B.13 Bag

Bag shall be encoded in the same way as a Powerset with an element sort that does not have a finite

ordered set of values, but with each element value preceded by an integer followed by COLON. The

integer is the number of times the element sort occurs in the Bag value.

Example

value type B1 inherits Bag <Integer>;

dcl Var_Bag B1;

task Var_Bag := (. 7, 4, 7 .);

Generated Charstring: {2:7,1:4}

B.14 Bit, Bitstring

Bit shall be encoded as a single DIGIT ZERO or DIGIT 1 representing a zero and one bit

respectively.

Example

dcl Var_Bit Bit;

task Var_Bit := 1;

Generated Charstring: 1

Bitstring shall be encoded as sequence of bits represented by DIGIT ZERO and DIGIT 1 characters

enclosed in APOSTROPHE (') characters.

Example

dcl Var_Bit Bit_String;

task Var_Bit := '01011'B;

Generated Charstring: '01011'

B.15 Octet, Octetstring

Octet shall be encoded as two characters corresponding to the hexadecimal notation of the Octet.

The alphabetic characters shall be represented by lowercase letters (that is, LATIN SMALL LETER

A to LATIN SMALL LETTER F).

Example

dcl oct Octet;

task oct := 62;

Generated Charstring: 3e

Octetstring is a sequence of Octet values and shall be encoded as a string of hexadecimal character

pairs enclosed in APOSTROPHE (') characters. The alphabetic characters shall be represented by

lowercase letters.

80 Rec. ITU-T Z.104 (04/2016)

Example

dcl os Octetstring;

task os:= '12B32D'H;

Generated Charstring: '12b32d'

B.16 Pid, pid sorts

To allow flexibility between applications pid values shall be encoded as a CHOICE value

corresponding to the choice definition:

{ choice

 0 ApplicationDefined;

 1 Integer;

 2 OctetString;

 3 BitString;

 4 Charstring;

 5 { struct

 identity Charstring;

 instance Natural;

 };

}

A value of a pid sort shall be encoded as the corresponding value of the Pid sort.

All pid values shall be encoded using the same choice field as defined above: that is, if one pid value

in a model is encoded using the choice 1 Integer, all other pid values in the same model shall be

encoded using choice 1 Integer. Otherwise, which of the above choices is selected is application

dependent. The first choice allows an application defined encoding to be used. The

ApplicationDefined sort is not defined by this Recommendation.

The same agent instance of a model shall always have the same pid value encoding. Two different

agent instances shall always have different encoded pid values. Otherwise the derivation of the

encoded pid values is not further defined by the Recommendation.

Example (using choice 5)

dcl agent_id Pid; /* in second instance of process IPS */

task agent_id := self;

Generated Charstring: {5, {IPS, 2}}

B.17 Null

The value Null (see [ITU-T Z.105]) shall be encoded as a DIGIT ZERO character.

Example

dcl Var_Null Null;

task Var_Null := Null;

Generated Charstring: 0

B.18 Enumerated (literal list)

An enumerated type defined by a literal list or as an ASN.1 ENUMERATED type shall be encoded

as the Natural value given by the application of num operator of the data type to the literal representing

the value to be encoded.

 Rec. ITU-T Z.104 (04/2016) 81

Example

value type Enum

{ literals e1, e2, e3;

};

dcl evar Enum;

task evar := e2;

Generated Charstring: 1

B.19 Structures

A structure data type value shall be encoded as a list of values for the fields within a LEFT CURLY

BRACKET and RIGHT CURLY BRACKET pair separated by COMMA characters.

Example

value type Record { struct

f1 Integer;

f2 Charstring;

f3 Integer;};

dcl locat Record;

task locat:= (. 17, 'mid-field', 230125 .);

Generated Charstring: {17, 'mid-field', 230125}

B.20 Choice

A choice value shall be encoded as a pair of values separated by a COMMA enclosed in a LEFT

CURLY BRACKET and RIGHT CURLY BRACKET pair. The first value is the selected field

indicated by name of the choice. The second value is the Charstring for the field value according to

the type of the field.

Example

value type C {choice

cs Charstring;

cb Boolean;

};

dcl ChoiceVar C;

task ChoiceVar.cb := true;

Generated Charstring: {cb,T}

B.21 Inherits and syntype

A syntype defines a new name for a data type with an optional constraint on the set values. The text

encoding is therefore identical to that of the data type.

A data type that inherits from another data type has the same encoding as the parent data type, though

in the case that additional literal or fields are added, these are added to the encoding.

82 Rec. ITU-T Z.104 (04/2016)

Annex C

Language binding

(This annex forms an integral part of this Recommendation.)

This annex defines the use of the syntax of an alternative language within the syntax rules <variable

definition>, <data definition>, <non terminating statement>, <terminating statement> and

<expression>, which are taken as the points of syntax variation. By default an SDL-2010 specification

is bound to the native syntax as defined in the main body of this Recommendation or other

Recommendations for SDL-2010.

Each diagram or other definition that is allowed a <package use clause> is bound to a particular

concrete syntax as defined in clause 7.2. The only allowed language <data binding> constructs are to

the default binding package Predefined, which is the language binding for the native SDL-2010

concrete syntax, or to a package defined in this annex.

Though the syntax within the points of syntax variation looks like another language (such as C, C++,

Java or some other language) the semantics are defined by SDL-2010. The binding to the SDL-2010

abstract grammar is permitted to invoke complex transformations to achieve the mapping, and

constraints are allowed to exclude constructions permitted by the language concrete syntax that are

not able to be reasonably mapped. A model that includes constructs that do not map to SDL-2010

does not conform to the SDL-2010 language. A tool that handles constructs that do not map to

SDL-2010 abstract grammar and semantics shall provide an indication if such constructs are used.

Different languages not only vary in their syntax rules, but also have some differences in the lexical

elements of the language. Therefore, within diagrams bound to the syntax of an alternative language

for certain rules, it is allowed for the lexical rules of SDL-2010 to be extended to include lexemes of

the alternative language. This annex also defines these variations.

To be concise, throughout this annex the phrase "SDL-2010 diagram" is used to mean a "diagram

bound to the native SDL-2010 syntax for the points of syntax variation", and the phrase "SDL-2010

diagrams" to mean more than one such diagram.

C.1 C Language binding

This clause allows diagrams to be bound to a subset of [b-ISO/IEC 9899] by binding each such

diagram to the package C_Predefined defined at the end of this clause.

To be concise, throughout this clause the phrase "C diagram" is used to mean a "diagram bound to a

subset of [b-ISO/IEC 9899] for the points of syntax variation", and the phrase "C diagrams" to mean

more than one such diagram.

C.1.1 Extensions to lexical rules

Lexical rules define lexical units. Lexical units are terminal symbols of the Concrete grammar.

<lexical unit> ::=

 <name>

 | <integer name>

 | <real name>

 | <character string>

 | <hex string>

 | <bit string>

 | <note>

 | <comment body>

 | <composite special>

 | <special>

 | <semicolon>

 Rec. ITU-T Z.104 (04/2016) 83

 | <other character>

 | <quoted operation name>

 | <c string literal>

 | <keyword>

The rule <lexical unit> is extended to include <c string literal>.

NOTE – No qualifier is allowed for an identifier in the C language syntax, therefore identifiers and names

have the same syntax. The universal character name (of the form \u hex-quad or \U hex-quad hex-quad) are

not allowed, therefore names in the C language have the same syntax as names in SDL-2010.

C.1.1.1 C keywords

The following SDL-2010 lowercase <name> items are also keywords in C diagrams:
 | auto | case | char

 | const | do | double

 | enum | extern | float

 | for | goto | inline

 | int | long | register

 | restrict | short | signed

 | sizeof | static | switch

 | typedef | union | unsigned

 | void | volatile | while

These are keywords only in C diagrams. In SDL-2010 diagrams each of these is treated as a <name>.

In accordance with C and to limit the impact on SDL-2010 of C lexical rules, corresponding uppercase

keywords do not exist. An SDL-2010 <keyword> item as defined in [ITU-T Z.101] cannot be used

as a <name> in C type or variable definitions.

C.1.1.2 C integer constants

<integer name> ::=

 <decimal digit>+

 | <c integer constant>

The lexical rule <integer name> is extended to include <c integer constant>. The form <decimal

digit>+ applies to SDL-2010 diagrams, and the form <c integer constant> applies to C diagrams.

<c integer constant> ::=

 <c decimal constant>

 | <c octal constant>

 | <c hexadecimal constant>

NOTE 1 – Clause 6.4.4.1 of [b-ISO/IEC 9899] but excluding the <c integer suffix>.

<c decimal constant> ::=

 <c nonzero digit>

 | <c decimal constant> <c digit>

NOTE 2 – Clause 6.4.4.1 of [b-ISO/IEC 9899].

<c octal constant> ::=

 0
 | <c octal constant> <c octal digit>

NOTE 3 – Clause 6.4.4.1 of [b-ISO/IEC 9899].

<c hexadecimal constant> ::=

 <c hexadecimal prefix> <c hexadecimal digit>

 | <c hexadecimal constant> <c hexadecimal digit>

NOTE 4 – Clause 6.4.4.1 of [b-ISO/IEC 9899].

<c hexadecimal prefix> ::=

 0x

NOTE 5 – Clause 6.4.4.1 of [b-ISO/IEC 9899] without the 0X form.

84 Rec. ITU-T Z.104 (04/2016)

<c nonzero digit> ::=

 1 | 2 | 3 | 4 | 5

 | 6 | 7 | 8 | 9

NOTE 6 – Clause 6.4.4.1 of [b-ISO/IEC 9899].

<c octal digit> ::=

 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

NOTE 7 – Clause 6.4.4.1 of [b-ISO/IEC 9899].

<c hexadecimal digit> ::=

 0 | 1 | 2 | 3 | 4

 | 5 | 6 | 7 | 8 | 9

 | a | b | c | d | e | f

 | A | B | C | D | E | F

NOTE 8 – Clause 6.4.4.1 of [b-ISO/IEC 9899].

A <c integer constant> has an unbounded integer value determined according to the rules given in

[b-ISO/IEC 9899]. The Name of the <c integer constant> is the Name of the <decimal digit> string

starting with a non-zero digit that has this value. The Qualifier for the Identifier of a <c integer

constant> is the Qualifier for <<package Predefined type Integer>>.

C.1.1.3 C composite specials

<composite special> ::=

 <result sign>

 | <range sign>

 | <composite begin sign>

 | <composite end sign>

 | <concatenation sign>

 | <history dash sign>

 | <greater than or equals sign>

 | <implies sign>

 | <is assigned sign>

 | <less than or equals sign>

 | <not equals sign>

 | <qualifier begin sign>

 | <qualifier end sign>

 | <c increment operator>

 | <c decrement operator>

 | <c equality sign>

 | <c inequality sign>

 | <c logical and sign>

 | <c logical or sign>

 | <c multiplication assignment sign>

 | <c division assignment sign>

 | <c remainder assignment sign>

 | <c addition assignment sign>

 | <c subtraction assignment sign>

 | <c shift left assignment sign>

 | <c shift right assignment sign>

 | <c bitwise and assignment sign>

 | <c bitwise excl or assignment sign>

 | <c bitwise incl or assignment sign>

The rule <composite special> is extended to include the additional composite symbols used in C

except those symbols only used for pre-processing and alternatives for: square brackets, curly

brackets and the number sign.

<c pointer operator> ::=

 <result sign>

<c shift left sign> ::=

 <qualifier begin sign>

 Rec. ITU-T Z.104 (04/2016) 85

<c shift right sign> ::=

 <qualifier end sign>

The rule <c pointer operator>, <c shift left sign> and <c shift right sign> lexical units are the same as

<result sign>, <qualifier begin sign> and <qualifier end sign>, respectively, and the lexical unit

represented is determined by context. In syntax rules defined for C diagrams these lexical units

always represent <c pointer operator>, <c shift left sign> and <c shift right sign>, respectively.

<c increment operator> ::=

 <plus sign> <plus sign>

<c decrement operator> ::=

 <hyphen> <hyphen>

<c equality sign> ::=

 <equals sign> <equals sign>

<c inequality sign> ::=

 <exclamation mark> <equals sign>

<c logical and sign> ::=

 <ampersand> <ampersand>

<c logical or sign> ::=

 <vertical line> <vertical line>

<c multiplication assignment sign> ::=

 <asterisk> <equals sign>

<c division assignment sign> ::=

 <solidus> <equals sign>

<c remainder assignment sign> ::=

 <percent sign> <equals sign>

<c addition assignment sign> ::=

 <plus sign> <equals sign>

<c subtraction assignment sign> ::=

 <hyphen> <equals sign>

<c shift left assignment sign> ::=

 <less than sign> <less than sign> <equals sign>

<c shift right assignment sign> ::=

 <greater than sign> <greater than sign> <equals sign>

<c bitwise and assignment sign> ::=

 <ampersand> <equals sign>

<c bitwise excl or assignment sign> ::=

 <circumflex accent> <equals sign>

<c bitwise incl or assignment sign> ::=

 <vertical line> <equals sign>

C.1.1.4 C character constants

<c character constant> ::=

 <apostrophe> <c char sequence> <apostrophe>

NOTE 1 – Clause 6.4.4.4 of [b-ISO/IEC 9899] without the prefixes for types other than unsigned char.

<c char sequence> ::=

 <c char>

NOTE 2 – Clause 6.4.4.4 of [b-ISO/IEC 9899] restricted to a single character, because the "value of an integer

character constant containing more than one character, or containing a character or escape sequence that

does not map to a single-byte execution character, is implementation-defined". (See clause 6.4.4.4 of

[b-ISO/IEC 9899].)

<c char> ::=

 <quotation mark> | <c other character> | <space> | <c escape sequence>

86 Rec. ITU-T Z.104 (04/2016)

NOTE 3 – Clause 6.4.4.4 of [b-ISO/IEC 9899], modified to use SDL-2010 lexical items.

A <c escape sequence> (see clause C.1.1.5 below) shall map to a single byte character.

The <c character constant> represents the constant unsigned char value corresponding to the

constant expression to_Unsigned_char(<<package Predefined type Char>> num(c)), where

c is the character specified by the <c character constant>.

C.1.1.5 C string literals

<c string literal> ::=

 <quotation mark> [<c s char sequence>] <quotation mark>

There is a clash between <quoted operation name> and <c string literal>. A lexical unit in an

SDL-2010 diagram that starts with a <quotation mark> never represents a <c string literal>. A lexical

unit in a C diagram that starts with a <quotation mark> always represents a <c string literal>.

A <c string literal> is pointer to the first element of an array of characters derived from the <character

string> where the <c string literal> has a <c s char sequence> the same as the sequence of characters

in a <character string> (after replacement of <c escape character> items in the <c s char sequence>

and <apostrophe> pairs in the <character string>).

A <c string literal> represents a Variable-access for an implicit anonymous unsigned char pointer

(to first char of an implicit char array) defined by

 synonym anoncp Star_Unsigned_char = "&"(xstring[0]);

where

xstring is an implicit anonymous char array defined by

 synonym xstring value inherits Cvector <char,n+1> = c_array_init;

where

n is the length of the <character string> (that is, the length in bytes of the <c s char sequence> after

replacement of <c escape character> items), and

c_array_init is the initialization value using a call of Make and calls of Modify (as described for <c

initialize> in clause C.1.3) with each element of the array initialized to the corresponding character

of the string and the string terminates in a zero (a NUL character).

For example, if the <c string literal> is "AB3", then c_array_init is {'A’, 'B', '3', endstr}

where endstr is Integer_to_Unsigned_char(num(<<package Predefined type

Character>>NUL)).

The unsigned char array element i (<n) for the string is

Integer_to_Unsigned_char(num(zstring[i+1])), where zstring is the Charstring

<character string>.

NOTE 1 – This definition allows a <c string literal> to be used with functions from the C library string.h

(see clause 7.24 of [b-ISO/IEC 9899]), if these functions are defined in an additional package as external

operations or procedures. The operator

 <<package C_Predefined type Star_Unsigned_char>> Star_Unsigned_char_to_Charstring

allows a <c string literal> (or other Unsigned_char array values) to be converted to Charstring expressions.

<c s char sequence> ::=

 <c s char>

 | <c s char sequence> <c s char>

NOTE 2 – Clause 6.4.5 of [b-ISO/IEC 9899].

<c s char> ::=

 <apostrophe> | <c other character> | <space> | <c escape sequence>

 Rec. ITU-T Z.104 (04/2016) 87

NOTE 3 – Clause 6.4.5 of [b-ISO/IEC 9899], modified to use SDL-2010 lexical items.

<c other character> ::=

 <alphanumeric>

 | <special> | <dollar sign> | <percent sign>

 | <ampersand> | <question mark> | <commercial at>

 | <circumflex accent> | <underline> | <grave accent>

 | <vertical line> | <tilde>

<c escape sequence> ::=

 <c simple escape sequence>

 | <c octal escape sequence>

 | <c hexadecimal escape sequence>

NOTE 4 – Clause 6.4.4.4 of [b-ISO/IEC 9899] excluding <c universal character name>.

<c simple escape sequence> ::=

 <reverse solidus> <apostrophe>

 | <reverse solidus> <quotation mark>

 | <reverse solidus> <question mark>

 | <reverse solidus> <reverse solidus>

 | <reverse solidus> a

 | <reverse solidus> b

 | <reverse solidus> f

 | <reverse solidus> n

 | <reverse solidus> r

 | <reverse solidus> t

 | <reverse solidus> v

NOTE 5 – Clause 6.4.4.4 of [b-ISO/IEC 9899].

<c octal escape sequence> ::=

 <reverse solidus> <c octal digit> <c octal digit> <c octal digit>

NOTE 6 – Clause 6.4.4.4 of [b-ISO/IEC 9899].

<c hexadecimal escape sequence> ::=

 <reverse solidus> x <c hexadecimal digit> <c hexadecimal digit>

NOTE 7 – Clause 6.4.4.4 of [b-ISO/IEC 9899] but always with two hexadecimal digits.

The characters represented by the alternatives of <c escape sequence> are defined by

[b-ISO/IEC 9899].

C.1.1.6 C identifiers, name resolution and visibility

Concrete grammar

<c identifier> ::=

 <name>

NOTE – Clause 6.4.2.1 of [b-ISO/IEC 9899] is redefined as <name> because <c identifier> has the same

syntax as <name>.

In a C diagram, a <c identifier> cannot have a <qualifier>. Identifiers in C language data definitions

and expressions are in principle bound to names according to the SDL-2010 name binding rules in

clause 6.6 of [ITU-T Z.101]. In a defining context for a Name in the abstract grammar, a <c identifier>

represents the Name. In a non-defining context where a name is used, a <c identifier> represents an

Identifier and the Qualifier is derived from the name binding. A <c identifier> that represents an

Identifier may be marked as belonging to a subcategory: for example, <data type c identifier> requires

the Identifier to represent a data type. When a <c identifier> represents an Identifier, if it cannot be

uniquely bound to an Identifier it is ambiguous and therefore invalid.

C.1.1.7 Macros and pre-processing

It is assumed that pre-processing as defined by [b-ISO/IEC 9899] is applied before any C diagram is

considered as part of an SDL-2010 model, and as a consequence that any C pre-processing tokens or

88 Rec. ITU-T Z.104 (04/2016)

alternative composite symbols (such as the alternative left curly bracket) are removed from the

contents of a C diagram. It is assumed that SDL-2010 macro processing is applied to the model after

any C pre-processing.

C.1.2 Data type definition

Concrete grammar

<data definition> ::=

 <entity in data type>

 | <interface definition>

 | <c type definition>

A <c type definition> shall only be used in a C diagram.

<c type definition> ::=

 typedef <c type specifier> <c declarator> <semicolon>

 | <c struct or union specifier> <semicolon>

 | <c enum specifier> <semicolon>

NOTE 1 – This is a valid subset of <c declaration> from clause 6.7 of [b-ISO/IEC 9899]. This subset includes

only alternatives starting with the keywords typedef, struct, union and enum. The <c init declarator list> is

simplified to a <c declarator> and is not allowed to be omitted.

<c declarator> ::=

 [<c pointer>] <c direct declarator>

NOTE 2 – Clause 6.7.6 of [b-ISO/IEC 9899].

If the <c type qualifier list> of a <c pointer> of a <c declarator> contains a <c type qualifier> that is

const, it is allowed to modify the contents of the target of the pointer, but the pointer itself should

always point to the same target.

The <c identifier> of a <c declarator> is the <c identifier> of the <c direct declarator> of the

<c declarator>, or if the <c direct declarator> of the <c declarator> contains a <c declarator> enclosed

in <left parenthesis> <right parenthesis>, the <c identifier> of this enclosed <c declarator>.

<c direct declarator> ::=

 <c identifier>

 { <left square bracket> <integer c constant expression> <right square bracket> }*

 | <left parenthesis> <c declarator> <right parenthesis>

NOTE 3 – Clause 6.7.6 of [b-ISO/IEC 9899] simplified so that it either starts with a <c identifier> or is a <c

declarator> in parentheses, with the assignment expression constrained to a <c constant expression> without

type qualifiers or static.

<c pointer> ::=

 <asterisk> [<c type qualifier list>]

 | <asterisk> [<c type qualifier list>] <c pointer>

NOTE 4 – Clause 6.7.6 of [b-ISO/IEC 9899].

<c type qualifier list> ::=

 <c type qualifier>

 | <c type qualifier list> <c type qualifier>

NOTE 5 – Clause 6.7.6 of [b-ISO/IEC 9899].

A <c type definition> starting with typedef represents a Syntype-definition. The <c identifier> of the

<c declarator> of the <c type definition> represents the Syntype-name of the Syntype-definition. The

Range-condition of the Syntype-definition is the predefined Boolean value true. There is no

Default-initialization for the Syntype-definition. The Parent-sort-identifier of the Syntype-definition

of the <c type definition> is denoted PS below and is determined as follows.

a) If the <c declarator> has a <c pointer>, its type is a typed pointer and PS is the Identifier of

this data type. If the <c pointer> does not include another <c pointer> and the <c type

specifier> is the <c type keywords> item void, PS is the Identifier for Star_void. Otherwise,

 Rec. ITU-T Z.104 (04/2016) 89

if it not Star_void and there is a (possibly anonymous) visible Data-type-definition for a

subtype of Star_type where Atype of Star_type is bound to the type (target) of a reduced

<c declarator> (that is, the <c declarator> with removal of the <asterisk> and any adjacent

<c type qualifier list> from the <c pointer>), PS is the Identifier of this data type. Otherwise

(if it is not Star_void and no such type is visible), the <c type definition> represents an

anonymous Data-type-definition that is a Value-data-type-definition in addition to the

Syntype-definition represented by the <c type definition>, and this anonymous type is the sort

defined by the concrete SDL-2010 value type PS inherits Star_type < target >;

 where

 target is the target type;

 Star_type is defined as a parameterized data type in C_Predefined.

 If the reduced <c declarator> contains a <c pointer>, target is a typed pointer to a further

typed pointer with a type for either a visible or an anonymous Data-type-definition

determined in the same way described above. For example, for

 typedef Existing_type ***Ppp_existing_type;

 defines a syntype Name Ppp_existing_type and Parent-sort-identifier identifying the

anonymous type defined by

 value type PS inherits

 Star_type<value inherits

 Star_type<value inherits Star_type<Existing_type>>>;

 and intermediate anonymous types defined by

 value inherits Star_type<value inherits Star_type<Existing_type>> and

 value inherits Star_type<Existing_type> using inline sort definitions for the two

outer Star_type parameters.

 Otherwise, the reduced <c declarator> does not contain a <c pointer> and target is the type

identified for the PS of the reduced <c declarator> (that is, the type of a <c declarator> with

no <c pointer>) as determined in b), c), d) and e) below.

b) If there is no <c pointer> and the <c identifier> in the <c declarator> of the <c type definition>

is followed by one or more index specifications (<left square bracket> [<integer c constant

expression>] <right square bracket> list in <c direct declarator>), the type is a C array. The

C array has a derived anonymous Data-type-definition that is a Value-data-type-definition in

addition to the Syntype-definition represented by the <c type definition>. The PS is the

Identifier of this anonymous value type defined by

 value type PS inherits Cvector <itemsort, arraysize>;

 where

 arraysize is the value of the <Integer c constant expression> for this index

specification,

 itemsort is sort of the following index specification if there is one, or the sort identified

for PS from the <c type specifier> after the typedef as in (c), (d) and (e) below, and

 Cvector is defined as a parameterized data type in C_Predefined.

 If there is a following index specification, for the itemsort there is a further derived

anonymous Data-type-definition that is a Value-data-type-definition in addition to the

Syntype-definition represented by the <c type definition>. This is formed in the same way as

the Data-type-definition for a previous index specification, so that there are as many

anonymous data types as index specifications. For example, for

 typedef int x3d[3][5][7]

90 Rec. ITU-T Z.104 (04/2016)

 PS is defined by
 value type PS inherits

 Cvector<value inherits Cvector<value inherits Cvector<int,7>,5>,3>

 using inline sort definitions for the two outer itemsort parameters.

c) If there is no <c pointer> and no index specification after the <c identifier> in the

<c declarator> of the <c type definition>, and the <c type specifier> is <c type keywords>,

PS is the Identifier for the <c type keywords>. The identified type shall not be Void.

d) Otherwise, if there is no <c pointer> and no index specification after the <c identifier> in the

<c declarator> of the <c type definition>, and the <c type specifier> is a <c identifier>, it

shall identify a data type and PS is the Identifier of that data type.

e) Otherwise, if there is no <c pointer> and no index specification after the <c identifier> in the

<c declarator> of the <c type definition>, and the <c type specifier> is <c struct or union

specifier> or <c enum specifier>, PS is the (possibly anonymous) Identifier of the data type

of the <c type specifier> that is the <c struct or union specifier> or <c enum specifier>. The

<c type specifier> that is the <c struct or union specifier> or <c enum specifier> represents a

Data-type-definition in addition to the Syntype-definition represented by the <c type

definition>.

C.1.2.1 Data type specifier

Concrete grammar

<c type specifier> ::=

 <c type keywords>

 | <c struct or union specifier>

 | <c enum specifier>

 | <data type c identifier>

<c type keywords> ::=

 void
 | [signed | unsigned] char

 | [signed | unsigned] short [int]

 | [signed | unsigned] int

 | [signed | unsigned] long [long] [int]

 | signed

 | unsigned

 | float

 | [long] double

NOTE – This is a valid subset of <c type specifier> from clause 6.7.2 of [b-ISO/IEC 9899], modified to

syntactically restrict the allowed lists of keywords used for data types and also removing _Bool, _Complex

and <c atomic type specifier>.

If the <c type specifier> is <c type keywords>, the keyword list represents the Sort for the identified

data type of <<package C_Predefined>> as follows:

void identifies <<package C_Predefined>> Void

char identifies <<package C_Predefined>> Signed_char

signed char identifies <<package C_Predefined>> Unsigned_char

unsigned char identifies <<package C_Predefined>> Unsigned_char

short identifies <<package C_Predefined>> Signed_short

short int identifies <<package C_Predefined>> Signed_short

signed short identifies <<package C_Predefined>> Signed_short

signed short int identifies <<package C_Predefined>> Signed_short

unsigned short identifies <<package C_Predefined>> Unsigned_short

 Rec. ITU-T Z.104 (04/2016) 91

unsigned short int identifies <<package C_Predefined>> Unsigned_short

int identifies <<package C_Predefined>> Signed_int

signed identifies <<package C_Predefined>> Signed_int

signed int identifies <<package C_Predefined>> Signed_int

unsigned identifies <<package C_Predefined>> Unsigned_int

unsigned int identifies <<package C_Predefined>> Unsigned_int

long identifies <<package C_Predefined>> Signed_long

long int identifies <<package C_Predefined>> Signed_long

signed long identifies <<package C_Predefined>> Signed_long

signed long int identifies <<package C_Predefined>> Signed_long

unsigned long identifies <<package C_Predefined>> Unsigned_long

unsigned long int identifies <<package C_Predefined>> Unsigned_long

long long identifies <<package C_Predefined>> Signed_long_long

long long int identifies <<package C_Predefined>> Signed_long_long

signed long long identifies <<package C_Predefined>> Signed_long_long

signed long long int identifies <<package C_Predefined>> Signed_long_long

unsigned long long identifies <<package C_Predefined>>
 Unsigned_long_long

unsigned long long int identifies <<package C_Predefined>>
 Unsigned_long_long

float identifies <<package C_Predefined>> Float

double identifies <<package C_Predefined>> Double

long double identifies <<package C_Predefined>> Long_double

C.1.2.2 Struct or union specifier

Concrete grammar

<c struct or union specifier>::

 <c struct or union> [<c identifier>]

 <left curly bracket> <c struct declaration list> <right curly bracket>

 | <c struct or union> <struct or union data type c identifier>

NOTE 1 – Clause 6.7.2.1 of [b-ISO/IEC 9899].

<c struct or union> ::=

 struct
 | union

NOTE 2 – Clause 6.7.2.1 of [b-ISO/IEC 9899].

A <c struct or union specifier> that has a <c struct declaration list> represents a Data-type-definition

that is a Value-data-type-definition. The <c identifier> before the <left curly bracket> represents a

Name that is the Sort of the Value-data-type-definition. If the <c identifier> is omitted, the

Value-data-type-definition has an anonymous unique Name. The optional Data-type-identifier of the

Value-data-type-definition is omitted. The Literal-signature-set, Procedure-definition-set,

Data-type-definition-set and Syntype-definition-set of the Value-data-type-definition are empty. The

Static-operation-signature-set is derived from <c struct declaration list>.

A <c struct or union specifier> that does not have a <c struct declaration list> represents an Identifier.

If <c struct or union> is struct, the following <struct or union data type c identifier> shall represent

an Identifier that identifies a Value-data-type-definition for a structure. If <c struct or union> is union,

92 Rec. ITU-T Z.104 (04/2016)

the following <struct or union data type c identifier> shall represent an Identifier that identifies a

Value-data-type-definition for a union (a choice in SDL-2010 terminology).

<c struct declaration list> ::=

 <c struct declaration>

 | <c struct declaration list> <c struct declaration>

NOTE 3 – Clause 6.7.2.1 of [b-ISO/IEC 9899].

<c struct declaration> ::=

 <c specifier qualifier list> [<c struct declarator list>] <semicolon>

NOTE 4 – Clause 6.7.2.1 of [b-ISO/IEC 9899] without the static-assert-declaration alternative.

<c specifier qualifier list> ::=

 <c type specifier>

NOTE 5 – Clause 6.7.2.1 of [b-ISO/IEC 9899] without <c type qualifier> items.

<c struct declarator list> ::=

 <c struct declarator>

 | <c struct declarator list> <comma> <c struct declarator>

NOTE 6 – Clause 6.7.2.1 of [b-ISO/IEC 9899].

<c struct declarator> ::=

 <c declarator>

 | <c declarator> <colon> <c constant expression>

NOTE 7 – Clause 6.7.2.1 of [b-ISO/IEC 9899], modified so that the <c declarator> before a <colon> is not

optional because SDL-2010 requires a field name. The <c constant expression> has no SDL-2010 meaning.

A <c struct declarator> is a field of a structure or union with a field name that is the <c identifier> of

the <c declarator> of the <c struct declarator>. Each field name of a structure or union (<c identifier>

of the <c declarator> of a <c struct declarator> of a <c struct declarator list> of a <c struct declaration>

of a <c struct declaration list>) shall be different from every other field name of the same structure or

union (the <c struct declaration list>). A <c struct declarator> that has a <c declarator> that contains

a <c pointer> is a pointer field. A <c struct declarator> is an array field if it has a <c declarator> that

contains one or more index specifications (<left square bracket> <Integer c constant expression>

<right square bracket> list in <c direct declarator>). A <c struct declarator> has a field sort that is the

Sort determined in the same way as determining the Parent-sort-identifier of the Syntype-definition

of a <c type definition> with a typedef (see clause C.1.2), except the <c type specifier> is the <c type

specifier> of the <c specifier qualifier list> of the <c struct declaration> that encloses the <c struct

declarator list> that encloses the <c struct declarator>. As a consequence, it is possible that a <c

declarator> of a <c struct declarator> that contains a <c pointer> or index specification represents

additional anonymous Data-type-definition items. The field sort shall not be Void.

The <c struct declaration list> for a structure S represents (in the Static-operation-signature-set of the

Data-type-definition for S):

a) An Operation-signature for a generic operator named Make with an empty Formal-argument

list and an Operation-result that is the Sort-reference-identifier of the S structure sort, and

the procedure identified by the Operation-signature has a Result-aggregation that is PART.

b) An Operation-signature for a generic operator named Make with a non-empty

Formal-argument list where each item is the Sort-reference-identifier of the corresponding

(in order) field name, and an Operation-result that is the Sort-reference-identifier of the S

structure sort, each formal parameter of the procedure identified by the Operation-signature

has its Parameter-aggregation that is PART, and a Result-aggregation that is PART.

c) For each field, if the field name is fn and the field sort is fs, an Operation-signature for the

SDL-2010 <operation signature>

 fnExtract (S) -> fs;

 for a generic operator where

 Rec. ITU-T Z.104 (04/2016) 93

 fnExtract is a field-extract-name formed from the concatenation of the field name and

"Extract",

 S is an in/out parameter with a PART aggregation kind,

 and the result has the same aggregation kind as the field fn.

NOTE 8  A special syntax is provided as described in clause 12.2.3. To use fnExtract to extract

the value of field fn from structure variable vs in the context of an expression the notation is:

 vs.fn

d) For each field, if the field name is fn and the field sort is fs, an Operation-signature for the

SDL-2010 <operation signature>
 fnModify (S, fs) -> S;

 for a generic operator where

 fnModify is a field-modify-name formed from the concatenation of the field name and

"Modify",

 S is an in/out parameter with a PART aggregation kind,

 fs is an in parameter with the same aggregation kind as the field fn,

 and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

NOTE 9  A special syntax is provided as described in clause 12.3.3.1 modified to use "=" for the

assignment sign. To use fnModify to assign the value fieldValue (a value with the sort of field fn)

to field fn of structure variable vs, the notation is:

 vs.fn = fieldValue;

The <c struct declaration list> for a union sort U represents (in the Operation-signature set of the

Data-type-definition for U):

a) An Operation-signature for a generic operator named Make with an empty Formal-argument

list and an Operation-result that is the Sort-reference-identifier of the U union sort, and the

procedure identified by the Operation-signature has a Result-aggregation that is PART.

b) For a unique field sort with the sort ufs (if there are two or more fields with the same sort

there is one unique field sort, ufs), an Operation-signature for a generic operator

 Make (ufs) -> U;

 for a generic field initialization operator for the leftmost (in the union definition) field with

sort ufs where

 ufs is an in parameter with the aggregation kind PART

 and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

c) For each field, if the field name is fn and the field sort is fs, an Operation-signature for the

SDL-2010 operation signature
 fn (fs) -> U;
 for a generic field association operator where

 fn is a field-associate-name which is the same as the field name,

 fs is an in parameter with the same aggregation kind as the field fn,

 and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

d) For each field, if the field name is fn and the field sort is fs, an Operation-signature for the

SDL-2010 <operation signature>
 fnExtract (U) -> fs;

 for a generic operator where

 fnExtract is a field-extract-name formed from the concatenation of the field name and

"Extract",

 U is an in/out parameter with a PART aggregation kind,

94 Rec. ITU-T Z.104 (04/2016)

 and the result has the same aggregation kind as the field fn.

NOTE 10  A special syntax is provided as described in clause 12.2.3. To use fnExtract to extract

the value of field fn from a choice variable vu in the context of an expression, the notation is:

 vu.fn

e) For each field, if the field name is fn and the field sort is fs, an Operation-signature for the

SDL-2010 <operation signature>
 fnModify (U, fs) -> U;

 for a generic operator where

 fnModify is a field-modify-name formed from the concatenation of the field name and

"Modify",

 U is an in/out parameter with a PART aggregation kind,

 fs is an in parameter with a PART aggregation kind,

 and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

NOTE 11  A special syntax is provided as described in clause 12.3.3.1 modified to use "=" for the

assignment sign. To use fnModify to assign the value of fieldValue (a value with the sort of field

fn) to field fn of a choice variable vu, the notation is:

 vu.fn = fieldValue;

f) For each field, if the field name is fn, an Operation-signature for the SDL-2010 <operation

signature>
 fnPresent (U) -> <<package Predefined>>Boolean;

 for a generic operator where

 fnPresent is a field-present-name formed from the concatenation of the field name and

"Present",

 U is an in/out parameter with an empty <aggregation kind>,

 and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

 Whether fnPresent is visible in a C diagram is implementation dependent.

g) An Operation-signature for a generic operator named PresentExtract based on the

SDL-2010 <operation signature>
 PresentExtract (U)-> AnonPresent;

 where AnonPresent is defined as a literal constructor data type that uses the field names of

the choice as literals as described below,

 U is an in/out parameter with an empty <aggregation kind>,

 and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

 Whether PresentExtract is visible in a C diagram is implementation dependent.

The <c struct or union specifier> for a union type U also represents an additional (anonymous)

Data-type-definition, that for the description above is called AnonPresent, in the context that the

Data-type-definition for U occurs. This is defined with a Literal-signature-set where each field name

of the union U represents a Literal-signature. The order of the literals is the same as the order in which

the field names are specified left to right in the union U. The purpose of this data type is to allow the

operation PresentExtract with a result that corresponds to the field name. The name of this data

type being unknown prevents it being used for other purposes.

 Rec. ITU-T Z.104 (04/2016) 95

C.1.2.3 Enum specifier

Concrete grammar

<c enum specifier> ::=

 enum [<c identifier>]

 <left curly bracket> <c enumerator list> <right curly bracket>

 | enum [<c identifier>]

 <left curly bracket> <c enumerator list> <comma> <right curly bracket>

 | enum <enum data type c identifier>

NOTE 1 – Clause 6.7.2.2 of [b-ISO/IEC 9899].

A <c enum specifier> that has a <left curly bracket> followed by a <c enumerator list> followed by

a <comma> followed by a <right curly bracket> has the same meaning as a <c enum specifier> with

<left curly bracket> followed by the same <c enumerator list> followed by a <right curly bracket>.

A <c enum specifier> that does not have a <c enumerator list> represents an Identifier that identifies

a Value-data-type-definition for an enumerated type.

A <c enum specifier> that has a <c enumerator list> represents a Data-type-definition that is a

Value-data-type-definition for an enumerated type. The <c identifier> before the <left curly bracket>

represents a Name that is the Sort of the Value-data-type-definition. If the <c identifier> is omitted,

the Value-data-type-definition has an anonymous unique Name. The optional Data-type-identifier of

the Value-data-type-definition is omitted. The Procedure-definition-set, Data-type-definition-set and

Syntype-definition-set of the Value-data-type-definition are empty. The Literal-signature-set and

Static-operation-signature-set are derived from <c enumerator list> as described below.

Each Literal-signature has a Result that is the Sort of the Value-data-type-definition.

<c enumerator list> ::=

 <c enumerator>

 | <c enumerator list> <comma> <c enumerator>

NOTE 2 – Clause 6.7.2.2 of [b-ISO/IEC 9899].

The number of items in the <c enumerator list> shall be less than or equal to INT_MAX.

<c enumerator> ::=

 <c enumeration constant>

 | <c enumeration constant> <equals sign> <c constant expression>

NOTE 3 – Clause 6.7.2.2 of [b-ISO/IEC 9899].

The <c constant expression> shall evaluate to a Natural simple expression less than or equal to

INT_MAX.

<c enumeration constant> ::=

 <c identifier>

NOTE 4 – Clause 6.4.4.3 of [b-ISO/IEC 9899].

Each <c enumerator> represents a Literal-signature.

Each Literal-name is unique within the defining scope unit in the abstract syntax even if the

corresponding <c identifier> of the <c enumeration constant> of the <c enumerator> is not unique.

The unique Literal-name is derived from:

a) the <c identifier> of the <c enumeration constant> of the <c enumerator>; plus

b) the Result of the Literal-signature.

The Natural value of the <c constant expression> after an <equals sign> represents the Literal-natural

of the Literal-signature.

Each <c enumeration constant> not followed by an <equals sign> in a <c enumerator list> is given

the lowest possible Natural value for the Literal-natural of the Literal-signature not occurring for

96 Rec. ITU-T Z.104 (04/2016)

any other <c enumeration constant> items of the same <c enumerator list>, considering the

<c enumeration constant> items one by one from left to right.

C.1.2.4 Sizeof data types

As well as representing abstract grammar items described above, a <c type definition> also represents

a synonym definition for the size of the data type as defined below. A synonym definition is a

read-only Variable-definition. The Variable-name is the Name derived from prefixing the <c

identifier> for the data type with "sizeof_" as further described below. The Sort-reference-identifier

is the Sort-reference-identifier for the Integer data type. The Constant-expression is a Literal that is

a Literal-identifier that is an Identifier for the Integer value for the size of the data type.

NOTE – If the data type has an anonymous name the synonym for the data type size is also anonymous.

A <c struct or union specifier> or <c enum specifier> that is not a <c type definition> also represents

a synonym definition for the size of the data type as well as representing a data type definition. The

synonym is named and defined in the same way as <c struct or union specifier> or <c enum specifier>

that is a <c type definition>.

There is only a Variable-definition for the size of a data type, if the data type is defined in a C diagram

and every element of the data type has a defined size. The size of the data types Boolean, Character,

Bit, Octet, NumericChar, PrintableChar, TeletexChar and IA5Char of <<package

Predefined>> have defined sizes and <<package C_Predefined>> defines the corresponding

synonyms: sizeof_Boolean, sizeof_Character, sizeof_Bit, sizeof_Octet,

sizeof_NumericChar, sizeof_PrintableChar, sizeof_TeletexChar and sizeof_IA5Char.

Other data types of <<package Predefined>> such as Integer are unbounded, and although they

can be used in C diagrams the size of these data types and any data type having elements of these

types is undefined and the corresponding synonym Variable-definition for the size does not exist.

If the <c type definition> is a <c type definition> for a C array, the size for the Constant-expression

is the value of the <Integer c constant expression> for the number of array elements multiplied by the

size of the item sort of the array.

If the <c type definition> defines the data type as a syntype for another type (a named data type

identified by a <c identifier> or by <c type keywords>), the Constant-expression is the same as the

Constant-expression for the size of the other type.

If the <c type definition> defines a syntype based on a <c type specifier> that is <c struct or union

specifier> or <c enum specifier>, the Constant-expression is the size of the structure or union or

enumerated type defined by the <c struct or union specifier> or <c enum specifier>.

If the <c type definition> is a <c struct or union specifier> for a structure type with a <c struct

declaration list>, the Constant-expression is the size for the struct, which is implementation dependent

but at least the sum of the sizes of all <c struct declarator> items in the <c struct declaration list>. The

size of a <c struct declarator> in a structure that is not a C array is the size of the Sort of the field sort

(that is, the Sort represented by <c type specifier> of the <c specifier qualifier list> of the <c struct

declaration> that encloses the <c struct declarator list> that encloses the <c struct declarator>). The

size of a <c struct declarator> in a structure that is a C array, is the size of a <c struct declarator> of

the array item sort multiplied by the <Integer c constant expression> for the number of array elements.

If the <c type definition> is a <c struct or union specifier> for a union type with a <c struct declaration

list>, the Constant-expression is the size for the union, which is the maximum of each of the sizes of

all <c struct declarator> items in the <c struct declaration list>. The size of each <c struct declarator>

in a union is the same as the size of the same <c struct declarator> in a structure.

If the <c type definition> is a <c enum specifier>, the Constant-expression is the same as the

Constant-expression for the synonym <<package C_Predefined>>sizeof_Signed_int.

In <<package C_Predefined>> the following data types are defined with synonyms for their size:

 Rec. ITU-T Z.104 (04/2016) 97

Void has size <<package C_Predefined>> sizeof_Void

Signed_char has size <<package C_Predefined>>

sizeof_Signed_char

Unsigned_char has size <<package C_Predefined>>

sizeof_Unsigned_char

Signed_short has size <<package C_Predefined>>

sizeof_Signed_short

Unsigned_short has size <<package C_Predefined>>

sizeof_Unsigned_short

Signed_int has size <<package C_Predefined>>

sizeof_Signed_int

Unsigned_int has size <<package C_Predefined>>

sizeof_Unsigned_int

Signed_long has size <<package C_Predefined>>

sizeof_Signed_long

Unsigned_long has size <<package C_Predefined>>

sizeof_Unsigned_long

Signed_long_long has size <<package C_Predefined>>

sizeof_Signed_long_long

Unsigned_long_long has size <<package C_Predefined>>

sizeof_Unsigned_long_long

Float has size <<package C_Predefined>> sizeof_Float

Double has size <<package C_Predefined>> sizeof_Double

Long_double has size <<package C_Predefined>>

sizeof_Long_double

Star_Void has size <<package C_Predefined>> sizeof_Star_Void

Star_Signed_char has size <<package C_Predefined>>

sizeof_Star_Signed_char

Star_Unsigned_char has size <<package C_Predefined>>

sizeof_Star_Unsigned_char

Star_Signed_short has size <<package C_Predefined>>

sizeof_Star_Signed_short

Star_Unsigned_short has size <<package C_Predefined>>

sizeof_Star_Unsigned_short

Star_Signed_int has size <<package C_Predefined>>

sizeof_Star_Signed_int

Star_Unsigned_int has size <<package C_Predefined>>

sizeof_Star_Unsigned_int

Star_Signed_long has size <<package C_Predefined>>

sizeof_Star_Signed_long

Star_Unsigned_long has size <<package C_Predefined>>

sizeof_Star_Unsigned_long

Star_Signed_long_long has size <<package C_Predefined>>

sizeof_Star_Signed_long_long

Star_Unsigned_long_long has size <<package C_Predefined>>

sizeof_Star_Unsigned_long_long

Star_Float has size <<package C_Predefined>>

sizeof_Star_Float

Star_Double has size <<package C_Predefined>>

sizeof_Star_Double

Star_Long_double has size <<package C_Predefined>>

sizeof_Star_Long_double

Other subtypes of the Star_Type have the same size as Star_void.

98 Rec. ITU-T Z.104 (04/2016)

C.1.3 Use of C variable definitions

Abstract grammar

The Sort-identifier of a Variable-definition shall not represent the Void data type.

Concrete grammar

<variable definition> ::=

 dcl <variables of sort> {, <variables of sort> }* <end>

 | dcl exported <exported variables of sort> {, <exported variables of sort> }* <end>

 | <c declaration>

A <c declaration> shall only be used in a C diagram.

<c declaration> ::=

 <c declaration specifiers> <c init declarator list> <semicolon>

NOTE 1 – Clause 6.7 of [b-ISO/IEC 9899] <c declaration> omitting the static assert alternative and modified

to exclude alternatives used for <c type definition> as an alternative of <data definition>. The declaration

specifiers of <c declaration> are restricted to the alternatives defined by <c type specifier> items that start with

a data type name or specific keywords. Compared with [b-ISO/IEC 9899] it is not allowed to omit the <c init

declarator list>.

A <c declaration> represents a Variable-definition-set in the enclosing scope.

A <c declaration specifiers> identifies a Sort-identifier for a sort used in the Variable-definition for

each <c init declarator> of the <c init declarator list>. This is either the sort of the variable or the

target sort for a pointer or the item sort for a C array, depending on the <c declarator> for <c init

declarator> as described below.

<c declaration specifiers> ::=

 <c type specifier>

 | <c storage class specifier> [<c declaration specifiers>]

 | <c type qualifier> [<c declaration specifiers>]

NOTE 2 – Clause 6.7 of [b-ISO/IEC 9899] excluding function-specifier and alignment-specifier alternative.

The syntax is rewritten so that there is one and only one <c type specifier> (that is, <c declaration specifiers>

is not allowed after <c type specifier>).

If the <c type specifier> is <c type keywords> it identifies a Sort-identifier according to the list given

for the syntax of <c type keywords> above.

If the <c type specifier> is a <data type c identifier> or <c struct or union specifier> with a

<c identifier>, or <c enum specifier> with a <c identifier>, this <c identifier> represents the

Sort-identifier.

If the <c type specifier> is a <c struct or union specifier> without a <c identifier>, or <c enum

specifier> without a <c identifier>, it identifies the Sort-identifier for an anonymous unique identifier

of the inline type definition given by the <c struct or union specifier> or <c enum specifier>.

If the <c type specifier> is a <c struct or union specifier> with a <c struct declaration list> or a

<c enum specifier> with a <c enumerator list>, the <c type specifier> is an inline definition of a data

type (see the grammar for <c type specifier>).

<c storage class specifier> ::=

 extern
 | auto

 | register

NOTE 3 – Clause 6.7.1 of [b-ISO/IEC 9899] excluding typedef (used in <c type definition>), static

and _Thread_local. The variables specified as static are not considered, as they are difficult to map in

SDL-2010 and can be replaced with system or block variables. The keywords auto and register have no

meaning in SDL-2010 and are ignored.

 Rec. ITU-T Z.104 (04/2016) 99

<c type qualifier> ::=

 const
 | restrict

 | volatile

NOTE 4 – Clause 6.7.3 of [b-ISO/IEC 9899] excluding _Atomic. The keywords volatile and restrict have no

meaning in SDL-2010 and are ignored.

The keyword const means the item should be initialized and should not be subsequently changed, but

has no mapping to the abstract grammar and is therefore treated as annotation with respect to the

SDL-2010 semantics. It is permitted for a tool to treat the keyword const as defined in clause 6.7.3

of [b-ISO/IEC 9899].

<c init declarator list> ::=

 <c init declarator>

 | <c init declarator list> <comma> <c init declarator>

NOTE 5 – Clause 6.7 of [b-ISO/IEC 9899].

<c init declarator> ::=

 <c declarator>

 | <c declarator> <equals sign> <c initializer>

NOTE 6 – Clause 6.7 of [b-ISO/IEC 9899].

Each <c init declarator> represents a Variable-definition. The <c identifier> (of the <c declarator> of

the <c init declarator>) represents the Variable-name of the Variable-definition. The

Aggregation-kind of the Variable-definition is PART.

If the <c declarator> of a <c init declarator> contains no <c pointer> items and no index specifications

(<left square bracket> <Integer c constant expression> <right square bracket> list), the

Sort-reference-identifier of the Variable-definition is the Sort-identifier from the <c declaration

specifiers> as described above.

If the <c declarator> of a <c init declarator> contains a <c pointer> or one or more index

specifications, its type is a typed pointer, or the type of a C Array and Sort-reference-identifier of the

Variable-definition is the Identifier of this data type. The data type is derived in the same way as the

Parent-sort-identifier of the Syntype-definition of a <c type definition> with a typedef

(see clause C.1.2), except the <c type specifier> is the <c type specifier> of the <c declaration

specifiers> of the <c declaration> that encloses the <c init declarator list> that encloses the <c init

declarator>. As a consequence, it is possible that a <c declarator> of a <c init declarator> that contains

a <c pointer> or index specification represents additional anonymous Data-type-definition items.

If the <c init declarator> contains a <c initializer>, this represents the optional Constant-expression

of the Variable-definition.

If a <c type qualifier> is const for the <c declaration specifiers> of a <c declaration>, each

Variable-definition represented by the <c declaration> is a read-only variable and shall not be used

for the target of an assignment or otherwise modified. In this case, each <c init declarator> shall

contain a <c initializer> that initializes the variable.

<c initializer> ::=

 <constant c conditional expression>

 | <left curly bracket> <c initializer list> <right curly bracket>

 | <left curly bracket> <c initializer list> <comma> <right curly bracket>

NOTE 7 – Clause 6.7.9 of [b-ISO/IEC 9899].

The trailing <comma> after a <c initializer list> is ignored so this alternative has the same meaning

as the alternative without a <comma>.

<c initializer list> ::=

 <c initializer>

 <c initializer list> <comma> <c initializer>

100 Rec. ITU-T Z.104 (04/2016)

NOTE 8 – Clause 6.7.9 of [b-ISO/IEC 9899] excluding designation items.

A <c initializer> shall only contain a <c initializer list> within curly brackets if the variable is a

structure or a union or an array. In the case of a structure, there shall be a <c initializer> in the

<c initializer list> for every field of the structure and each item shall be compatible with the sort of

the corresponding field. The <c initializer list> represents a call of Make for the structure with

constants represented by the <c initializer> items as actual parameters. In the case of a union, the

<c initializer> represents a call of Make for the union with the constant represented by the

<c initializer> items as the actual parameter. In the case of an array there shall be as many items in

the <c initializer list> as there are elements in the array and the sort of each element shall be the same

as the item sort of the array. The <c initializer list> represents a static evaluation of Modify for the

array with the integer value 0 as the index and the constant represented by the first <c initializer> as

the other 2 parameters. If this is last element of the array, the first parameter of Modify is a static

evaluation of the Make operator for the array with one parameter as a default value for the element

type; otherwise it is a static evaluation of Modify with the index value of the next array element and

the constant represented by the next <c initializer>. Nested evaluations of Modify are repeated until

Modify is evaluated for the last element. For example, in

 enum ABC {A, B, C} a3[3] = {A, B, C};

the <c initializer list> {A, B, C} is evaluated

 Modify(Modify(Modify(Make,C,2),B,1),A,0)

as the Constant-expression for the Variable-definition of a3.

If a field sort or array element sort is itself a structure or array, the <c initializer> for the field or array

element that is a nested <c initializer list> within curly brackets initializes the nested structure fields

or nested array elements.

C.1.4 Use of C expressions

Concrete grammar

<expression> ::=

 <expression0>

 | <range check expression>

 | <c expression>

The alternatives <expression0> and <range check expression> are not valid in diagrams using

C syntax. The alternative <c expression> is only valid in diagrams using C syntax.

<c expression> ::=

 <c assignment expression>

NOTE – Clause 6.5.17 of [b-ISO/IEC 9899] without multiple assignments separated by commas.

C.1.4.1 Assignment expression

Concrete grammar

<c assignment expression> ::=

 <c conditional expression>

 | <c unary expression> <c assignment operator> <c assignment expression>

NOTE 1 – Clause 6.5.16 of [b-ISO/IEC 9899].

The <c unary expression> of a <c assignment expression> is valid if it is

a) a <c postfix expression> that

i) is a <c primary expression> that is <c identifier> for a variable, and has the type of this

variable; or

ii) is a <c expression> in parentheses that is a valid <c unary expression> for a

<c assignment expression>, and has the type of this <c unary expression>; or

 Rec. ITU-T Z.104 (04/2016) 101

iii) is a <c postfix expression> that identifies a C array item (variable, array element or field)

followed by an index specification (<left square bracket> <c expression> <right square

bracket>), and has the element type of the array; or

iv) is a <c postfix expression> that identifies a structure or union item (variable, array

element or field) followed by field selection (<full stop> <c identifier>), and has the type

of the field selected by <c identifier>;

or

b) an <asterisk> (dereference) <c unary operator> followed by a <c cast expression> that is a

<c postfix expression> that is a valid <c unary expression> for a <c assignment expression>,

and <asterisk> (dereference) is defined for the type of the <c unary expression>; or

c) an <asterisk> (dereference) <c unary operator> followed by a <c cast expression> that is a

cast (<left parenthesis> <c type name> <right parenthesis> <c cast expression>), and

<asterisk> (dereference) is defined for the type of the <c type name >.

A <c postfix expression> identifies C array if it:

a) is a <c primary expression> that is <c identifier> for a variable that is a C array, or

b) starts with an inner <c postfix expression> that identifies C array.

<c assignment operator> ::=

 <equals sign>

 | <c multiplication assignment sign>

 | <c division assignment sign>

 | <c remainder assignment sign>

 | <c addition assignment sign>

 | <c subtraction assignment sign>

 | <c shift left assignment sign>

 | <c shift right assignment sign>

 | <c bitwise and assignment sign>

 | <c bitwise excl or assignment sign>

 | <c bitwise incl or assignment sign>

NOTE 2 – Clause 6.5.17 of [b-ISO/IEC 9899].

A <c assignment expression> that is not a <c conditional expression> represents an

Operation-application where the Operator-identifier denotes an Operation-signature for a method of

package C_Predefined or an implicit type for a pointer (a subtype of Star_type of package

C_Predefined). The <c assignment operator> determines the Operation-name of the

Operation-signature (that is, the Operation-name for operators defined by: "=" if the <c assignment

operator> is <equals sign>; "*=" for the <c multiplication assignment sign>; and so on). The type of

the <c unary expression> determines the type that defines the method. For example, if this is

Signed_int the method is defined by Signed_int and Signed_int corresponds to the

Sort-reference-identifier of the first Formal-argument of the Operation-signature. The type of the

inner <c assignment expression> determines the Sort-reference-identifier of the second and last

Formal-argument of the Operation-signature. These items identify at most one Operation-signature,

a method of package C_Predefined or implicit types for pointers. If no Operation-signature is

identified the <c assignment expression> is not valid. The <c assignment expression> has a type

identified by the Sort-reference-identifier of the Operation-result of the Operation-signature.

The <c unary expression> represents the Expression for the first item of the Actual-parameters of the

Operation-application.

The inner <c assignment expression> represents the Expression for the second item of the

Actual-parameters of the Operation-application.

102 Rec. ITU-T Z.104 (04/2016)

C.1.4.2 Conditional expression

Concrete grammar

<c conditional expression> ::=

 <c logical or expression>

 | <c logical or expression> <question mark>

 <c expression> <colon> <c conditional expression>

NOTE – Clause 6.5.15 of [b-ISO/IEC 9899].

<c constant expression> ::=

 <c conditional expression>

A <c conditional expression> containing a <question mark> represents a Conditional-expression

(see clause 12.2.5 of [ITU-T Z.101]). In this case, the sort of the <c logical or expression> shall be

scalar sort, which is defined as one of the following:

a) an integer sort (that is, Char, Signed_char, Unsigned_char, Signed_short,

Unsigned_short, Signed_int, Unsigned_int, Signed_long, Unsigned_long_long,

Integer or the sort of a data type that inherits from one of these); or

b) a floating sort (Float, Double, Long_double, Real or the sort of a data type that inherits

from one of these); or

c) a pointer sort (Star_void, a subtype of Star_void or a subtype of Star_type); or

d) a boolean sort (the Boolean sort or the sort of a data type that inherits from Boolean); or

e) a pid sort.

An integer, floating, boolean sort (other than Boolean) or pid sort <c logical or expression> before

the <question mark> represents the First-operand of a negative ("/=") Equality-expression that is the

Boolean-expression of the Conditional-expression, and the Second-operand of this

Equality-expression is:

a) the value of the sort equivalent to "0" if the sort of the <c logical or expression> is an integer

sort; or

b) the value of the sort equivalent to "0.0" if the sort of the <c logical or expression> is a floating

sort; or

c) the value of the sort equivalent to "false" if the sort of the <c logical or expression> is a

boolean sort; or

d) the Null-literal-signature if the sort of the <c logical or expression> is a pointer sort; or

e) the Null-literal-signature if the sort of the <c logical or expression> is a pid.

If the sort of the <c logical or expression> before the <question mark> is Boolean, the <c logical or

expression> directly represents the Boolean-expression of the Conditional-expression.

The Consequence-expression in the Conditional-expression is represented by the <c expression> in

the <c conditional expression>. The Alternative-expression is represented by the inner <c conditional

expression> after the <colon>.

C.1.4.3 Logical and bitwise operation expressions

For most operators the operator is treated in a similar way to operators in the native SDL-2010 syntax:

that is, the operator is treated as if it were written as a prefix operator or as a quoted operator name

such as "+" applied to the operands.

In the case of the logical operators (<c logical or sign> "||", <c logical and sign> "&&"), in

[b-ISO/IEC 9899] the left-hand operand is evaluated first and the right-hand operand is only evaluated

if necessary. So these both have to be handled as a Conditional-expression.

 Rec. ITU-T Z.104 (04/2016) 103

Concrete grammar

<c logical or expression> ::=

 <c logical and expression>

 | <c logical or expression> <c logical or sign> <c logical and expression>

NOTE 1 – Clause 6.5.14 of [b-ISO/IEC 9899].

A <c logical or expression> before a <c logical or sign> of a <c logical or expression> shall not

represent a pid sort.

A <c logical or expression> containing a <c logical or sign> represents a Conditional-expression. In

this case, the <c logical or expression> represents the Boolean-expression of the

Conditional-expression as described in clause C.1.4.2 for the <c logical or expression> of a

<c conditional expression> containing a <question mark>. The sort and value of the

Consequence-expression is:

a) the value of the sort equivalent to "1" if the sort of the <c logical or expression> is an integer

sort; or

b) the value of the sort equivalent to "1.0" if the sort of the <c logical or expression> is a floating

sort; or

c) the value of the sort equivalent to "true" if the sort of the <c logical or expression> is a

boolean sort or Boolean.

The Alternative-expression of the Conditional-expression is represented by the <c logical and

expression> after the <c logical or sign>.

<c logical and expression> ::=

 <c inclusive or expression>

 | <c logical and expression> <c logical and sign> <c inclusive or expression>

NOTE 2 – Clause 6.5.13 of [b-ISO/IEC 9899].

A <c logical and expression> containing a <c logical and sign> represents a Conditional-expression.

In this case, the <c logical and expression> represents the Boolean-expression of the

Conditional-expression as described in clause C.1.4.2 for the <c logical or expression> of a <c

conditional expression> containing a <question mark>. The Consequence-expression of the

Conditional-expression is represented by the <c inclusive or expression> after the <c logical and

sign>. The sort and value of the Alternative-expression is:

a) the value of the sort equivalent to "0" if the sort of the <c logical and expression> is an integer

sort; or

b) the value of the sort equivalent to "0.0" if the sort of the <c logical and expression> is a

floating sort; or

c) the value of the sort equivalent to "false" if the sort of the <c logical and expression> is a

boolean sort; or

d) the Null-literal-signature, if the sort of the <c logical and expression> is a pid.

<c inclusive or expression> ::=

 <c exclusive or expression>

 | <c inclusive or expression> <vertical line> <c exclusive or expression>

NOTE 3 – Clause 6.5.12 of [b-ISO/IEC 9899].

<c exclusive or expression> ::=

 <c and expression>

 | <c exclusive or expression> <circumflex accent> <c and expression>

NOTE 4 – Clause 6.5.11 of [b-ISO/IEC 9899].

<c and expression> ::=

 <c equality expression>

 | <c and expression> <ampersand> <c equality expression>

104 Rec. ITU-T Z.104 (04/2016)

NOTE 5 – Clause 6.5.10 of [b-ISO/IEC 9899].

A <c inclusive or expression> containing a <vertical line>, <c exclusive or expression> containing a

<circumflex accent> or <c and expression> containing an <ampersand> represents an

Operation-application where the Operator-identifier denotes an Operation-signature for an operator

of package C_Predefined. The infix operator (<vertical line>, <circumflex accent> or

<ampersand>) determines the Operation-name of the Operation-signature (that is, the

Operation-name for operators defined by: "|" for <vertical line>; "^" for <circumflex accent>; "&"

for <ampersand>). The sort of the context of the <c inclusive or expression>, <c exclusive or

expression> or <c and expression> and sorts of the parameters (the Expression items of the

Actual-parameters list) of the operator are used to identify the exact Operation-signature as described

in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no Operation-signature is found that matches the

expression with the infix operator, the expression is not valid. The expression before the infix operator

(<c inclusive or expression> for <vertical line>; <c exclusive or expression> for <circumflex accent>;

<c and expression> for <ampersand>) represents the first Expression of the Actual-parameters list of

the Operation-application. The expression after the infix operator (<c exclusive or expression> for

<vertical line>; <c and expression> for <circumflex accent>; <c equality expression> for

<ampersand>) represents the second (and last) Expression of the Actual-parameters list of the

Operation-application.

C.1.4.4 Equality and relational expressions

Concrete grammar

<c equality expression> ::=

 <c relational expression>

 | <c equality expression> <c equality sign> <c relational expression>

 | <c equality expression> <c inequality sign> <c relational expression>

NOTE 1 – Clause 6.5.9 of [b-ISO/IEC 9899].

A <c equality expression> containing an equality infix operator (<c equality sign> or <c inequality

sign>) represents an Operation-application where the Operator-identifier denotes an

Operation-signature for an operator of package C_Predefined. The equality infix operator

determines the Operation-name of the Operation-signature (that is, the Operation-name for operators

defined by: "==" for <c equality sign>; "!=" for <c inequality sign>). The sort of the context of the

<c equality expression> and sorts of the parameters (the Expression items of the Actual-parameters

list) of the operator are used to identify the exact Operation-signature as described in clauses 6.6 and

12.2.6 of [ITU-T Z.101]. If no Operation-signature is found that matches the expression with the

equality infix operator, the expression is not valid. The <c equality expression> before the equality

infix operator represents the first Expression of the Actual-parameters list of the

Operation-application. The <c relational expression> after the equality infix operator represents the

second (and last) Expression of the Actual-parameters list of the Operation-application.

<c relational expression> ::=

 <c shift expression>

 | <c relational expression> <less than sign> <c shift expression>

 | <c relational expression> <greater than sign> <c shift expression>

 | <c relational expression> <less than or equals sign> <c shift expression>

 | <c relational expression> <greater than or equals sign> <c shift expression>

NOTE 2 – Clause 6.5.8 of [b-ISO/IEC 9899].

A <c relational expression> containing a relational infix operator (<less than sign> or <greater than

sign> or <less than or equals sign> or <greater than or equals sign>) represents an

Operation-application where the Operator-identifier denotes an Operation-signature for an operator

of package C_Predefined. The relational infix operator determines the Operation-name of the

Operation-signature (that is, the Operation-name for operators defined by: "<" for <less than sign>;

">" for <greater than sign>; "<=" for <less than or equals sign>; ">=" for <greater than or equals

 Rec. ITU-T Z.104 (04/2016) 105

sign>). The sort of the context of the <c relational expression> and sorts of the parameters

(the Expression items of the Actual-parameters list) of the operator are used to identify the exact

Operation-signature as described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no

Operation-signature is found that matches the expression with the relational infix operator, the

expression is not valid. The <c relational expression> before the relational infix operator represents

the first Expression of the Actual-parameters list of the Operation-application. The <c shift

expression> after the relational infix operator represents the second (and last) Expression of the

Actual-parameters list of the Operation-application.

C.1.4.5 Bit shift expressions

Concrete grammar

<c shift expression> ::=

 <c additive expression>

 | <c shift expression> <c shift left sign> <c additive expression>

 | <c shift expression> <c shift right sign> <c additive expression>

NOTE – Clause 6.5.7 of [b-ISO/IEC 9899].

A <c shift expression> containing a shift infix operator (<c shift left sign> or <c shift right sign>)

represents an Operation-application where the Operator-identifier denotes an Operation-signature

for an operator of package C_Predefined. The shift infix operator determines the Operation-name

of the Operation-signature (that is, the Operation-name for operators defined by: "<<" for <c shift

left sign>; ">>" for <c shift right sign>). The sort of the context of the <c shift expression> and sorts

of the parameters (the Expression items of the Actual-parameters list) of the operator are used to

identify the exact Operation-signature as described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no

Operation-signature is found that matches the expression with the shift infix operator, the expression

is not valid. The <c shift expression> before the shift infix operator represents the first Expression of

the Actual-parameters list of the Operation-application. The <c additive expression> after the shift

infix operator represents the second (and last) Expression of the Actual-parameters list of the

Operation-application.

C.1.4.6 Binary operation expressions

Concrete grammar

<c additive expression> ::=

 <c multiplicative expression>

 | <c additive expression> <plus sign> <c multiplicative expression>

 | <c additive expression> <hyphen> <c multiplicative expression>

NOTE 1 – Clause 6.5.6 of [b-ISO/IEC 9899].

A <c additive expression> containing an additive infix operator (<plus sign> or <hyphen>) represents

an Operation-application where the Operator-identifier denotes an Operation-signature for an

operator of package C_Predefined. The additive infix operator determines the Operation-name of

the Operation-signature (that is, the Operation-name for operators defined by: "+" for <plus sign>;

"-" for <hyphen>). The sort of the context of the <c additive expression> and sorts of the parameters

(the Expression items of the Actual-parameters list) of the operator are used to identify the exact

Operation-signature as described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no Operation-

signature is found that matches the expression with the additive infix operator, the expression is not

valid. The <c additive expression> before the additive infix operator represents the first Expression

of the Actual-parameters list of the Operation-application. The <c multiplicative expression> after

the additive infix operator represents the second (and last) Expression of the Actual-parameters list

of the Operation-application.

106 Rec. ITU-T Z.104 (04/2016)

<c multiplicative expression> ::=

 <c cast expression>

 | <c multiplicative expression> <asterisk> <c cast expression>

 | <c multiplicative expression> <solidus> <c cast expression>

 | <c multiplicative expression> <percent sign> <c cast expression>

NOTE 2 – Clause 6.5.5 of [b-ISO/IEC 9899].

A <c multiplicative expression> containing a multiplicative infix operator (<asterisk> or <solidus>

or <percent sign>) represents an Operation-application where the Operator-identifier denotes an

Operation-signature for an operator of package C_Predefined. The multiplicative infix operator

determines the Operation-name of the Operation-signature (that is, the Operation-name for operators

defined by: "*" for <asterisk>; "/" for <solidus>; "%" for <percent sign>). The sort of the context of

the <c multiplicative expression> and sorts of the parameters (the Expression items of the

Actual-parameters list) of the operator are used to identify the exact Operation-signature as described

in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no Operation-signature is found that matches the

expression with the multiplicative infix operator, the expression is not valid. The <c multiplicative

expression> before the multiplicative infix operator represents the first Expression of the

Actual-parameters list of the Operation-application. The <c cast expression> after the multiplicative

infix operator represents the second (and last) Expression of the Actual-parameters list of the

Operation-application.

C.1.4.7 Cast expressions

Concrete grammar

<c cast expression> ::=

 <c unary expression>

 | <left parenthesis> <c type name> <right parenthesis> <c cast expression>

NOTE 1 – Clause 6.5.4 of [b-ISO/IEC 9899].

<c type name> ::=

 <c specifier qualifier list>

NOTE 2 – Clause 6.7.7 of [b-ISO/IEC 9899] without the abstract declarator suffix.

The representation of a <c cast expression> without a parenthesized <c type name> is given by the

representation of the <c unary expression>. In the following text a <c cast expression> that contains

a parenthesized <c type name> is casting expression, and <c cast expression> after the parenthesized

<c type name> in a <c cast expression> is a casted expression.

The parenthesized <c type name> in a casting expression shall identify a C integer sort or a C floating

sort or a C boolean sort or Star_void or a subtype of Star_type. This sort is the casting sort.

The sort of the casted expression (the casted sort) shall be the sort of <<package Predefined>>

Integer or a C integer sort or a C boolean sort or Star_void or a subtype of Star_type.

The casting expression represents the Operator-application with Operator-identifier of the operator

of the data type for the casting sort to convert a <<package Predefined>> Integer value to a value

of the casting sort. For example, if <c type name> is short int the operator is to_Signed_short of

the data type Signed_short; if <c type name> is Star_Unsigned_long the operator is

Integer_to_Star_Unsigned_short of the data type Star_Unsigned_long; and if the <c type

name> is double the operator is Integer_to_Float of the data type Float. The Actual-parameters

list of the Operator-application has one Expression.

If the casted sort is <<package Predefined>> Integer sort, the Expression of the

Actual-parameters list of the Operator-application is represented by the casted expression.

Otherwise, Expression of the Actual-parameters list of the Operator-application is represented by

another Operator-application to convert the value of the casted expression to the <<package

Predefined>> Integer sort. The Actual-parameters list of this Operator-application has one

 Rec. ITU-T Z.104 (04/2016) 107

Expression of the casted sort. For a casted sort that is a C integer sort or C boolean sort, the operator

is the num operator of the type of the casted sort. For a casted sort that is Star_void, the operator is

the Star_void_to_Integer operator of the type Star_void. For a casted sort that is a subtype of

Star_type, the operator is renamed Star_type_to_Integer operator of the subtype of Star_type

(for example, Star_Unsigned_int_to_Integer for the type Star_Unsigned_int). The Expression

of the Actual-parameters list of the Operator-application (to convert to the <<package

Predefined>> Integer sort) is represented by the casted expression.

C.1.4.8 Unary operation expression

Concrete grammar

<c unary expression> ::=

 <c postfix expression>

 | <c increment operator> <c unary expression>

 | <c decrement operator> <c unary expression>

 | <c unary operator> <c cast expression>

 | sizeof <c unary expression>

 | sizeof <left parenthesis> <c type name> <right parenthesis>

NOTE 1 – Clause 6.5.3 of [b-ISO/IEC 9899] excluding the _Alignof alternative.

<c unary operator> ::=

 <ampersand>

 | <asterisk>

 | <plus sign>

 | <hyphen>

 | <tilde>

 | <exclamation mark>

NOTE 2 – Clause 6.5.3 of [b-ISO/IEC 9899].

A <c unary expression> containing a <c increment operator> or <c decrement operator> represents

an Operation-application where the Operator-identifier denotes an Operation-signature for an

operator of package C_Predefined. The <c increment operator> or <c decrement operator>

determines the Operation-name of the Operation-signature (that is, the Operation-name for operators

defined by: "++" for <c increment operator>; "--" for <c decrement operator>). The sort of the context

of the <c unary expression> and sort of the parameter (the Expression item of the Actual-parameters

list) of the operator are used to identify the exact Operation-signature as described in clauses 6.6 and

12.2.6 of [ITU-T Z.101]. If no Operation-signature is found that matches the expression with the <c

increment operator> or <c decrement operator>, the expression is not valid. The <c unary expression>

after the <c increment operator> or <c decrement operator> represents the Expression of the

Actual-parameters list of the Operation-application.

A <c unary expression> containing a <c unary operator> represents an Operation-application where

the Operator-identifier denotes an Operation-signature for an operator of package C_Predefined.

The <c unary operator> determines the Operation-name of the Operation-signature (that is, the

Operation-name for operators defined by: "&" for <ampersand>; "*" for <asterisk>; "+" for <plus

sign>; "-" for <hyphen>; "~" for <tilde>; "!" for <exclamation mark>). The sort of the context of the

<c unary expression> and sort of the parameter (the Expression item of the Actual-parameters list)

of the operator are used to identify the exact Operation-signature as described in clauses 6.6 and

12.2.6 of [ITU-T Z.101]. If no Operation-signature is found that matches the expression with the <c

unary operator>, the expression is not valid. The <c cast expression> after the <c unary operator>

represents the Expression of the Actual-parameters list of the Operation-application.

A <c unary expression> containing sizeof followed by a <c unary expression> represents an

Expression that is a Variable_access for the sizeof_ synonym for the data type of the sort of the

<c unary expression>. For example, if the sort is Signed_long, the <c unary expression> represents

a Variable_access for the sizeof_Signed_long.

108 Rec. ITU-T Z.104 (04/2016)

A <c unary expression> containing sizeof followed by a parenthesized <c type name> represents an

Expression that is a Variable_access for the sizeof_ synonym for the data type of the <c type name>.

For example, if the <c type name> is signed long, the <c unary expression> represents a

Variable_access for the sizeof_Signed_long.

C.1.4.9 Postfix expression

Concrete grammar

<c postfix expression> ::=

 <c primary expression>

 | <c call expression>

 | <c postfix expression> <left square bracket> <c expression> <right square bracket>

 | <c postfix expression> <full stop> <c identifier>

 | <c postfix expression> <c pointer operator> <c identifier>

 | <c postfix expression> <c increment operator>

 | <c postfix expression> <c decrement operator>

 | <left parenthesis> <c type name> <right parenthesis>

 <left curly bracket> <c initializer list> <right curly bracket>

 | <left parenthesis> <c type name> <right parenthesis>

 <left curly bracket> <c initializer list> <comma> <right curly bracket>

NOTE 1 – Clause 6.5.2 of [b-ISO/IEC 9899] excluding the alternative with a postfix-expression followed by

a parenthesized argument-expression-list restricted to <c call expression>.

A <c postfix expression> before a square bracketed <c expression> or a <full stop> or a <c increment

operator> or a <c decrement operator> shall not be a <c primary expression> that is a <c constant>

or a <c string literal>.

A <c postfix expression> containing an additive postfix operator (<c increment operator> or

<c decrement operator>) represents an Operation-application where the Operator-identifier denotes

an Operation-signature for an operator of package C_Predefined. The additive postfix operator

determines the Operation-name of the Operation-signature (that is, the Operation-name for operators

defined by: postfix_inc for <c increment operator>; postfix_dec for <c decrement operator>).

The sort of the context of the <c multiplicative expression> and sorts of the parameters

(the Expression items of the Actual-parameters list) of the operator are used to identify the exact

Operation-signature as described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no

Operation-signature is found that matches the expression with the multiplicative infix operator, the

expression is not valid. The <c postfix expression> before the additive postfix operator represents the

Expression of the Actual-parameters list of the Operation-application.

A <c postfix expression> that starts with a parenthesized <c type name> (without or with a <comma>

after the <c initializer list>) is a compound literal and shall not be followed by a <c increment

operator> or <c decrement operator>. The compound literal represents the static evaluation of the

nested calls of the operators as described in clause C.1.3 and the <c postfix expression> represents an

Operator-application for calling outermost Modify operator.

<c call expression> ::=

 <c identifier> <left parenthesis> [<c argument expression list>] <right parenthesis>

The <c identifier> in a <c call expression> shall uniquely identify either a Procedure-identifier or an

Operation-identifier. In the context of a <c postfix expression> procedures that do not have a Result

are excluded. The Procedure-identifier or Operation-identifier is determined using the name of the

<c identifier>, the sorts of the argument list and the sort of the context of the <c call expression> as

described in clause 12.2.6 of [ITU-T Z.101]. If more than one procedure or operation is identified,

the <c call expression> is invalid. The <c call expression> represents the Call-node if it is a <c call

expression>; otherwise the <c call expression> represents Value-returning-call-node or

Operation-application of the identified procedure or operation.

 Rec. ITU-T Z.104 (04/2016) 109

<c argument expression list> ::=

 <c assignment expression>

 | <c argument expression list> <comma> <c assignment expression>

NOTE 2 – Clause 6.5.2 of [b-ISO/IEC 9899].

Each <c assignment expression> in the <c argument expression list> represents an Expression in the

Actual-parameters of the Call-node or Value-returning-call-node or Operation-application.

Model

A <c postfix expression> followed by a <c expression> between square brackets is derived concrete

syntax for:
 Extract (<c postfix expression> , <c assignment expression>)

treated as a <c call expression> where the <c argument expression list> is the <c postfix expression>

followed by the <c expression>. If this <c postfix expression> is also a <c postfix expression>

followed by a <c expression> between square brackets, this is similarly derived concrete syntax. For

example, a[i][j] becomes Extract(Extract(a,i),j). The abstract syntax is determined from the

derived concrete expression.

A <field primary> is derived concrete syntax for:
 field-extract-name (<primary>)

where the field-extract-name is formed from the concatenation of the field name and "Extract" in

that order. The abstract syntax is determined from this concrete expression according to clause 12.2.1.

A <c postfix expression> followed by a <full stop> and a <c identifier> is derived concrete syntax

for:
 field-extract-name (<c postfix expression>)

where the field-extract-name is formed from the concatenation of the field name identified by the <c

identifier> and "Extract" in that order. The abstract syntax is determined from the derived concrete

expression.

A <c postfix expression> followed by <c pointer operator> {->) and a <c identifier> is transformed

to the dereference operator (*) applied to the <c postfix expression> followed by a field extraction,

so that it is derived concrete syntax for:
 field-extract-name ("*"(<c postfix expression>))

where the field-extract-name is formed from the concatenation of the field name and "Extract" in

that order. The field name given by <c identifier> shall be a field for the structure or union pointed at

by the <c postfix expression>. The abstract syntax is determined from this concrete expression.

NOTE 3 – Expression struct_or_union_pointer->field is the same as

(*struct_or_union_pointer).field.

C.1.4.10 Primary expression

Concrete grammar

<c primary expression> ::=

 <c identifier>

 | <c constant>

 | <c string literal>

 | <left parenthesis> <c expression> <right parenthesis>

NOTE 1 – Clause 6.5.1 of [b-ISO/IEC 9899] excluding generic selection.

NOTE 2 – The lexical rules in clause C.1.1 describe binding to abstract grammar for <c identifier>

(see clause C.1.1.6), <c constant> (see clause C.1.1.4) and <c string literal> (see clause C.1.1.5).

A <c identifier> of a <c primary expression> is a variable access or a call of an operation (that has no

parameters) or a call of a value-returning procedure (that has no parameters) or the literal

110 Rec. ITU-T Z.104 (04/2016)

(enumeration constant) of an enumerated type. If it is not possible to bind the <c identifier> to exactly

one of these items, the <c primary expression> is invalid.

A c primary expression> represents an Expression that is either a Constant-expression or

Active-expression.

If the <c identifier> is bound to the Variable-name of a Variable-definition, the <c identifier>

represents an Active-expression that is a Variable-access of the identified variable.

If the <c identifier> is bound to the Operation-name of an Operation-signature, the <c identifier>

represents an Active-expression that is an Operation-application of the identified operation.

If the <c identifier> is bound to the Procedure-name of a Procedure-definition, the <c identifier>

represents an Active-expression that is a Value-returning-call-node of the identified procedure.

If the <c identifier> is bound to the Identifier for the Literal-signature for an enumeration, the

<c identifier> represents a Constant-expression for the identified Literal.

A <c string literal> of a <c primary expression> represents an Active-expression that is a

Variable-access for the <<package Predefined>> Star_Unsigned_char synonym of the <c string

literal> as defined in clause C.1.1.5.

A parenthesized <c expression> of a <c primary expression> represents the Expression represented

by the <c expression>.

<c constant> ::=

 <c integer constant>

 | <real name>

 | <c character constant>

NOTE 3 – Clause 6.4.4 of [b-ISO/IEC 9899] but using <real name> for a floating constant and excluding

enumeration constant, because <c identifier> covers this.

A <c integer constant> of a <c constant> represents a Constant-expression that is a <<package

Predefined>> Integer Literal for the Integer value as in clause C.1.1.2.

A <real name> of a <c constant> represents a Constant-expression that is a <<package

Predefined>> Real Literal for the Real value of the integer as determined by clause 14.7.1.

A <c character constant> represents a <<package Predefined type Unsigned_char>>

Constant-expression that is the Operation-application defined in clause C.1.1.4.

C.1.5 Use of C statements

Statements are allowed in task bodies and in compound statements. A compound statement is itself a

statement and the native SDL-2010 compound statement is extended to include C type definitions so

that it matches the compound statement of clause 6.8 of [b-ISO/IEC 9899].

A statement is either a terminating statement that transfers the thread of control, or otherwise a

non-terminating statement. In a C diagram a terminating statement or non-terminating statement is

always a C statement (which includes the extended compound statement).

C.1.5.1 Compound statement

Abstract grammar

Compound-node :: Connector-name

 Data-type-definition-set

 Variable-definition-set

 Init-graph-node*

 While-graph-node

 Transition

 Step-graph-node*

 Rec. ITU-T Z.104 (04/2016) 111

Compound-node is extended compared with clause 11.14.1 of [ITU-T Z.102] to include a

Data-type-definition-set.

Concrete grammar

<compound statement> ::=

 [<connector name> :] [<comment body>]

 <left curly bracket>

 { <c type definition> <end> }*

 [<variable definitions> <end>]

 [<statements>] <end>*

 <right curly bracket>

The syntax of <compound statement> is extended compared with clause 11.14.1 of [ITU-T Z.102] to

allow <c type definition> items each of which represents an element of the Data-type-definition-set.

A <comment body> of a <compound statement> is not allowed in C diagrams. A <c type definition>

of a <compound statement> is only allowed in C diagrams.

Semantics

A Compound-node is a scope unit for each Data-type-definition of the Compound-node.

C.1.5.2 Non-terminating and terminating statement

<non terminating statement> ::=

 <statement>

 | <compound statement>

 | <loop statement>

 | <decision statement>

 | <c labeled statement>

 | <c expression statement>

 | <c selection statement>

 | <c iteration statement>

In <non terminating statement> the alternatives <statement>, <loop statement> and <decision

statement> are not allowed in C diagrams. In <non terminating statement> the alternatives <c labeled

statement>, <c expression statement>, <c selection statement> and <c iteration statement> are only

allowed in C diagrams.

<terminating statement> ::=

 <return statement>

 | <stop statement>

 | <break statement>

 | <c jump statement>

In <terminating statement> the alternatives <return statement>, <stop statement> and <break

statement> are not allowed in C diagrams. The alternative <c jump statement> of <terminating

statement> is only allowed in C diagrams.

C.1.5.3 Labeled statement

<c labeled statement> ::=

 <connector name> <colon> <c statement>

 | case <c constant expression> <colon> <c statement>

 | default <colon> <c statement>

NOTE – Clause 6.8.1 of [b-ISO/IEC 9899] with <connector name> instead of identifier before the colon.

A <c statement> with a <connector name> represents the Compound-statement where the <connector

name> represents the Connector-name, the <c statement> represents the Transition and the

Variable-definition-set, Init-graph-node list, While-graph-node Expression list and Step-graph-node

list are all empty.

112 Rec. ITU-T Z.104 (04/2016)

A case <c constant expression> or default label shall appear only as part of the <c statement> of a

switch <c selection> statement, and the binding to the abstract grammar for these is described in

clause C.1.5.5. The <c constant expression> of each case label shall have an integer sort. No two of

the case <c constant expression> items in the same switch <c selection> shall have the same value

except any case <c constant expression> item for a switch <c selection> within the switch

<c selection>. There shall be at most one default label for a switch <c selection> except a default

label for a switch <c selection> within the switch <c selection>.

C.1.5.4 C statement

<c statement> ::=

 <c labeled statement>

 | <compound statement>

 | <c expression statement>

 | <c selection statement>

 | <c iteration statement>

 | <c jump statement>

NOTE 1 – Clause 6.8 of [b-ISO/IEC 9899] with <compound statement> for the C compound statement. <c

jump statement> is a <terminating statement>; the other statements are non-terminating.

<c expression statement> ::=

 [<c assignment statement> | <c call expression>] <semicolon>

NOTE 2 – Clause 6.8.4 of [b-ISO/IEC 9899] but with expression changed to [<c assignment statement> | <c

call expression>] so that <c expression> is restricted to a <c assignment expression> with a <c assignment

operator> or a <c postfix expression> that is <c identifier> <left parenthesis> [<c argument list>] <right

parenthesis> (a <c call expression>).

<c assignment statement> ::=

 <c postfix expression> <c assignment operator> <c assignment expression>

The <c postfix expression> of a <c assignment statement> shall start with a <c primary> that is a

<c identifier> for a variable and shall not contain a <c increment operator> or

<c decrement operator>.

A <c assignment statement> represents an Assignment or a Call-node, as further described below.

A <c assignment statement> where the <c assignment operator> is <equals> represents an Assignment

(of a Task-node of a Graph-node of a Transition) as further described below. Otherwise the <c

assignment statement> represents a Call-node. In this case the <c assignment operator>, the sort of

the <c postfix expression> and sort of the <c assignment expression> identify an Operation-signature

in the way described in clause C.1.4.1 (where the <c unary expression> in clause C.1.4.1 is the <c

postfix expression> of the <c assignment statement>). If no such method exists, the <c assignment

statement> is invalid. The Call-node invokes Procedure-definition identified by the Procedure-

identifier of the Operation-signature. The <c postfix expression> and <c assignment expression>

represent the first and second Expression of the Actual-parameters list of the Call-node. If the <c

postfix expression> contains <left square bracket> <c expression> <left square bracket> (an indexed

variable) or <full stop> <c identifier> (a field variable), this is an extended variable used as the first

parameter of the procedure.

The <c identifier> that starts the <c postfix expression> of a <c assignment statement> for an

Assignment represents the Variable-identifier of the Assignment. If the <c postfix expression>

contains <left square bracket> <c expression> <left square bracket> (an indexed variable) or <full

stop> <c identifier> (a field variable), this is an extended variable and the Expression that the

<c assignment expression> represents is derived in the same way as for an SDL-2010 extended

variable as described in clause 12.3.3.1 of [ITU-T Z.101]. Otherwise the <c assignment expression>

represents the Expression of the Assignment. However, if the sort of the Expression is not the same

as the sort of the Variable-identifier in the following cases this Expression is the Expression of an

Actual-parameters list of an Operation-application for an operator used to convert the right-hand side

 Rec. ITU-T Z.104 (04/2016) 113

to the type of the left-hand side as described below (or for a Boolean <c assignment expression> a

Boolean-expression).

The Expression of the Assignment is:

a) If the type of the Variable-identifier is <<package Predefined>> Integer, and the type of

the right-hand side Expression is:

i) a C integer type or a C boolean type, an Operation-application for the num operator for

the C type with the Expression from the <c assignment expression> as the

Actual-parameters list of the num operator;

ii) a C floating type, an Operation-application for the fix operator for <<package

Predefined>> Real with Operation-application of the to_Real operator of the C

floating type as the Expression of the Actual-parameters list of the fix operator. The

Expression from the <c assignment expression> is the Actual-parameters list of the

to_Real operator;

iii) <<package C_Predefined>> Star_void, an Operation-application for the

Star_void_to_Integer operator of Star_void with the Expression from the

<c assignment expression> as the Actual-parameters list of the Star_void_to_Integer

operator;

iv) a subtype of <<package C_Predefined>> Star_type, an Operation-application for the

renamed Star_type_to_Integer operator of the subtype of Star_type with the

Expression from the <c assignment expression> as the Actual-parameters list of the

renamed Star_type_to_Integer operator;

v) <<package Predefined>> Real, an Operation-application for the fix operator for

<<package Predefined>> Real with the Expression from the <c assignment

expression> as the Actual-parameters list of the fix operator;

vi) <<package Predefined>> Boolean, a Conditional-expression with a

Boolean-expression that is the Expression from the <c assignment expression>, a

Consequence-expression that is the <<package Predefined>> Integer value 1, and a

Consequence-expression that is the <<package Predefined>> Integer value 0.

b) If the type of the Variable-identifier is a C integer type, and the type of the right-hand side

Expression is:

i) <<package Predefined>> Integer, an Operation-application for the integer

operator of the type Integern renamed for the C integer type with the Expression from

the <c assignment expression> as the Actual-parameters list of the operator;

ii) a C integer type or a C boolean type or <<package C_Predefined>> Star_void or a

subtype of <<package C_Predefined>> Star_type or <<package Predefined>>

Real, an Operation-application for the integer operator of the type Integern renamed

for the left-hand side C integer type with a <<package Predefined>> Integer

Expression as in a) above as the Actual-parameters list of the operator.

c) If the type of the Variable-identifier is a C integer type, and the type of the right-hand side

Expression is:

i) <<package Predefined>> Integer, an Operation-application for the integer

operator of the type Integern renamed for the C integer type with the Expression from

the <c assignment expression> as the Actual-parameters list of the operator;

ii) a C integer type or a C boolean type or <<package C_Predefined>> Star_void or a

subtype of <<package C_Predefined>> Star_type or <<package Predefined>>

Real, an Operation-application for the integer operator of the type Integern renamed

114 Rec. ITU-T Z.104 (04/2016)

for the left-hand side C integer type with a <<package Predefined>> Integer

Expression as in a) above as the Actual-parameters list of the operator.

d) If the type of the Variable-identifier is a C floating type, and the type of the right-hand side

Expression is:

i) <<package Predefined>> Integer, an Operation-application for the

Integer_to_Float operator for <<package C_Predefined>> Float with the

Expression from the <c assignment expression> as the Actual-parameters list of the

operator;

ii) a C integer type or a C boolean type or <<package C_Predefined>> Star_void or a

subtype of <<package C_Predefined>> Star_type or <<package Predefined>>

Real, an Operation-application for the Integer_to_Float operator for <<package

C_Predefined>> Float with a <<package Predefined>> Integer Expression as in

a) above as the Actual-parameters list of the operator.

e) If the type of the Variable-identifier is <<package C_Predefined>> Star_void, and the

type of the right-hand side Expression is:

i) <<package Predefined>> Integer, an Operation-application for the

Integer_to_Star_void operator for <<package C_Predefined>> Star_void with

the Expression from the <c assignment expression> as the Actual-parameters list of the

operator;

ii) a C integer type or a C boolean type or a subtype of <<package C_Predefined>>

Star_type or <<package Predefined>> Real, an Operation-application for the

Integer_to_Star_void operator for <<package C_Predefined>> Star_void with a

<<package Predefined>> Integer Expression as in a) above as the Actual-parameters

list of the operator.

f) If the type of the Variable-identifier is a subtype of <<package C_Predefined>>

Star_type, and the type of the right-hand side Expression is:

i) <<package Predefined>> Integer, an Operation-application for the renamed

Integer_to_Star_type operator for the subtype of <<package C_Predefined>>

Star_type with the Expression from the <c assignment expression> as the

Actual-parameters list of the operator;

ii) a C integer type or a C boolean type or <<package C_Predefined>> Star_void or a

subtype of <<package C_Predefined>> Star_type or <<package Predefined>>

Real, an Operation-application for the renamed Integer_to_Star_type operator for

the subtype of <<package C_Predefined>> Star_type with a <<package

Predefined>> Integer Expression as in a) above as the Actual-parameters list of the

operator.

g) If the type of the Variable-identifier is the type of <<package Predefined>> Charstring,

and the type of the right-hand side Expression is <<package C_Predefined>>

Star_Unsigned_char, an Operation-application of the <<package C_Predefined type

Star_Unsigned_char>> Star_Unsigned_char_to_Charstring operator with the

Expression from the <c assignment expression> as the Actual-parameters list of the operator.

C.1.5.5 C selection statement

Concrete grammar

<c selection statement> ::=

 if <left parenthesis> <c expression> <right parenthesis> <c statement>

 | if <left parenthesis> <c expression> <right parenthesis> <c statement> else <c statement>

 | switch <left parenthesis> <c expression> <right parenthesis> <c statement>

 Rec. ITU-T Z.104 (04/2016) 115

NOTE – Clause 6.8.4 of [b-ISO/IEC 9899].

The <c expression> shall be:

a) an integer sort (that is, Char, Signed_char, Unsigned_char, Signed_short,

Unsigned_short, Signed_int, Unsigned_int, Signed_long, Unsigned_long_long,

Signed_long, Unsigned_long_long, Integer or the sort of a data type that inherits from

one of these); or

b) a floating sort (Float, Double, Long_double, Real or the sort of a data type that inherits

from one of these); or

c) provided the <c expression> is not in a switch <c selection statement>, a pointer sort

(Star_void, a subtype of Star_void or a subtype of Star_type); or

d) a boolean sort (the Boolean sort or the sort of a data type that inherits from Boolean); or

e) a pid sort.

A <c selection statement> represents a Compound-node. A newly created anonymous name

represents the Connector-name. The Variable-definition-set, Init-graph-node list, Expression list of

the While-graph-node, and Step-graph-node list of the Compound-node are empty. There is no

Finalization-node in the While-graph-node. The Transition is an empty Graph-node list followed by

a Decision-node and in the case of a switch <c selection statement> a set of case Free-action items

that follow the Decision-node. The <c expression> of the <c selection statement> represents the

Decision-question of the Decision-body of the Decision-node. The Decision-answer-set of the

Decision-body of the Decision-node is represented by the <c statement> after the <right parenthesis>

in the <c selection statement> as described below.

For an if <c selection statement>, the Decision-answer-set has only one element and the

<c statement> after the <right parenthesis> represents the Transition of the Decision-answer of the

Decision-answer-set. The Range-condition for this Decision-answer is represented by an Open-range

where the Operator-identifier identifies the operator of a negative ("/=") Equality-expression of the

sort of <c expression>, the <c expression> represents the First-operand of the Equality-expression

and the Second-operand of the Equality-expression is:

a) the value of the sort equivalent to "0" if the sort of the <c logical or expression> is an integer

sort; or

b) the value of the sort equivalent to "0.0" if the sort of the <c logical or expression> is a floating

sort; or

c) the value of the sort equivalent to "false" if the sort of the <c logical or expression> is a

boolean sort; or

d) the Null-literal-signature if the sort of the <c logical or expression> is a pointer sort; or

e) the Null-literal-signature if the sort of the <c logical or expression> is a pid.

If there is an else in an if <c selection statement>, the <c statement> after the else represents the

Transition of the optional Else-answer of the Decision-body of the Decision-node.

For a switch <c selection statement>, the <c statement> after the <right parenthesis> represents the

Decision-answer-set and also represents the set of Free-action items following the Decision-node.

Each case <c labeled statement> within this <c statement> (and not within an inner switch

<c selection statement>) represents a Decision-answer. The Range-condition for this

Decision-answer is represented by the <c constant expression> of the case <c labeled statement>.

The Transition for this Decision-answer is a Join-node to an implicit anonymous Connector-name

for the Free-action represented by the <c statement> of the case <c labeled statement>. The

Free-action consists of this Connector-name followed by the Transition represented by the

<c statement> of the case <c labeled statement>. If this <c statement> represents a Graph-node list

without a Terminator or Decision-node, a Join-node to the Free-action for the following case

116 Rec. ITU-T Z.104 (04/2016)

<c labeled statement> (or default <c labeled statement>) is inserted. If there is no such following <c

labeled statement>, a Break-node for the Compound-statement is inserted. A default <c labeled

statement> (within the <c statement> after the <right parenthesis> of a switch <c selection statement>

and not within an inner switch <c selection statement>) represents the optional Else-answer of the

Decision-body of the Decision-node. The Transition for this Else-answer is a Join-node to an implicit

anonymous Connector-name for the Free-action represented by the <c statement> of the default <c

labeled statement>. The Free-action consists of this Connector-name followed by the Transition

represented by the <c statement> of the default <c labeled statement>. The Transition is completed

if necessary by a Join-node or Break-node in the same way as for a case <c labeled statement>.

C.1.5.6 C iteration and jump statements

Concrete grammar

<c iteration statement> ::=

 while <left parenthesis> <c expression> <right parenthesis> <c statement>

 | do <c statement> while

 <left parenthesis> <c expression> <right parenthesis> <semicolon>

 | for <left parenthesis>

 [<c expression> { <comma> <c expression> }*] <semicolon>

 [<c expression>] <semicolon>

 [<c expression> { <comma> <c expression> }*]

 <right parenthesis> <c statement>

NOTE 1 – Clause 6.8.5 of [b-ISO/IEC 9899] with for syntax modified to allow multiple expressions separated

commas because multiple expressions separated by commas are excluded from <c expression>. The for

alternative with <c declaration> is excluded.

A <c iteration statement> represents a Compound-node. The Connector-name of the Compound-node

is a newly created anonymous name. The Variable-definition-set of the Compound-node is empty.

The Transition of the Compound-node is the Graph-node represented by the <c statement> of the <c

iteration statement> followed by a Continue-node with the Connector-name of the Compound-node.

The Finalization-node of the While-graph-node is absent.

In a while <c iteration statement> the Init-graph-node list and Step-graph-node list are both empty.

The parenthesized <c expression> after while shall be an expression of a scalar sort

(see clause C.1.4.2). This scalar sort expression represents the Boolean Expression that forms the

Expression list of the While-graph-node in the same way as the Boolean-expression of the

Conditional-expression is represented in clause C.1.4.2. If the parenthesized <c expression> after

while is a boolean expression it represents the Boolean Expression that forms the Expression list of

the While-graph-node.

In a do <c iteration statement> the Init-graph-node list is empty and the While-graph-node has an

empty Expression list. The parenthesized <c expression> after while shall be an expression of a scalar

sort (see clause C.1.4.2). This scalar expression represents Boolean Expression in the same way as

the Boolean-expression of the Conditional-expression is represented in clause C.1.4.2. The

Step-graph-node list is a single Decision-node with the Boolean Expression as the Decision-question

of the Decision-body, and the Decision-answer-set is a single Decision-answer with the

Range-condition represented by the Boolean value false. The Transition of this Decision-answer is

a Break-node with the Connector-name being the anonymous name of the Compound-node for the

<c iteration statement>.

The list of <c expression> items before the <semicolon> of a for <c iteration statement> form an

Expression list for the Init-graph-node list in the order of the <c expression> items left to right. Each

Expression in the list is the Expression of an Assignment-node that is a Task-node in the Init-graph-

node list of the Compound-node.

 Rec. ITU-T Z.104 (04/2016) 117

The <c expression> between the first and second <semicolon> of a for <c iteration statement> shall

be an expression of a scalar sort and represents the While-graph-node of the Compound-node in the

same way as described above for <c expression> of a while <c iteration statement>.

The list of <c expression> items after the second <semicolon> of a for <c iteration statement> form

an Expression list for the Step-graph-node item in the order of the <c expression> items left to right.

Each Expression in the list is the Expression of an Assignment-node that is a Task-node in the

Step-graph-node list of the Compound-node.

Each Assignment-node that is a Task-node in an Init-graph-node or a Step-graph-node list has an

anonymous implicit variable identified by its Variable-identifier of the same sort as the Expression

of the Assignment-node.

<c jump statement> ::=

 goto <c identifier> <semicolon>

 | break <semicolon>

 | continue <semicolon>

 | return [<c expression>] <semicolon>

NOTE 2 – Clause 6.8.6 of [b-ISO/IEC 9899].

A goto <c jump statement> represents a Join-node with the Connector-name represented by the

<c identifier> of the <c jump statement>.

A break <c jump statement> is only valid within the <c statement> in a switch, while, do or for

<c iteration statement>. It is mapped to a join on the anonymous connector anon-break for the

enclosing switch, while, do / while or for statement.

A break <c jump statement> represents a Break-node and the Connector-name is the name of the

immediately enclosing Compound-node.

A continue <c jump statement> is only valid within the <c statement> in a while, do or for

<c iteration statement>. It is mapped to a join on the anonymous connector anon-continue for the

enclosing while, do / while or for statement.

A continue <c jump statement> represents a Continue-node and the Connector-name is the name of

the immediately enclosing Compound-node.

If a return <c jump statement> with an <c expression> represents a Value-return-node and the

<c expression> represents the Expression of the Value-return-node.

A return <c jump statement> without an <expression> represents an Action-return-node.

C.1.6 Package C_Predefined

In the following definitions, all references to names defined in the package Predefined are treated

as prefixed by the qualification <<package Predefined>>. Similarly, all references to names defined

in the package C_Predefined are treated as prefixed by the qualification <<package

C_Predefined>>. To increase readability, these qualifications are omitted.

The extensions defined in Annex A are used in this package.

There are no literals for the C Integer types. When a <c integer constant> is used, it represents an

Integer literal defined in the package Predefined, so no ambiguity is introduced between various

integer literals.

Every C Integer type defined below includes a cast operator that converts an Integer value to the C

Integer type. The name of this operator is to_ concatenated with the name of the type.

118 Rec. ITU-T Z.104 (04/2016)

This package assumes that C Integer types values do not have padding bits, have a sign bit for signed

integers, use two's complement arithmetic and are wrapped when they overflow. For example, for

Unsigned_char as defined below with 8 bits to_Unsigned_char(255) + to_Unsigned_char(1)

= to_unsigned_char (0) and for Signed_char as defined below with 8 bits

to_Signed_char(127) + to_Signed_char(1) = to_signed_char(-128).

Library functions of clause 7 of the C standard clause 5.2.4.2 of [b-ISO/IEC 9899] are not included

in package C_Predefined. The mechanism for including such C library items is implementation

defined, but one possibility is to use the standard header names (such as assert) as the names of

packages. The C library item stdint defines some general cases of integers where the number of bits

for the C Integer type is N with names uintN_t for the unsigned case and intN_t for the signed case,

the value range for uintN_t is to_UintN_t(0) to to_UintN_t(power(2,N)-1) and

to_UintN_t(power(2,N)-1) + to_UintN_t(1) = to_UintN_t(0), and the value range for intN_t

is to_intN_t(-power(2,N-1)) to to_intN_t(power(2,N-1)-1) and to_intN_t(power(2,N-1)-

1) + to_intN_t(1) = to_intN_t(-power(2,N-1)).
/* */

package C_Predefined

/*

The following <package public> defines the synonyms and types that are visible wherever

C_Predefined is visible.

It is not necessary to explicitly list operations as visible, because literals and operations defined by a

type are visible where the type is visible except if the operation has private visibility (in which case

it is only visible within the data type where it is defined) or protected visibility (in which case the

operator is visible only within the data type where it is defined and within any specialization of this

data type).
*/

public

/* synonyms */

synonym CHAR_BIT,

synonym CHAR_MAX,

synonym CHAR_MIN,

synonym DBL_DECIMAL_DIG,

synonym DBL_DIG,

synonym DBL_EPSILON,

synonym DBL_MANT_DIG,

synonym DBL_MAX_10_EXP,

synonym DBL_MAX_EXP,

synonym DBL_MAX,

synonym DBL_MIN_10_EXP,

synonym DBL_MIN_EXP,

synonym DBL_MIN,

synonym DBL_TRUE_MIN,

synonym DECIMAL_DIG,

synonym FLT_DECIMAL_DIG,

synonym FLT_DIG,

synonym FLT_EPSILON,

synonym FLT_MANT_DIG,

synonym FLT_MAX_10_EXP,

synonym FLT_MAX_EXP,

synonym FLT_MAX,

synonym FLT_MIN_10_EXP,

synonym FLT_MIN_EXP,

synonym FLT_MIN,

synonym FLT_RADIX,

synonym FLT_TRUE_MIN,

synonym INT_BIT,

synonym INT_MAX,

synonym INT_MIN,

synonym LDBL_DECIMAL_DIG,

synonym LDBL_DIG,

synonym LDBL_EPSILON,

synonym LDBL_MANT_DIG,

 Rec. ITU-T Z.104 (04/2016) 119

synonym LDBL_MAX_10_EXP,

synonym LDBL_MAX_EXP,

synonym LDBL_MAX,

synonym LDBL_MIN_10_EXP,

synonym LDBL_MIN_EXP,

synonym LDBL_MIN,

synonym LDBL_TRUE_MIN,

synonym LLONG_BIT,

synonym LLONG_MAX,

synonym LLONG_MIN,

synonym LONG_BIT,

synonym LONG_MAX,

synonym LONG_MIN,

synonym MB_LEN_MAX,

synonym SCHAR_MAX,

synonym SCHAR_MIN,

synonym SHRT_BIT,

synonym SHRT_MAX,

synonym SHRT_MIN,

synonym sizeof_Bit ,

synonym sizeof_Boolean ,

synonym sizeof_Character ,

synonym sizeof_Float,

synonym sizeof_IA5Char ,

synonym sizeof_NumericChar ,

synonym sizeof_Octet ,

synonym sizeof_PrintableChar ,

synonym sizeof_Signed_char,

synonym sizeof_Signed_int,

synonym sizeof_Signed_long_long,

synonym sizeof_Signed_long,

synonym sizeof_Signed_short,

synonym sizeof_Star_Float,

synonym sizeof_Star_Signed_char,

synonym sizeof_Star_Signed_int,

synonym sizeof_Star_Signed_long_long,

synonym sizeof_Star_Signed_long,

synonym sizeof_Star_Signed_short,

synonym sizeof_Star_Unsigned_char,

synonym sizeof_Star_Unsigned_int,

synonym sizeof_Star_Unsigned_long_long,

synonym sizeof_Star_Unsigned_long,

synonym sizeof_Star_Unsigned_short,

synonym sizeof_Star_void,

synonym sizeof_TeletexChar ,

synonym sizeof_Unsigned_char,

synonym sizeof_Unsigned_int,

synonym sizeof_Unsigned_long_long,

synonym sizeof_Unsigned_long,

synonym sizeof_Unsigned_short,

synonym sizeof_void,

synonym UCHAR_MAX,

synonym UINT_MAX,

synonym ULLONG_MAX,

synonym ULONG_MAX,

synonym USHRT_MAX,

/*types*/

type Cvector,

type Double,

type Float,

type Long_Double

type Signed_char,

type Signed_int,

type Signed_long_long,

type Signed_long,

type Signed_short,

type Star_Float

type Star_Signed_char,

type Star_Signed_int,

type Star_Signed_long_long,

type Star_Signed_long,

120 Rec. ITU-T Z.104 (04/2016)

type Star_Signed_short,

type Star_type,

type Star_Unsigned_char,

type Star_Unsigned_int,

type Star_Unsigned_long_long,

type Star_Unsigned_long,

type Star_Unsigned_short,

type Star_void,

type Unsigned_char,

type Unsigned_char,

type Unsigned_int,

type Unsigned_long_long,

type Unsigned_long,

type Void;

/*

C.1.6.1 Numerical limits

A C implementation is required to document all the limits specified as synonyms in this clause

(see clause 5.2.4.2 of [b-ISO/IEC 9899]).

C.1.6.1.1 Private limits

The following external synonyms are additional to limits specified in clause 5.2.4.2 of

[b-ISO/IEC 9899] for use within package C_Predefined and are considered private to this package.

Each of these synonyms can therefore be consistently renamed in this package to avoid name clashes

with a C implementation library or items in the system being defined.
*/

/* number of bits for the type Short_int*/

synonym SHRT_BIT Integer = external;/* 16 */;

/* */

/* number of bits for the type int*/

synonym INT_BIT Integer = external;/* 16 */;

/* */

/* number of bits for the type Long_int*/

synonym LONG_BIT Integer = external;/* 32 */;

/* */

/* number of bits for the type Long_long_int*/

synonym LLONG_BIT Integer = external;/* 64 */;

/*

C.1.6.1.2 Sizes of integer types

The values given here vary according to the implementation, and therefore are given as external

synonyms. The values in the comments are derived from clause 5.2.4.2.1 of [b-ISO/IEC 9899].
*/

/* number of bits for smallest item that is not a bit-field (byte)*/

synonym CHAR_BIT Integer = external; /* 8 */

/* */

/* minimum value for type Signed_char */

synonym SCHAR_MIN Integer = external; /* -128 that is −power(2, CHAR_BIT-1) */

/* */

/* maximum value for type Signed_char */

synonym SCHAR_MAX Integer = external; /* +127 that is power(2, CHAR_BIT-1) − 1 */

/* */

/* maximum value for type Unsigned_char */

synonym UCHAR_MAX Integer = external; /* 255 that is power(2, CHAR_BIT) − 1 */

/* */

/* minimum value for type denoted by char */

synonym CHAR_MIN Integer = external; /* 0 - char treated as a signed integer */

/* */

/* maximum value for type denoted by char */

synonym CHAR_MAX Integer = external; /* SCHAR_MAX - char treated as a signed integer */

/* */

/* maximum number of bytes in a multibyte character, for any supported locale */

synonym MB_LEN_MAX Integer = external; /* 1 that is multibyte characters are not

allowed*/

/* */

/* minimum value for type Signed_short */

 Rec. ITU-T Z.104 (04/2016) 121

synonym SHRT_MIN Integer = external; /* -32768 that is −power(2,SHRT_BIT-1) */

/* */

/* maximum value for type Signed_short */

synonym SHRT_MAX Integer = external; /* +32767 that is power(2,SHRT_BIT-1) − 1 */

/* */

/* maximum value for type Unsigned_short */

synonym USHRT_MAX Integer = external; /* 65535 that is power(2,SHRT_BIT) − 1 */

/* */

/* minimum value for type Signed_int */

synonym INT_MIN Integer = external; /* -32768 that is −power(2,INT_BIT-1) */

/* */

/* maximum value for type Signed_int */

synonym INT_MAX Integer = external; /* +32767 that is power(2,INT_BIT-1) − 1 */

/* */

/* maximum value for type Unsigned_int */

synonym UINT_MAX Integer = external; /* 65535 that is power(2,INT_BIT) − 1 */

/* */

/* minimum value for type Signed_long */

synonym LONG_MIN Integer = external; /* -2147483648 that is −power(2,LONG_BIT-1) */

/* */

/* maximum value for type Signed_long */

synonym LONG_MAX Integer = external; /* +2147483647 that is power(2,LONG_BIT-1) − 1 */

/* */

/* maximum value for type Unsigned_long */

synonym ULONG_MAX Integer = external; /* 4294967295 that is power(2,LONG_BIT) − 1 */

/* */

/* minimum value for type Signed_long_long */

synonym LLONG_MIN Integer = external; /* -9223372036854775808

 that is −power(2,LLONG_BIT-1) */

/* */

/* maximum value for type Signed_long_long */

synonym LLONG_MAX Integer = external; /* +9223372036854775807

 that is power(2,LLONG_BIT-1) − 1 */

/* */

/* maximum value for type Unsigned_long_long */

synonym ULLONG_MAX Integer = external; /* 18446744073709551615

 that is power(2,LLONG_BIT) – 1 */

/*

C.1.6.1.3 Characteristics of floating types

The values given here vary according to the implementation, and therefore are given as external

synonyms. The values in the comments are derived from clause 5.2.4.2.2 of [b-ISO/IEC 9899].
*/

/* number of decimal digits, n, such that any Double floating-point number with p radix

b digits can be rounded to a floating-point number with n decimal digits and back again

without change to the value */

synonym DBL_DECIMAL_DIG Integer = external; /* 10 */

/* */

/* number of decimal digits, q, such that any Double floating-point number with q decimal

digits can be rounded into a floating-point number with p radix b digits and back again

without change to the q decimal digit */

synonym DBL_DIG Integer = external; /* 10 */

/* */

/* the difference between 1 and the least value greater than 1 that is representable in

the Double floating point type*/

synonym DBL_EPSILON Real = external; /*10.0E-5*/

/* */

/* number of base-FLT_RADIX digits in the Double floating-point significand, p */

synonym DBL_MANT_DIG Integer = external;

/* */

/* maximum integer such that 10 raised to that power is in the range of representable

finite Double floating-point numbers */

synonym DBL_MAX_10_EXP Integer = external; /* +37 */

/* */

/*maximum representable finite Double floating-point number*/

synonym DBL_MAX Real = external; /* 10.0E37 */

/* */

/* maximum integer such that FLT_RADIX raised to one less than that power is a

representable finite Double floating-point number */

synonym DBL_MAX_EXP Integer = external;

122 Rec. ITU-T Z.104 (04/2016)

/* */

/* minimum normalized positive double floating-point number*/

synonym DBL_MIN Real = external; /* 10.0E-37 */

/* */

/* minimum negative integer such that 10 raised to that power is in the range of

normalized Double floating-point numbers */

synonym DBL_MIN_10_EXP Integer = external; /* -37 */

/* */

/* minimum negative integer such that FLT_RADIX raised to one less than that power is a

normalized Double floating-point number, emin */

synonym DBL_MIN_EXP Integer = external;

/* */

/* minimum positive Double floating-point number */

synonym DBL_TRUE_MIN Real = external; /* 10.0E-37 */

/* */

/* number of decimal digits, n, such that any floating-point number in the widest

supported floating type with pmax radix b digits can be rounded to a floating-point

number with n decimal digits and back again without change to the value, */

synonym DECIMAL_DIG Integer = external; /* 10 */

/* */

/* number of decimal digits, n, such that any Float floating-point number with p radix b

digits can be rounded to a floating-point number with n decimal digits and back again

without change to the value */

synonym FLT_DECIMAL_DIG Integer = external; /* 6 */

/* */

/* number of decimal digits, q, such that any Float floating-point number with q decimal

digits can be rounded into a floating-point number with p radix b digits and back again

without change to the q decimal digits */

synonym FLT_DIG Integer = external; /* 6 */

/* */

/* the difference between 1 and the least value greater than 1 that is representable in

the Float floating point type*/

synonym FLT_EPSILON Real = external; /*10.0E-5*/

/* */

/* number of base-FLT_RADIX digits in the Float floating-point significand, p*/

synonym FLT_MANT_DIG Integer = external;

/* */

/*maximum representable finite Float floating-point number*/

synonym FLT_MAX Real = external; /* 10.0E37 */

/* */

/* maximum integer such that 10 raised to that power is in the range of representable

finite Float floating-point numbers */

synonym FLT_MAX_10_EXP Integer = external; /* +37 */

/* */

/* maximum integer such that FLT_RADIX raised to one less than that power is a

representable Float finite floating-point number */

synonym FLT_MAX_EXP Integer = external;

/* */

/* minimum normalized positive Float floating-point number*/

synonym FLT_MIN Real = external; /* 10.0E-37 */

/* */

/* minimum negative integer such that 10 raised to that power is in the range of

normalized Float floating-point numbers */

synonym FLT_MIN_10_EXP Integer = external; /* -37 */

/* */

/* minimum negative integer such that FLT_RADIX raised to one less than that power is a

normalized Float floating-point number, emin */

synonym FLT_MIN_EXP Integer = external; /*

/* */

/* the radix (or base) for floating point numbers */

synonym FLT_RADIX Integer = external; /*2

/* */

/* minimum positive Float floating-point number */

synonym FLT_TRUE_MIN Real = external; /* 10.0E-37 */

/* */

/* number of decimal digits, n, such that any long double floating-point number with p

radix b digits can be rounded to a floating-point number with n decimal digits and back

again without change to the value */

synonym LDBL_DECIMAL_DIG Integer = external; /* 10 */

/* */

/* number of decimal digits, q, such that any Long_double floating-point number with q

 Rec. ITU-T Z.104 (04/2016) 123

decimal digits can be rounded into a floating-point number with p radix b digits and back

again without change to the q decimal digits*/

synonym LDBL_DIG Integer = external; /*10*/

/* */

/* the difference between 1 and the least value greater than 1 that is representable in

the Long_double floating point type*/

synonym LDBL_EPSILON Real = external; /*10.0E-5 */

/* */

/* number of base-FLT_RADIX digits in the Long_double floating-point significand, */

synonym LDBL_MANT_DIG Integer = external;

/* */

/*maximum representable finite Long_double floating-point number*/

synonym LDBL_MAX Real = external; /* 10.0E37 */

/* */

/* maximum integer such that 10 raised to that power is in the range of representable

finite Long_double floating-point numbers */

synonym LDBL_MAX_10_EXP Integer = external; /* +37 */

/* */

/* maximum integer such that FLT_RADIX raised to one less than that power is a

representable finite Long_double floating-point number */

synonym LDBL_MAX_EXP Integer = external;

/* */

/* minimum normalized positive Long_double floating-point number*/

synonym LDBL_MIN Real = external; /* 10.0E-37 */

/* */

/* minimum negative integer such that 10 raised to that power is in the range of

normalized Long_double floating-point numbers */

synonym LDBL_MIN_10_EXP Integer = external; /* -37 */

/* */

/* minimum negative integer such that FLT_RADIX raised to one less than that power is a

normalized Long_double floating-point number, emin */

synonym LDBL_MIN_EXP Integer = external;

/* */

/* minimum positive Long_double floating-point number */

synonym LDBL_TRUE_MIN Real = external; /* 10.0E-37 */

/*

C.1.6.1.4 Sizes of package Predefined types

The following synonyms are defined for the sizes of some types defined in package Predefined.

Other types defined in package Predefined are unbounded, therefore no synonym is defined for the

size.
*/

synonym sizeof_Bit Integer = 1;

synonym sizeof_Boolean Integer = 1;

synonym sizeof_Character Integer = 1;

synonym sizeof_IA5Char Integer = 1;

synonym sizeof_NumericChar Integer = 1;

synonym sizeof_Octet Integer = 1;

synonym sizeof_PrintableChar Integer = 1;

synonym sizeof_TeletexChar Integer = 1;

/*

C.1.6.2 Parameterized types for integers

A C integer type is one of 5 signed types or 5 unsigned types: Signed_char, Signed_short,

Signed_int, Signed_long or Signed_long_long, Unsigned_char, Unsigned_short,

Unsigned_int, Unsigned_long or Unsigned_long_long.

The types for C integers inherit the parameterized types below with the parameters bound to the size

in bits of the integer type and the other signed or unsigned integer types. The operation identifiers are

overloaded. For a binary operator such as the "+" operator the first and second parameter is any of

the 10 signed and unsigned C integer types or the Integer type. The types for C integers therefore

define 100 binary "+" operators with different signatures. Because the result is always the Integer

type, and the integer literals always represent values of the Integer type, it is always possible

(providing no further overloading of "+" is introduced by the user) to determine the correct "+"

operator from the sorts of the parameters.

124 Rec. ITU-T Z.104 (04/2016)

Except for comparison operators in a context where a Boolean is required and the "&" operator to

obtain a pointer to an object, each operation for a C integer types has an Integer result. As a

consequence, it is not necessary to provide operators to convert between C integer types for

expressions. When there is an explicit or implied casting (for example, when an Unsigned_char

variable c is assigned to a Signed_short variable s), the appropriate num operator is used to convert

to Integer and the resulting value converted to the target sort: in the example given

to_Signed_short(<<type Unsigned_char>>num(s)).

C.1.6.2.1 Integern for a generic integer type with n bits

This type is defined as a generic type for both signed and unsigned integers. The parameters

Int_char, Int_short, Int_int, Int_long and Int_long_long are bound to each of the

corresponding unsigned integer types to produce a parameterized type Integers for signed Integer

types. For unsigned integer types, the parameters Int_char, Int_short, Int_int, Int_long and

Int_long_long are bound to each of the corresponding signed integer types to produce a

parameterized type Integeru.

Each binary operator is defined for Integern with Integer, Integer with Integern, Integern with

Integern, and Integern with each of the other 9 integer types, and that are given below in Integern

as Integer1, Integer2, Integer3, Integer4, Int_char, Int_short, int_int, Int_long and

int_long_long. Each signed integer type is defined using Integern with n bound to the number of

bits in Integern, and the other context parameters bound to the other signed integer types.

There are no literals for Integern or types based on Integern. Instead the values of Integern are

represented by <<type Integern>>integer (i) where i is an Integer value between

-power(2,n-1) and power(2,n-1)-1 for signed integer types and zero to power(2,n)-1 for

unsigned integer types. The implicit ordering of values in clause 12.1.6.1 of [ITU-T Z.101] does not

apply, therefore unordered is given.

To shorten the description of Integern below, for each operation only the <operation definition> is

given from which the <operation signature> is constructed (see the Model part of clause 12.1.7).

abstract value type Integern <

 value type Int_char; value type Int_short; value type Int_int;

 value type Int_long; value type Int_long_long;

 /* For signed integers these are given actual parameters for unsigned integers:

 Int_char=Unsigned_char, Int_sort=Unsigned_short, Int_int = Unsigned_int,

 Int_long=Unsigned_long, Int_sort=Unsigned_long_long.

 For unsigned integers these are given actual parameters for signed integers:

 Int_char=Signed_char, Int_sort=Signed_short, Int_int = Signed_int,

 Int_long=Signed_long, Int_sort=Signed_long_long */

 synonym n Natural; /*number of bits in Integern*/

 value type Integer1; value type Integer2; value type Integer3; value type Integer4

 /* These are given actual parameters for the other integer types.

 For exmaple when definining Signed_long_long the values are:

 Integer1 = Signed_char, Integer2 = Signed_short,

 Integer3 = Signed_int, Integer4 = Signed_long */ >

{

 literals unordered; /* "<", ">","<=",">=", first, last, pred, succ,

 and num are not implicitly defined.

 operators and methods signature lists are constructed from the definitions

 of the operations below except for operations used here but defined in subtypes.

*/

 operators /* Signatures for operations used here but only defined in subtypes. */

 integer (Integer)-> this Integern; /* convert to a C integer */

 num (Integern)-> Integer; /* convert to a SDL-2010 Integer */

 /* shift left operators */

 "<<" (Integern, Integer) -> Integer;

 "<<" (Integer, Integern) -> Integer;

 /* shift right operators */

 ">>" (Integern, Integer) -> Integer;

 ">>" (Integer, Integern) -> Integer;

 Rec. ITU-T Z.104 (04/2016) 125

 /* */

 "&" (Integern, Integer) -> Integer; /* bitwise 'and' */

 "^" (Integern, Integer) -> Integer; /* bitwise 'xor' */

 "|" (Integern, Integer) -> Integer /*bitwise 'or' */

/*

 operator integer (i Integer)-> this Integern

 is defined for signed/unsigned integers with different body definitions,

 and with different names.

 operator num (nv this Integern)-> Integer – for signed integers{}

 operator num (nv this Integern)-> Natural– for unsigned integers{}

 are defined for signed/unsigned integers with different body definitions.

*/

 operator "&" (in/out nv this Integern)-> Star_void external;

/* The untyped ‘address of’ operator.

 The typed ‘address of’ operator

 "&"(Integern)-> the typed star type for the integer type, and

 the dereference operator

 "*" (the typed star type for the integer type) -> Integern are

 defined using Star_type with the integer type as the actual parameter.

*/

/* Negation and Comparisons with Boolean results */

 operator "!" (nv1 Integern) -> Boolean {return num(nv1)= 0 }

 operator "<" (nv1 Integern, i Integer) -> Boolean {return num(nv1)< i }

 operator "<" (nv1 Integern, nv2 Integern) -> Boolean {return num(nv1)< num(nv2)}

 operator "<" (i Integer, nv1 Integern) -> Boolean {return i < num(nv1)}

 operator "<" (nv1 Integern, nv2 Integer1) -> Boolean {return num(nv1)< num(nv2)}

 operator "<" (nv1 Integern, nv2 Integer2) -> Boolean {return num(nv1)< num(nv2)}

 operator "<" (nv1 Integern, nv2 Integer3) -> Boolean {return num(nv1)< num(nv2)}

 operator "<" (nv1 Integern, nv2 Integer4) -> Boolean {return num(nv1)< num(nv2)}

 operator "<" (nv1 Integern,nv2 Int_char)->Boolean{return num(nv1)< num(nv2)}

 operator "<" (nv1 Integern,nv2 Int_short)->Boolean{return num(nv1)< num(nv2)}

 operator "<" (nv1 Integern,nv2 Int_int)->Boolean{return num(nv1)< num(nv2)}

 operator "<" (nv1 Integern,nv2 Int_long)->Boolean{return num(nv1)< num(nv2)}

 operator "<" (nv1 Integern,nv2 Int_long_long)->Boolean{return num(nv1)< num(nv2)}

 operator "<=" (nv1 Integern, nv2 Integern) -> Boolean {return num(nv1)<=num(nv2)}

 operator "<=" (nv1 Integern, i Integer) -> Boolean {return num(nv1)<=i }

 operator "<=" (i Integer, nv1 Integern) -> Boolean {return i<=num(nv1) }

 operator "<=" (nv1 Integern, nv2 Integer1) -> Boolean {return num(nv1)<=num(nv2)}

 operator "<=" (nv1 Integern, nv2 Integer2) -> Boolean {return num(nv1)<=num(nv2)}

 operator "<=" (nv1 Integern, nv2 Integer3) -> Boolean {return num(nv1)<=num(nv2)}

 operator "<=" (nv1 Integern, nv2 Integer4) -> Boolean {return num(nv1)<=num(nv2)}

 operator "<=" (nv1 Integern,nv2 Int_char)->Boolean{return num(nv1)<=num(nv2)}

 operator "<=" (nv1 Integern,nv2 Int_short)->Boolean{return num(nv1)<=num(nv2)}

 operator "<=" (nv1 Integern,nv2 Int_int)->Boolean{return num(nv1)<=num(nv2)}

 operator "<=" (nv1 Integern,nv2 Int_long)->Boolean{return num(nv1)<=num(nv2)}

 operator "<=" (nv1 Integern,nv2 Int_long_long)->Boolean{return num(nv1)<=num(nv2)}

 operator "==" (nv1 Integern, i Integer) -> Boolean {return num(nv1)= i }

 operator "==" (nv1 Integern, nv2 Integern) -> Boolean {return num(nv1)= num(nv2)}

 operator "==" (i Integer, nv1 Integern) -> Boolean {return i= num(nv1) }

 operator "==" (nv1 Integern, nv2 Integer1) -> Boolean {return num(nv1)= num(nv2)}

 operator "==" (nv1 Integern, nv2 Integer2) -> Boolean {return num(nv1)= num(nv2)}

 operator "==" (nv1 Integern, nv2 Integer3) -> Boolean {return num(nv1)= num(nv2)}

 operator "==" (nv1 Integern, nv2 Integer4) -> Boolean {return num(nv1)= num(nv2)}

 operator "==" (nv1 Integern,nv2 Int_char)->Boolean{return num(nv1)= num(nv2)}

 operator "==" (nv1 Integern,nv2 Int_short)->Boolean{return num(nv1)= num(nv2)}

 operator "==" (nv1 Integern,nv2 Int_int)->Boolean{return num(nv1)= num(nv2)}

 operator "==" (nv1 Integern,nv2 Int_long)->Boolean{return num(nv1)= num(nv2)}

 operator "==" (nv1 Integern,nv2 Int_long_long)->Boolean{return num(nv1)= num(nv2)}

 operator "!=" (nv1 Integern, nv2 Integern) -> Boolean {return num(nv1)/=num(nv2)}

 operator "!=" (nv1 Integern, i Integer) -> Boolean {return num(nv1)/=i}

 operator "!=" (i Integer, nv1 Integern) -> Boolean {return i/=num(nv1)}

 operator "!=" (nv1 Integern, nv2 Integer1) -> Boolean {return num(nv1)/=num(nv2)}

 operator "!=" (nv1 Integern, nv2 Integer2) -> Boolean {return num(nv1)/=num(nv2)}

 operator "!=" (nv1 Integern, nv2 Integer3) -> Boolean {return num(nv1)/=num(nv2)}

 operator "!=" (nv1 Integern, nv2 Integer4) -> Boolean {return num(nv1)/=num(nv2)}

 operator "!=" (nv1 Integern,nv2 Int_char)->Boolean{return num(nv1)/=num(nv2)}

 operator "!=" (nv1 Integern,nv2 Int_short)->Boolean{return num(nv1)/=num(nv2)}

 operator "!=" (nv1 Integern,nv2 Int_int)->Boolean{return num(nv1)/=num(nv2)}

 operator "!=" (nv1 Integern,nv2 Int_long)->Boolean{return num(nv1)/=num(nv2)}

 operator "!=" (nv1 Integern,nv2 Int_long_long)->Boolean{return num(nv1)/=num(nv2)}

 operator ">" (nv1 Integern, nv2 Integern) -> Boolean {return num(nv1)> num(nv2)}

126 Rec. ITU-T Z.104 (04/2016)

 operator ">" (nv1 Integern, i Integer) -> Boolean {return num(nv1)> i }

 operator ">" (i Integer, nv1 Integern) -> Boolean {return i> num(nv1) }

 operator ">" (nv1 Integern, nv2 Integer1) -> Boolean {return num(nv1)> num(nv2)}

 operator ">" (nv1 Integern, nv2 Integer2) -> Boolean {return num(nv1)> num(nv2)}

 operator ">" (nv1 Integern, nv2 Integer3) -> Boolean {return num(nv1)> num(nv2)}

 operator ">" (nv1 Integern, nv2 Integer4) -> Boolean {return num(nv1)> num(nv2)}

 operator ">" (nv1 Integern,nv2 Int_char)->Boolean{return num(nv1)> num(nv2)}

 operator ">" (nv1 Integern,nv2 Int_short)->Boolean{return num(nv1)> num(nv2)}

 operator ">" (nv1 Integern,nv2 Int_int)->Boolean{return num(nv1)> num(nv2)}

 operator ">" (nv1 Integern,nv2 Int_long)->Boolean{return num(nv1)> num(nv2)}

 operator ">" (nv1 Integern,nv2 Int_long_long)->Boolean{return num(nv1)> num(nv2)}

 operator ">=" (nv1 Integern, i Integer) -> Boolean {return num(nv1)>=i }

 operator ">=" (i Integer, nv1 Integern) -> Boolean {return i>=num(nv1) }

 operator ">=" (nv1 Integern, nv2 Integern) -> Boolean {return num(nv1)>=num(nv2)}

 operator ">=" (nv1 Integern, nv2 Integer1) -> Boolean {return num(nv1)>=num(nv2)}

 operator ">=" (nv1 Integern, nv2 Integer2) -> Boolean {return num(nv1)>=num(nv2)}

 operator ">=" (nv1 Integern, nv2 Integer3) -> Boolean {return num(nv1)>=num(nv2)}

 operator ">=" (nv1 Integern, nv2 Integer4) -> Boolean {return num(nv1)>=num(nv2)}

 operator ">=" (nv1 Integern,nv2 Int_char)->Boolean{return num(nv1)>=num(nv2)}

 operator ">=" (nv1 Integern,nv2 Int_short)->Boolean{return num(nv1)>=num(nv2)}

 operator ">=" (nv1 Integern,nv2 Int_int)->Boolean{return num(nv1)>=num(nv2)}

 operator ">=" (nv1 Integern,nv2 Int_long)->Boolean{return num(nv1)>=num(nv2)}

 operator ">=" (nv1 Integern,nv2 Int_long_long)->Boolean{return num(nv1)>=num(nv2)}

/* unary operators "+", "-" and "~" */

 operator "+" (nv Integern)-> Integer { return num(nv);}

 operator "-" (nv Integern)-> Integer { return 0-num(nv)}

 operator "~" (nv Integern)-> Integer { return -(num(nv)+1)}

/* binary arithmetic operators */

 operator "*" (nv Integern, i Integer) -> Integer {return num(nv) * i}

 operator "/" (nv Integern, i Integer) -> Integer {return num(nv) / i}

 operator "%" (nv Integern, i Integer) -> Integer {return num(nv) rem i}

 operator "+" (nv Integern, i Integer) -> Integer {return num(nv) + i}

 operator "-" (nv Integern, i Integer) -> Integer {return num(nv) - i}

 operator "*" (i Integer, nv Integern) -> Integer {return i * num(nv)}

 operator "/" (i Integer, nv Integern) -> Integer {return i / num(nv)}

 operator "%" (i Integer, nv Integern) -> Integer {return i rem num(nv)}

 operator "+" (i Integer, nv Integern) -> Integer {return i + num(nv)}

 operator "-" (i Integer, nv Integern) -> Integer {return i - num(nv)}

 operator "*" (nv1 Integern, nv2 Integern) -> Integer {return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern, nv2 Integern) -> Integer {return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern, nv2 Integern) -> Integer {return num(nv1)rem num(nv2)}

 operator "+" (nv1 Integern, nv2 Integern) -> Integer {return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern, nv2 Integern) -> Integer {return num(nv1) - num(nv2)}

 operator "*" (nv1 Integern, nv2 Integer1) -> Integer {return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern, nv2 Integer1) -> Integer {return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern, nv2 Integer1) -> Integer {return num(nv1)rem num(nv2)}

 operator "+" (nv1 Integern, nv2 Integer1) -> Integer {return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern, nv2 Integer1) -> Integer {return num(nv1) - num(nv2)}

 operator "*" (nv1 Integern, nv2 Integer2) -> Integer {return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern, nv2 Integer2) -> Integer {return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern, nv2 Integer2) -> Integer {return num(nv1)rem num(nv2)}

 operator "+" (nv1 Integern, nv2 Integer2) -> Integer {return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern, nv2 Integer2) -> Integer {return num(nv1) - num(nv2)}

 operator "*" (nv1 Integern, nv2 Integer3) -> Integer {return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern, nv2 Integer3) -> Integer {return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern, nv2 Integer3) -> Integer {return num(nv1)rem num(nv2)}

 operator "+" (nv1 Integern, nv2 Integer3) -> Integer {return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern, nv2 Integer3) -> Integer {return num(nv1) - num(nv2)}

 operator "*" (nv1 Integern, nv2 Integer4) -> Integer {return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern, nv2 Integer4) -> Integer {return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern, nv2 Integer4) -> Integer {return num(nv1)rem num(nv2)}

 operator "+" (nv1 Integern, nv2 Integer4) -> Integer {return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern, nv2 Integer4) -> Integer {return num(nv1) - num(nv2)}

 operator "*" (nv1 Integern,nv2 Int_char)->Integer{return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern,nv2 Int_char)->Integer{return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern,nv2 Int_char)->Integer{return num(nv1)rem num(nv2)}

 operator "+" (nv1 Integern,nv2 Int_char)->Integer{return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern,nv2 Int_char)->Integer{return num(nv1) - num(nv2)}

 operator "*" (nv1 Integern,nv2 Int_short)->Integer{return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern,nv2 Int_short)->Integer{return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern,nv2 Int_short)->Integer{return num(nv1)rem num(nv2)}

 Rec. ITU-T Z.104 (04/2016) 127

 operator "+" (nv1 Integern,nv2 Int_short)->Integer{return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern,nv2 Int_short)->Integer{return num(nv1) - num(nv2)}

 operator "*" (nv1 Integern,nv2 Int_int)->Integer{return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern,nv2 Int_int)->Integer{return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern,nv2 Int_int)->Integer{return num(nv1)rem num(nv2)}

 operator "+" (nv1 Integern,nv2 Int_int)->Integer{return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern,nv2 Int_int)->Integer{return num(nv1) - num(nv2)}

 operator "*" (nv1 Integern,nv2 Int_long)->Integer{return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern,nv2 Int_long)->Integer{return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern,nv2 Int_long)->Integer{return num(nv1)rem num(nv2)}

 operator "+" (nv1 Integern,nv2 Int_long)->Integer{return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern,nv2 Int_long)->Integer{return num(nv1) - num(nv2)}

 operator "*" (nv1 Integern,nv2 Int_long_long)->Integer{return num(nv1) * num(nv2)}

 operator "/" (nv1 Integern,nv2 Int_long_long)->Integer{return num(nv1) / num(nv2)}

 operator "%" (nv1 Integern,nv2 Int_long_long)->Integer{return num(nv1)rem num(nv2)}

 operator "+" (nv1 Integern,nv2 Int_long_long)->Integer{return num(nv1) + num(nv2)}

 operator "-" (nv1 Integern,nv2 Int_long_long)->Integer{return num(nv1) - num(nv2)}

/* shift left other than "<<"(Integern,Integer) and "<<"(Integer,Integern)*/

 operator "<<" (nv1 Integern,nv2 Integern)->Integer {return nv1 << num(nv2)}

 operator "<<" (nv1 Integern,nv2 Integer1)->Integer {return nv1 << num(nv2)}

 operator "<<" (nv1 Integern,nv2 Integer2)->Integer {return nv1 << num(nv2)}

 operator "<<" (nv1 Integern,nv2 Integer3)->Integer {return nv1 << num(nv2)}

 operator "<<" (nv1 Integern,nv2 Integer4)->Integer {return nv1 << num(nv2)}

 operator "<<" (nv1 Integern,nv2 Int_char)->Integer {return nv1 << num(nv2)}

 operator "<<" (nv1 Integern,nv2 Int_short)->Integer {return nv1 << num(nv2)}

 operator "<<" (nv1 Integern,nv2 Int_int)->Integer {return nv1 << num(nv2)}

 operator "<<" (nv1 Integern,nv2 Int_long)->Integer {return nv1 << num(nv2)}

 operator "<<" (nv1 Integern,nv2 Int_long_long)->Integer {return nv1 << num(nv2)}

/* shift right other than ">>"(Integern,Integer) and ">>"(Integer,Integern)*/

 operator ">>" (nv1 Integern,nv2 Integern)->Integer {return nv1 >> num(nv2)}

 operator ">>" (nv1 Integern,nv2 Integer1)->Integer {return nv1 >> num(nv2)}

 operator ">>" (nv1 Integern,nv2 Integer2)->Integer {return nv1 >> num(nv2)}

 operator ">>" (nv1 Integern,nv2 Integer3)->Integer {return nv1 >> num(nv2)}

 operator ">>" (nv1 Integern,nv2 Integer4)->Integer {return nv1 >> num(nv2)}

 operator ">>" (nv1 Integern,nv2 Int_char)->Integer {return nv1 >> num(nv2)}

 operator ">>" (nv1 Integern,nv2 Int_short)->Integer {return nv1 >> num(nv2)}

 operator ">>" (nv1 Integern,nv2 Int_int)->Integer {return nv1 >> num(nv2)}

 operator ">>" (nv1 Integern,nv2 Int_long)->Integer {return nv1 >> num(nv2)}

 operator ">>" (nv1 Integern,nv2 Int_long_long)->Integer {return nv1 >> num(nv2)}

/* Negation and Comparisons with Boolean results */

 operator "!" (nv1 Integern) -> Integer

 return if num(nv1)= 0 then 1 else 0 fi}

 operator "<" (nv1 Integern, i Integer) -> Integer

 return if num(nv1)< i then 1 else 0 fi}

 operator "<" (nv1 Integern, nv2 Integern) -> Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<" (i Integer, nv1 Integern) -> Integer

 return if i < num(nv1)then 1 else 0 fi}

 operator "<" (nv1 Integern, nv2 Integer1) -> Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<" (nv1 Integern, nv2 Integer2) -> Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<" (nv1 Integern, nv2 Integer3) -> Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<" (nv1 Integern, nv2 Integer4) -> Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<" (nv1 Integern,nv2 Int_char)->Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<" (nv1 Integern,nv2 Int_short)->Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<" (nv1 Integern,nv2 Int_int)->Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<" (nv1 Integern,nv2 Int_long)->Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<" (nv1 Integern,nv2 Int_long_long)->Integer

 return if num(nv1)< num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern, nv2 Integern) -> Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern, i Integer) -> Integer

 return if num(nv1)<=i then 1 else 0 fi}

 operator "<=" (i Integer, nv1 Integern) -> Integer

128 Rec. ITU-T Z.104 (04/2016)

 return if i<=num(nv1) then 1 else 0 fi}

 operator "<=" (nv1 Integern, nv2 Integer1) -> Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern, nv2 Integer2) -> Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern, nv2 Integer3) -> Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern, nv2 Integer4) -> Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern,nv2 Int_char)->Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern,nv2 Int_short)->Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern,nv2 Int_int)->Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern,nv2 Int_long)->Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "<=" (nv1 Integern,nv2 Int_long_long)->Integer

 return if num(nv1)<=num(nv2)then 1 else 0 fi}

 operator "==" (nv1 Integern, i Integer) -> Integer

 return if num(nv1)= i then 1 else 0 fi}

 operator "==" (nv1 Integern, nv2 Integern) -> Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "==" (i Integer, nv1 Integern) -> Integer

 return if i= num(nv1) then 1 else 0 fi}

 operator "==" (nv1 Integern, nv2 Integer1) -> Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "==" (nv1 Integern, nv2 Integer2) -> Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "==" (nv1 Integern, nv2 Integer3) -> Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "==" (nv1 Integern, nv2 Integer4) -> Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "==" (nv1 Integern,nv2 Int_char)->Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "==" (nv1 Integern,nv2 Int_short)->Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "==" (nv1 Integern,nv2 Int_int)->Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "==" (nv1 Integern,nv2 Int_long)->Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "==" (nv1 Integern,nv2 Int_long_long)->Integer

 return if num(nv1)= num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern, nv2 Integern) -> Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern, i Integer) -> Integer

 return if num(nv1)/=ithen 1 else 0 fi}

 operator "!=" (i Integer, nv1 Integern) -> Integer

 return if i/=num(nv1)then 1 else 0 fi}

 operator "!=" (nv1 Integern, nv2 Integer1) -> Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern, nv2 Integer2) -> Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern, nv2 Integer3) -> Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern, nv2 Integer4) -> Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern,nv2 Int_char)->Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern,nv2 Int_short)->Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern,nv2 Int_int)->Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern,nv2 Int_long)->Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator "!=" (nv1 Integern,nv2 Int_long_long)->Integer

 return if num(nv1)/=num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern, nv2 Integern) -> Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern, i Integer) -> Integer

 return if num(nv1)> i then 1 else 0 fi}

 Rec. ITU-T Z.104 (04/2016) 129

 operator ">" (i Integer, nv1 Integern) -> Integer

 return if i> num(nv1) then 1 else 0 fi}

 operator ">" (nv1 Integern, nv2 Integer1) -> Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern, nv2 Integer2) -> Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern, nv2 Integer3) -> Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern, nv2 Integer4) -> Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern,nv2 Int_char)->Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern,nv2 Int_short)->Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern,nv2 Int_int)->Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern,nv2 Int_long)->Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">" (nv1 Integern,nv2 Int_long_long)->Integer

 return if num(nv1)> num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern, i Integer) -> Integer

 return if num(nv1)>=i then 1 else 0 fi}

 operator ">=" (i Integer, nv1 Integern) -> Integer

 return if i>=num(nv1) then 1 else 0 fi}

 operator ">=" (nv1 Integern, nv2 Integern) -> Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern, nv2 Integer1) -> Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern, nv2 Integer2) -> Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern, nv2 Integer3) -> Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern, nv2 Integer4) -> Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern,nv2 Int_char)->Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern,nv2 Int_short)->Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern,nv2 Int_int)->Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern,nv2 Int_long)->Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

 operator ">=" (nv1 Integern,nv2 Int_long_long)->Integer

 return if num(nv1)>=num(nv2)then 1 else 0 fi}

/* bitwise logical operators */

/* operator "&" (nv Integern, i Integer) -> Integer; bitwise 'and'

 operator "^" (nv Integern, i Integer) -> Integer; bitwise 'xor’

 operator "|" (nv Integern, i Integer) -> Integer; bitwise 'or'

 For bitwise 'and','xor' and 'or' are defined for signed/unsigned integers.

 However, the other bitwise 'and'/'xor',/'or' operators are defined using the

 Here using the signatures above. Bitwise ‘xor’ is defined here.

*/

/* Bitwise 'and' with signatures other than "&" (Integern, Integer) */

 operator "&" (i Integer, nv Integern) -> Integer {return nv & i}

 operator "&" (nv1 Integern, nv2 Integern) -> Integer {return nv1 & num(nv2)}

 operator "&" (nv1 Integern, nv2 Integer1) -> Integer {return nv1 & num(nv2)}

 operator "&" (nv1 Integern, nv2 Integer2) -> Integer {return nv1 & num(nv2)}

 operator "&" (nv1 Integern, nv2 Integer3) -> Integer {return nv1 & num(nv2)}

 operator "&" (nv1 Integern, nv2 Integer4) -> Integer {return nv1 & num(nv2)}

 operator "&" (nv1 Integern, nv2 Int_char)->Integer{return nv1 & num(nv2)}

 operator "&" (nv1 Integern, nv2 Int_short) -> Integer {return nv1 & num(nv2)}

 operator "&" (nv1 Integern, nv2 Int_Int) -> Integer {return nv1 & num(nv2)}

 operator "&" (nv1 Integern, nv2 Int_long) -> Integer {return nv1 & num(nv2)}

 operator "&" (nv1 Integern,nv2 Int_long_long)->Integer{return nv1 & num(nv2)}

/* Bitwise 'xor' with signatures other than "^" (Integern, Integer) */

 operator "^" (i Integer, nv Integern)-> Integer {return nv ^ i}

 operator "^" (nv1 Integern, nv2 Integern) -> Integer {return nv ^ num(nv2)}

 operator "^" (nv1 Integern, nv2 Integer1) -> Integer {return nv ^ num(nv2)}

 operator "^" (nv1 Integern, nv2 Integer2) -> Integer {return nv ^ num(nv2)}

 operator "^" (nv1 Integern, nv2 Integer3) -> Integer {return nv ^ num(nv2)}

 operator "^" (nv1 Integern, nv2 Integer4) -> Integer {return nv ^ num(nv2)}

130 Rec. ITU-T Z.104 (04/2016)

 operator "^" (nv1 Integern, nv2 Int_char) -> Integer {return nv ^ num(nv2)}

 operator "^" (nv1 Integern, nv2 Int_short) -> Integer {return nv ^ num(nv2)}

 operator "^" (nv1 Integern, nv2 Int_int) -> Integer {return nv ^ num(nv2)}

 operator "^" (nv1 Integern, nv2 Int_long) -> Integer {return nv ^ num(nv2)}

 operator "^" (nv1 Integern, nv2 Int_long_long) -> Integer {return nv ^ num(nv2)}

/* Bitwise 'or' with signatures other than "|" (Integern, Integer) */

 operator "|" (i Integer, nv Integern) -> Integer {return nv | i}

 operator "|" (nv Integern, i Integer) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Integern) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Integer1) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Integer2) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Integer3) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Integer4) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Integern) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Int_char) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Int_short) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Int_int) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Int_long) -> Integer {return nv | num(nv2)}

 operator "|" (nv1 Integern, nv1 Int_long_long) -> Integer{return nv | num(nv2)}

/* Real/Float arithemetic */

 operator "+"(i this Integern, r Real)->Real{return r+float(num(i))}

 operator "+"(r Real, i this Integern)->Real{return r+float(num(i))}

 operator "+"(i this Integern, f Float)->Real{return to_Real(f)+float(num(i))}

 operator "+"(f Float, i this Integern)->Real{return to_Real(f)+float(num(i))}

 operator "-"(i this Integern, r Real)->Real{return float(num(i))-r}

 operator "-"(r Real, i this Integern)->Real{return r-float(num(i))}

 operator "-"(i this Integern, f Float)->Real{return float(num(i))-to_Real(f)}

 operator "-"(f Float, i this Integern)->Real{return to_Real(f)-float(num(i))}

 operator "*"(i this Integern, r Real)->Real{return r*float(num(i))}

 operator "*"(r Real, i this Integern)->Real{return r*float(num(i))}

 operator "*"(i this Integern, f Float)->Real{return to_Real(f)*float(num(i))}

 operator "*"(f Float, i this Integern)->Real{return to_Real(f)*float(num(i))}

 operator "/"(i this Integern, r Real)->Real{return float(num(i))/r}

 operator "/"(r Real, i this Integern)->Real{return r/float(num(i))}

 operator "/"(i this Integern, f Float)->Real{return float(num(i))/to_Real(f)}

 operator "/"(f Float, i this Integern)->Real{return to_Real(f)/float(num(i))}

 /* equal to Real/Float - Boolean and Integer result*/

 operator "=="(i this Integern, r Real)->Boolean{return float(num(i))=r}

 operator "=="(r Real, i this Integern)->Boolean{return r=float(num(i))}

 operator "=="(i this Integern, f Float)->Boolean{return float(num(i))=to_Real(f)}

 operator "=="(f Float, i this Integern)->Boolean{return to_Real(f)=float(num(i))}

 operator "=="(i this Integern, r Real)->Integer{return if i==r then 1 else 0 fi}

 operator "=="(r Real, i this Integern)->Integer{return if r==i then 1 else 0 fi}

 operator "=="(i this Integern, f Float)->Integer{return if i==f then 1 else 0 fi}

 operator "=="(f Float, i this Integern)->Integer{return if r==f then 1 else 0 fi}

/* not equal to Real/Float - Boolean and Integer result*/

 operator "!="(i this Integern, r Real)->Boolean{return float(num(i))/=r}

 operator "!="(r Real, i this Integern)->Boolean{return r/=float(num(i))}

 operator "!="(i this Integern, f Float)->Boolean{return float(num(i))/=to_Real(f)}

 operator "!="(f Float, i this Integern)->Boolean{return to_Real(f)/=float(num(i))}

 operator "!="(i this Integern, r Real)->Integer{return if i!=r then 1 else 0 fi}

 operator "!="(r Real, i this Integern)->Integer{return if r!=i then 1 else 0 fi}

 operator "!="(i this Integern, f Float)->Integer{return if i!=f then 1 else 0 fi}

 operator "!="(f Float, i this Integern)->Integer{return if r!=f then 1 else 0 fi}

/* less than Real/Float - Boolean and Integer result*/*/

 operator "<"(i this Integern, r Real)->Boolean{return float(num(i))<r}

 operator "<"(r Real, i this Integern)->Boolean{return r<float(num(i))}

 operator "<"(i this Integern, f Float)->Boolean{return float(num(i))<to_Real(f)}

 operator "<"(f Float, i this Integern)->Boolean{return to_Real(f)<float(num(i))}

 operator "<"(i this Integern, r Real)->Integer{return if i<r then 1 else 0 fi}

 operator "<"(r Real, i this Integern)->Integer{return if r<i then 1 else 0 fi}

 operator "<"(i this Integern, f Float)->Integer{return if i<f then 1 else 0 fi}

 operator "<"(f Float, i this Integern)->Integer{return if r<f then 1 else 0 fi}

/* less than or equal to Real/Float - Boolean and Integer result*/

 operator "<="(i this Integern, r Real)->Boolean{return float(num(i))<=r}

 operator "<="(r Real, i this Integern)->Boolean{return r<=float(num(i))}

 operator "<="(i this Integern, f Float)->Boolean{return float(num(i))<=to_Real(f)}

 operator "<="(f Float, i this Integern)->Boolean{return to_Real(f)<=float(num(i))}

 Rec. ITU-T Z.104 (04/2016) 131

 operator "<="(i this Integern, r Real)->Integer{return if i<=r then 1 else 0 fi}

 operator "<="(r Real, i this Integern)->Integer{return if r<=i then 1 else 0 fi}

 operator "<="(i this Integern, f Float)->Integer{return if i<=f then 1 else 0 fi}

 operator "<="(f Float, i this Integern)->Integer{return if r<=f then 1 else 0 fi}

/* greater than Real/Float - Boolean and Integer result*/*/

 operator ">"(i this Integern, r Real)->Boolean{return float(num(i))>r}

 operator ">"(r Real, i this Integern)->Boolean{return r>float(num(i))}

 operator ">"(i this Integern, f Float)->Boolean{return float(num(i))>to_Real(f)}

 operator ">"(f Float, i this Integern)->Boolean{return to_Real(f)>float(num(i))}

 operator ">"(i this Integern, r Real)->Integer{return if i>r then 1 else 0 fi}

 operator ">"(r Real, i this Integern)->Integer{return if r>i then 1 else 0 fi}

 operator ">"(i this Integern, f Float)->Integer{return if i>f then 1 else 0 fi}

 operator ">"(f Float, i this Integern)->Integer{return if r>f then 1 else 0 fi}

/* greater than or equal to Real/Float - Boolean and Integer result*/*/

 operator ">="(i this Integern, r Real)->Boolean{return float(num(i))>=r}

 operator ">="(r Real, i this Integern)->Boolean{return r>=float(num(i))}

 operator ">="(i this Integern, f Float)->Boolean{return float(num(i))>=to_Real(f)}

 operator ">="(f Float, i this Integern)->Boolean{return to_Real(f)>=float(num(i))}

 operator ">="(i this Integern, r Real)->Integer{return if i>=r then 1 else 0 fi}

 operator ">="(r Real, i this Integern)->Integer{return if r>=i then 1 else 0 fi}

 operator ">="(i this Integern, f Float)->Integer{return if i>=f then 1 else 0 fi}

 operator ">="(f Float, i this Integern)->Integer{return if r>=f then 1 else 0 fi}

/* Prefix increment/decrement */

 method "++" -> Integer {this := <<type Integern>>integer(this+1); return this }

 method "--" -> Integer {this := <<type Integern>>integer(this–1); return this }

/* Postfix increment/decrement */

 method postfix_inc-> r Integer

 { r:=num(this);

 this:=<<type Integern>>integer(r+1);

 return r

 }

 method postfix_dec-> r Integer

 { r:=num(this);

 this:=<<type Integern>>integer(r-1);

 return r

 }

/* simple assignment */

 method "=" (i Integern) -> Integer {this:=i; return num(this)}

 method "=" (i Integer) -> Integer {this:=integer(i); return num(this)}

 method "=" (i Integer1) -> Integer {this:=integer(num(i));return num(this)}

 method "=" (i Integer2) -> Integer {this:=integer(num(i));return num(this)}

 method "=" (i Integer3) -> Integer {this:=integer(num(i));return num(this)}

 method "=" (i Integer4) -> Integer {this:=integer(num(i));return num(this)}

 method "=" (i Int_char) -> Integer {this:=integer(num(i));return num(this)}

 method "=" (i Int_short) -> Integer {this:=integer(num(i));return num(this)}

 method "=" (i Int_int) -> Integer {this:=integer(num(i));return num(this)}

 method "=" (i Int_long) -> Integer {this:=integer(num(i));return num(this)}

 method "=" (i Int_long_long) -> Integer {this:=integer(num(i));return num(this)}

/* multiplication assignment */

 method "*=" (i Integern) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Integer) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Integer1) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Integer2) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Integer3) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Integer4) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Int_char) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Int_short) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Int_int) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Int_long) -> Integer {this:=this * i; return num(this)}

 method "*=" (i Int_long_long) -> Integer {this:=this * i; return num(this)}

/* division assignment */

 method "/=" (i Integern) -> Integer {this:=this / i; return num(this)}

 method "/=" (i Integer) -> Integer {this:=this / i; return num(this)}

 method "/=" (i Integer1) -> Integer {this:=this / i; return num(this)}

 method "/=" (i Integer2) -> Integer {this:=this / i; return num(this)}

 method "/=" (i Integer3) -> Integer {this:=this / i; return num(this)}

 method "/=" (i Integer4) -> Integer {this:=this / i; return num(this)}

 method "/=" (i Int_char) -> Integer {this:=this / i; return num(this)}

 method "/=" (i Int_short) -> Integer {this:=this / i; return num(this)}

 method "/=" (i Int_int) -> Integer {this:=this / i; return num(this)}

132 Rec. ITU-T Z.104 (04/2016)

 method "/=" (i Int_long) -> Integer {this:=this / i; return num(this)}

 method "/=" (i Int_long_long) -> Integer {this:=this / i; return num(this)}

/* remainder assignment */

 method "%=" (i Integern) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Integer) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Integer1) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Integer2) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Integer3) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Integer4) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Int_char) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Int_short) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Int_int) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Int_long) -> Integer {this:=this % i; return num(this)}

 method "%=" (i Int_long_long) -> Integer {this:=this % i; return num(this)}

/* addition assignment */

 method "+=" (i Integern) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Integer) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Integer1) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Integer2) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Integer3) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Integer4) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Int_char) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Int_short) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Int_int) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Int_long) -> Integer {this:=this + i; return num(this)}

 method "+=" (i Int_long_long) -> Integer {this:=this + i; return num(this)}

/- subtraction assignment -/

 method "-=" (i Integern) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Integer) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Integer1) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Integer2) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Integer3) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Integer4) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Int_char) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Int_short) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Int_int) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Int_long) -> Integer {this:=this - i; return num(this)}

 method "-=" (i Int_long_long) -> Integer {this:=this - i; return num(this)}

/* shift left assignment */

 method "<<=" (i Integern) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Integer) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Integer1) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Integer2) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Integer3) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Integer4) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Int_char) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Int_short) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Int_int) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Int_long) -> Integer {this:=this << i; return num(this)}

 method "<<=" (i Int_long_long) -> Integer {this:=this << i; return num(this)}

/* shift right assignment */

 method ">>=" (i Integern) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Integer) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Integer1) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Integer2) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Integer3) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Integer4) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Int_char) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Int_short) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Int_int) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Int_long) -> Integer {this:=this >> i; return num(this)}

 method ">>=" (i Int_long_long) -> Integer {this:=this >> i; return num(this)}

/* bitwise and assignment */

 method "&=" (i Integern) -> Integer {this:=this & i; return num(this)}

 method "&=" (i Integer) -> Integer {this:=this & i; return num(this)}

 method "&=" (i Integer1) -> Integer {this:=this & i; return num(this)}

 method "&=" (i Integer2) -> Integer {this:=this & i; return num(this)}

 method "&=" (i Integer3) -> Integer {this:=this & i; return num(this)}

 method "&=" (i Integer4) -> Integer {this:=this & i; return num(this)}

 method "&=" (i Int_char) -> Integer {this:=this & i; return num(this)}

 method "&=" (i Int_short) -> Integer {this:=this & i; return num(this)}

 Rec. ITU-T Z.104 (04/2016) 133

 method "&=" (i Int_int) -> Integer {this:=this & i; return num(this)}

 method "&=" (i Int_long) -> Integer {this:=this & i; return num(this)}

 method "&=" (i Int_long_long) -> Integer {this:=this & i; return num(this)}

/* bitwise xor assignment */

 method "^=" (i Integern) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Integer) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Integer1) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Integer2) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Integer3) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Integer4) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Int_char) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Int_short) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Int_int) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Int_long) -> Integer {this:=this ^ i; return num(this)}

 method "^=" (i Int_long_long) -> Integer {this:=this ^ i; return num(this)}

/* bitwise or assignment */

 method "|=" (i Integern) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Integer) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Integer1) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Integer2) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Integer3) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Integer4) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Int_char) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Int_short) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Int_int) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Int_long) -> Integer {this:=this | i; return num(this)}

 method "|=" (i Int_long_long) -> Integer {this:=this | i; return num(this)}

 default integer(0);

} /* end parameterized value type Integern;

C.1.6.2.2 Integers for a signed integer type with n bits

The parameters n, Integer1, Integer2, Integer3 and Integer4 from Integern are left unbound.

Each signed integer type is defined using Integern with n bound to the number of bits, and the other

context parameters bound to the other C signed integer types.

*/

abstract value type Integers inherits Integern

 < /* Int_char = */ Unsigned_char,

 /* Int_short = */ Unsigned_short,

 /* Int_int = */ Unsigned_int

 /* Int_long = */ Unsigned_long,

 /* Int_long_long = */ Unsigned_long_long >

 /* this leaves the following parameters unbound:

 synonym n Natural;

 value type Integer1; value type Integer2;

 value type Integer3; value type Integer4 */

{

 operator integer (i Integer)-> this Integers

 synonym p Integer = power(2,n-1);

 { /* integer(i) of Integers is the unique constructor for Integers values. */

 return if i > p-1 then integer((i – (i/p)*p)

 /* reduce to integer in range of Integers */

 else

 if i < -p then integer(i – ((i+1)/p)*p)

 /* increase to integer in range of Integers */

 else integer(i) /* which represents the Integers value */

 fi

 fi}

 operator num (nv this Integers)-> Integer {

 /* return the integer value for which integer(num(nv)) = nv */

 /* Although this is expressed here as an iterative algorithm,

 it is expected that the implementation does the conversion

 as an atomic action,

 or null action if the effect is to just to do a type conversion. */

 return if integer(0) = nv then 0

 else

 if (nv > integer (0)) then 1 + num(nv-<<type Integers>>integer(1));

 else /*(nv < integer (0))*/ -1 + num(nv+<<type Integers>>integer(1))

134 Rec. ITU-T Z.104 (04/2016)

 fi

 fi}

/* shift left */

 operator "<<" (nv Integers, i Integer) -> Integer

 /* sign bit propagated left for << */

 {return num(nv) * power(2, if i > 0 then i else 0 fi)}

 operator "<<" (i Integer, nv Integers) -> Integer

 {return i * power(2, if num(nv) > 0 then num(nv) else 0 fi)}

/* shift right */

 operator ">>"(nv Integers, i Integer) -> Integer {

 /* In clause 6.5.7 of [b-ISO/IEC 9899] for a negative number

 the resulting value is implementation-defined.

 A negative number is –power(2,n) for the sign bit

 plus power(2,m) for each of other 1 bit

 where the bits are numbered m to 0 (most to least significant). */

 return if i <= 0 then num(nv)

 else

 if num(nv) > 0 then num(nv)/power(2,i)

 else /* num(nv) < 0 */ (num(nv)+power(2,n))/ power(2,i)

 fi

 fi}

 operator ">>"(i Integer, nv Integers) -> Integer {

 return if num(nv) <= 0 then i

 else

 if i >= 0 then i/power(2,num(nv))

 else /* i < 0 */

 (num(<<type Integers>>integer(i))+power(2,n))/ power(2,num(nv));

 fi

 fi}

/* bit wise and */

 operator private bitwise_and (i1, i2, m Integer) -> Integer

 dcl p, r1, r2 Integer; /* least significant bit is bit 1 */

 { if (m=1) return (i1 > 0) and (i2 > 0) then 1 else 0;

 p := power(2,m-1);/*value of bit m */

 r1 = i1 rem p;

 r2 = i2 rem p;

 /* bit m is 1 in i1 if i1-r1 > 0 */

 /* bit m is 1 in i2 if i2-r2 > 0 */

 return if ((i1-r1) > 0) and ((i2-r2) > 0) then p else 0 fi +

 bitwise_and (r1, r2, m-1)

 }

 operator "&" (nv Integers, i Integer) -> Integer

 synonym p Integer = power(2,n);

 dcl nvi Integer;

 { nvi := num(nv);

 i := num(<<type Integers>>integer(i));

 return if (nvi < 0) and (i <0) then p else 0 /* the sign bit */ fi

 /* add the other bits, in each case removing the sign */

 + bitwise_and(nvi + if nvi < 0 then p else 0 fi,

 i + if i < 0 then p else 0 fi, n-2)

 }

/* bitwise xor*/

 operator private bitwise_xor (i1, i2, m Integer) -> Integer

 dcl p, r1, r2 Integer; /* least significant bit is bit 1 */

 { if (m=1) return if ((i1 > 0) xor (i2 > 0)) then 1 else 0 fi

 p := power(2,m-1); /*value of bit m */

 r1 = i1 rem p;

 r2 = i2 rem p;

 /* bit m is 1 in i1 if i1-r1 > 0 */

 /* bit m is 1 in i2 if i2-r2 > 0 */

 return if ((i1-r1) > 0) xor ((i2-r2) > 0) then p else 0 fi +

 bitwise_xor (r1, r2, m-1)

 }

 operator "^" (nv Integers, i Integer) -> Integer

 synonym p Integer = power(2,n-1);

 dcl nvi, i_only_bits Integer;

 { nvi := num(nv);

 i_only_bits := i

 /* subtract bits in range to neutralise these*/

 - num(<<type Integers>>integer(i));

 i := num(<<type Integers>>integer(i));

 Rec. ITU-T Z.104 (04/2016) 135

 return i_only_bits +

 if (nvi < 0) xor (i <0)

 then p else 0 /* the sign bit */

 fi + /* add the other bits, in each case removing the sign */

 bitwise_xor(nvi + if nvi < 0 then p else 0 fi,

 i+ if i < 0 then p else 0 fi, n-1);

 }

/* bitwise or*/

 operator private bitwise_or (i1, i2, m Integer) -> Integer

 dcl p, r1, r2 Integer; /* least significant bit is bit 1 */

 { if (m=1) return if ((i1 > 0) or (i2 > 0)) then 1 else 0 fi;

 p := power(2,m-1); /*value of bit m*/

 r1 = i1 rem p;

 r2 = i2 rem p;

 /* bit m is 1 in i1 if i1-r1 > 0 */

 /* bit m is 1 in i2 if i2-r2 > 0 */

 return if ((i1-r1) > 0) or ((i2-r2) > 0) then p else 0 fi

 + bitwise_or (r1, r2, m-1)

 }

 operator "|" (nv Integers, i Integer) -> Integer

 synonym p Integer = power(2,n);

 dcl nvi, i_only_bits Integer;

 { nvi := num(nv);

 i_only_bits := i

 /* subtract bits in range to neutralise these*/

 - num(<<type Integers>>integer(i));

 i := num(<<type Integers>>integer(i));

 return i_only_bits +

 if (nvi < 0) or (i <0)

 then p else 0 /* the sign bit */

 fi + /* add the other bits, in each case removing the sign */

 bitwise_or(nvi + if nvi < 0 then p else 0 fi,

 i+ if i < 0 then p else 0 fi, n-1);

 }

} /* end parameterized value type Integers;

C.1.6.2.3 Integeru for an unsigned integer type with n bits

The parameters n, Integer1, Integer2, Integer3 and Integer4 from Integern are left unbound.

Each signed integer type is defined using Integeru with n bound to the number of bits, and the other

context parameters bound to the other C unsigned integer types.

*/

abstract value type Integeru inherits Integern

 < /* Int_char = */ Signed_char,

 /* Int_short = */ Signed_short,

 /* Int_int = */ Signed_int

 /* Int_long = */ Signed_long,

 /* Int_long_long = */ Signed_long_long >

 /* this leaves the following parameters unbound:

 synonym n Natural;

 value type Integer1; value type Integer2;

 value type Integer3; value type Integer4 */

{

 operator integer (i Integer)-> this Integeru

 synonym p Integer = power(2,n-1);

 /* integer(i) of Integeru is the unique constructor for Integeru values. */

 { return if i > p-1 then integer((i – (i/p)*p)

 /* reduce to integer in range of Integeru */

 else

 if i < -p then integer(i – ((i+1)/p)*p)

 /* increase to integer in range of Integeru */

 else integer(i) /* which represents the Integeru value */

 fi

 fi}

 operator num (nv this Integeru)-> Natural {

 /* return the positive integer value for which integer(num(nv)) = nv */

 /* Although this is expressed here as an iteration algorithm,

 it is expected that the implementation does the conversion

136 Rec. ITU-T Z.104 (04/2016)

 as an atomic action,

 or null action if the effect is to just to do a type conversion. */

 if (integer(0) = nv) then return 0;

 return 1 + num(nv-<<type Integeru>>integer(1))

 }

/* shift left */

 operator "<<" (nv Integeru, i Integer) -> Integer

 {return num(nv) * power(2, if i > 0 then i else 0 fi)}

 operator "<<" (i Integer, nv Integeru) -> Integer {return i * power(2 num(nv))}

/* shift right */

 operator ">>"(nv Integeru, i Integer) -> Integer

 {return if i <= 0 then num(nv) else num(nv)/power(2,i) fi}

 operator ">>"(i Integer, nv Integeru) -> Integer {

 return if i >= 0

 then i/power(2,num(nv))

 else (num(<<type Integeru>>integer(i))+power(2,n))/ power(2,num(nv))fi

 }

/*bitwise and*/

 operator private bitwise_and (i1, i2, m Integer) -> Integer

 dcl p, r1, r2 Integer; /* least significant bit is bit 1 */

 { if (m=1) return if (i1 > 0) and (i2 > 0) then 1 else 0 fi;

 p := power(2,m-1); /*value of bit m */

 r1 = i1 rem p;

 r2 = i2 rem p;

 /* bit m-1 is 1 in i1 if i1-r1 > 0 */

 /* bit m-1 is 1 in i2 if i2-r2 > 0 */

 return if ((i1-r1) > 0) and ((i2-r2) > 0) then p else 0 fi

 + bitwise_and (r1, r2, m-1)

 }

 operator "&" (nv Integeru, i Integer) -> Integer;

 {return bitwise_and(num(nv), num(<<type Integeru>>integer(i)), n)}

/* bitwise xor*/

 operator private bitwise_xor (i1, i2, m Integer) -> Integer

 dcl p, r1, r2 Integer; /* least significant bit is bit 1 */

 { if (m=1) return if ((i1 > 0) xor (i2 > 0)) then 1 else 0 fi;

 p := power(2,m-1); /*value of bit m */

 r1 = i1 rem p;

 r2 = i2 rem p;

 /* bit m is 1 in i1 if i1-r1 > 0 */

 /* bit m is 1 in i2 if i2-r2 > 0 */

 return if ((i1-r1) > 0) xor ((i2-r2) > 0) then p else 0 fi

 + bitwise_xor (r1, r2, m-1)

 }

 operator "^" (nv Integeru, i Integer) -> Integer;

 dcl i_only_bits Integer;

 { i_only_bits := i

 /* subtract bits in range to neutralise these*/

 - num(<<type Integeru>>integer(i));

 i := num(<<type Integeru>>integer(i));

 return i_only_bits + bitwise_xor(num(nv), i, n);

 }

/* bitwise or*/

 operator private bitwise_or (i1, i2, m Integer) -> Integer

 dcl p, r1, r2 Integer;

 { if (m=1) return if ((i1 > 0) or (i2 > 0)) then 1 else 0 fi;

 p := power(2,m-1); /*value of bit m, least significant bit is bit 1*/

 r1 = i1 rem p;

 r2 = i2 rem p;

 /* bit m is 1 in i1 if i1-r1 > 0 */

 /* bit m is 1 in i2 if i2-r2 > 0 */

 return if ((i1-r1) > 0) or ((i2-r2) > 0) then p else 0 fi

 + bitwise_or (r1, r2, m-1)

 }

 operator "|" (nv Integeru, i Integer) -> Integer;

 dcl i_only_bits Integer;

 { i_only_bits := i

 /* subtract bits in range to neutralise these*/

 - num(<<type Integeru>>integer(i));

 i := num(<<type Integeru>>integer(i));

 return i_only_bits + bitwise_or(num(nv), i, n);

 }

 Rec. ITU-T Z.104 (04/2016) 137

} /* end parameterized value type Integeru;

C.1.6.3 Types for void and pointers

The Void type comprises an empty set of values; it is an incomplete type that cannot be completed.

The Void type is denoted by a <c type keywords> item void. It is not allowed to define a variable or

parameter with the type Void.
*/

abstract value type Void

 /* Has an implicit literal signature denoted by null – see [ITU-T Z.107 12.1] */

endvalue type Void;

synonym sizeof_Void Integer = 0;

/*

The Star_void type represents a ‘pointer to Void’ (an untyped pointer) such as that introduced by a

<c declaration> of the form:

 void *id;

The operators Star_void_to_Integer and Integer_to_Star_void of Star_void convert to and

from Integer. It is required that:

 Star_void_to_Integer (Integer_to_Star_void (i)) == i and
 Integer_to_Star_void (Star_void_to_Integer (ptr) == ptr

Arithmetic operators are not defined for Star_void because the size of the pointer is not known.

The dereference operator is not defined for Star_void because the actual type of the pointer is not

known and therefore the type of the result is not known.

*/

value type Star_void {

 /* Has an implicit literal signature denoted by null – see [ITU-T Z.107 12.1] */

 operator Star_void_to_Integer (ptr Star_void) -> Integer external;

 operator Integer_to_Star_void (i Integer) -> Star_void external;

 default null;

} /* end value type Star_void; */

synonym sizeof_Star_void Integer = external /*Depends on the architecture.*/

/*

The parameterized type Star_type with a type as an actual parameter defines the typed pointer type

for the type.

It is possible to convert a Star_void (a pointer to void) to or from a pointer of any type. If a pointer

to a type is converted to a Star_void (a pointer to void) and back again, the result compares equal

to the original pointer. The operators to convert to each type from Star_void and from each type to

Star_void are defined in the typed pointer type for the type.

The operators Star_type_to_Integer and Integer_to_Star_type of Star_type convert to and

from Integer. It is required that:

 Star_type_to_Integer(Integer_to_Star_type(i))==i and

 Integer_to_Star_type(Star_type_to_Integer(p))==p and
 Star_void_to_Integer(Star_type_to_Star_void(p))==Star_type_to_Integer(p)

 and
 Star_void_to_Star_type(Integer_to_Star_void(i))== Integer_to_Star_type(i)
*/

abstract value type Star_type <type Atype, synonym sizeof_type Integer>{

 operator "&" (in/out x Atype) -> Star_type /* address of */

 {return Star_void_to_Star_type(<<type Atype>>"&"(x)}

 operator "*" (p Star_type) -> Atype external; /*dereference the Star_type */

 operator Star_type_to_Integer (p Star_type) -> Integer external;

 operator Integer_to_Star_type (i Integer) -> Star_type external;

 operator Star_type_to_Star_void (p Star_type) -> Star_void

 { return Integer_to_Star_void(Star_type_to_Integer(p)) }

 operator Star_void_to_Star_type (p Star_void) -> Star_type

 { return Integer_to_Star_type(Star_void_to_Integer(p))}

138 Rec. ITU-T Z.104 (04/2016)

 operator "+" (p Star_type, i Integer) -> Star_type /* pointer arithmetic - add */

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Signed_char) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Signed_short) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Signed_int) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Signed_long) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Signed_long_long) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Unsigned_char) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Unsigned_short) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Unsigned_int) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Unsigned_long) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "+" (p Star_type, i Unsigned_long_long) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) + i*sizeof_type) }

 operator "-" (p Star_type, i Integer) -> Star_type /* pointer arithmetic - sub */

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Signed_char) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Signed_short) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Signed_int) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Signed_long) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Signed_long_long) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Unsigned_char) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Unsigned_short) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Unsigned_int) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Unsigned_long) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 operator "-" (p Star_type, i Unsigned_long_long) -> Star_type

 { return Integer_to_Star_type(Star_type_to_Integer(p) - i*sizeof_type) }

 method "++" -> Star_type {this := this+1; return this }

 method "--" -> Star_type {this := this–1; return this }

 method postfix_inc-> r Star_type {r:= this; this:= r+1; return r }

 method postfix_dec-> r Star_type {r:= this; this:= r-1; return r }

 /* simple assignment */

 method "=" (p Star_type)->Star_type {this:=p;return this}

 method "=" (i Integer)->Star_type{this:=Integer_to_Star_type(i);return this}

 method "=" (i Signed_char)->Star_type{this:=Integer_to_Star_type(num(i));return

this}

 method "=" (i Signed_short)->Star_type

 {this:=Integer_to_Star_type(num(i));return this}

 method "=" (i Signed_int)->Star_type{this:=Integer_to_Star_type(num(i));return this}

 method "=" (i Signed_long)->Star_type{this:=Integer_to_Star_type(num(i));return

this}

 method "=" (i Signed_long_long)->Star_type

 {this:=Integer_to_Star_type(num(i));return this}

 method "=" (i Unsigned_char)->Star_type

 {this:=Integer_to_Star_type(num(i));return this}

 method "=" (i Unsigned_short)->Star_type

 {this:=Integer_to_Star_type(num(i));return this}

 method "=" (i Unsigned_int)->Star_type

 {this:=Integer_to_Star_type(num(i));return this}

 method "=" (i Unsigned_long)->Star_type

 {this:=Integer_to_Star_type(num(i));return this}

 method "=" (i Unsigned_long_long)->Star_type

 {this:=Integer_to_Star_type(num(i));return this}

 /* addition assignment */

 Rec. ITU-T Z.104 (04/2016) 139

 method "+=" (i Integer) -> Star_type {this:=this + i; return this}

 method "+=" (i Signed_char) -> Star_type {this:=this + i; return this}

 method "+=" (i Signed_short) -> Star_type {this:=this + i; return this}

 method "+=" (i Signed_int) -> Star_type {this:=this + i; return this}

 method "+=" (i Signed_long) -> Star_type {this:=this + i; return this}

 method "+=" (i Signed_long_long) -> Star_type {this:=this + i; return this}

 method "+=" (i Unsigned_char) -> Star_type {this:=this + i; return this}

 method "+=" (i Unsigned_short) -> Star_type {this:=this + i; return this}

 method "+=" (i Unsigned_int) -> Star_type {this:=this + i; return this}

 method "+=" (i Unsigned_long) -> Star_type {this:=this + i; return this}

 method "+=" (i Unsigned_long_long) -> Star_type {this:=this + i; return this}

 /* subtraction assignment */

 method "-=" (i Integer) -> Star_type {this:=this - i; return this}

 method "-=" (i Signed_char) -> Star_type {this:=this - i; return this}

 method "-=" (i Signed_short) -> Star_type {this:=this - i; return this}

 method "-=" (i Signed_int) -> Star_type {this:=this - i; return this}

 method "-=" (i Signed_long) -> Star_type {this:=this - i; return this}

 method "-=" (i Signed_long_long) -> Star_type {this:=this - i; return this}

 method "-=" (i Unsigned_char) -> Star_type {this:=this - i; return this}

 method "-=" (i Unsigned_short) -> Star_type {this:=this - i; return this}

 method "-=" (i Unsigned_int) -> Star_type {this:=this - i; return this}

 method "-=" (i Unsigned_long) -> Star_type {this:=this - i; return this}

 method "-=" (i Unsigned_long_long) -> Star_type {this:=this - i; return this}

 /* Other Assignment methods not defined for pointers. */

 default null;

}/* end parameterized value type Star_type

*/

C.1.6.4 C signed and unsigned char types

A C char is an 8-bit integer, also used to represent character.

*/

value type Signed_char

 inherits Integers <

 /*n*/ CHAR_BIT /*external, usually 8 */,

 /*Integer1*/ Signed_short,

 /*Integer2*/ Signed_int,

 /*Integer3*/ Signed_long,

 /*Integer4*/ Signed_long_long >

 (to_Signed_char = integer);

synonym sizeof_Signed_char Integer = (CHAR_BIT+7)/8 /*usually 1*/;

value type Star_Signed_char

 inherits Star_type < Signed_char, sizeof_Signed_char>

 { Star_Signed_char_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Signed_char = Star_void_to_Star_type,

 Star_Signed_char_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Signed_char = Integer_to_Star_type);

synonym sizeof_Star_Signed_char Integer = sizeof_Star_void;

value type Unsigned_char

 inherits Integeru <

 /*n*/ CHAR_BIT /*external, usually 8 */,

 /*Integer1*/ Unsigned_short,

 /*Integer2*/ Unsigned_int,

 /*Integer3*/ Unsigned_long,

 /*Integer4*/ Unsigned_long_long >

 (to_Unsigned_char = integer);

synonym sizeof_Unsigned_char Integer = sizeof_Signed_char;

value type Star_Unsigned_char

 inherits Star_type < Unsigned_char, sizeof_Unsigned_char>

 { Star_Unsigned_char_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Unsigned_char = Star_void_to_Star_type,

 Star_Unsigned_char_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Unsigned_char = Integer_to_Star_type)

{

 operator Star_Unsigned_char_to_Charstring (sc Star_Unsigned_char)-> cs

Charstring

 { cs := ""; /*empty string*/

 loop ("*"(sc)<>0) /* while character is not NUL */

 { cs := cs//mkstring(chr(num("*"(sc))); /* convert and add to result */

140 Rec. ITU-T Z.104 (04/2016)

 sc := (Star_Unsigned_char_Integer(sc) + sizeof_Signed_char); /*next char

*/

 } /* end of loop body*/

 return cs

 } /*end of Star_Unsigned_char_to_Charstring*/

 operator length(sc Star_Unsigned_char)-> Integer

 { return length(Star_Unsigned_char_to_Charstring(sc))}

} /*end of Star_Unsigned_char

synonym sizeof_Star_Unsigned_char Integer = sizeof_Star_void;

/*

C.1.6.5 C signed and unsigned short types

A C short is a 16-bit integer.

*/

value type Signed_short

 inherits Integers <

 /*n*/ SHRT_BIT /*external, usually 16 */,

 /*Integer1*/ Signed_char,

 /*Integer2*/ Signed_int,

 /*Integer3*/ Signed_long,

 /*Integer4*/ Signed_long_long >

 (to_Signed_short = integer);

synonym sizeof_Signed_short Integer = (SHRT_BIT+7)/8 /*usually 2*/;

value type Star_Signed_short

 inherits Star_type < Signed_short, sizeof_Signed_short>

 { Star_Signed_short_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Signed_short = Star_void_to_Star_type,

 Star_Signed_short_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Signed_short = Integer_to_Star_type);

synonym sizeof_Star_Signed_short Integer = sizeof_Star_void;

value type Unsigned_short

 inherits Integeru <

 /*n*/ SHRT_BIT /*external, usually 16 */,

 /*Integer1*/ Unsigned_char,

 /*Integer2*/ Unsigned_int,

 /*Integer3*/ Unsigned_long,

 /*Integer4*/ Unsigned_long_long >

 (to_Unsigned_short = integer);

synonym sizeof_Unsigned_short Integer = sizeof_Signed_short;

value type Star_Unsigned_short

 inherits Star_type < Unsigned_short, sizeof_Unsigned_short>

 { Star_Unsigned_short_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Unsigned_short = Star_void_to_Star_type,

 Star_Unsigned_short_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Unsigned_short = Integer_to_Star_type);

synonym sizeof_Star_Unsigned_short Integer = sizeof_Star_void;

/*

C.1.6.6 C signed and unsigned int types

A C int is a minimum of 16 bits.

*/

value type Signed_int

 inherits Integers <

 /*n*/ INT_BIT /*external, minimum 16 – same as short */,

 /*Integer1*/ Signed_char,

 /*Integer2*/ Signed_short,

 /*Integer3*/ Signed_long,

 /*Integer4*/ Signed_long_long >

 (to_Signed_int = integer);

synonym sizeof_Signed_int Integer = (INT_BIT+7)/8 /*minimum 2*/;

value type Star_Signed_int

 inherits Star_type < Signed_int, sizeof_Signed_int>

 { Star_Signed_int_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Signed_int = Star_void_to_Star_type,

 Star_Signed_int_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Signed_int = Integer_to_Star_type);

 Rec. ITU-T Z.104 (04/2016) 141

synonym sizeof_Star_Signed_int Integer = sizeof_Star_void;

value type Unsigned_int

 inherits Integeru <

 /*n*/ INT_BIT /*external, minimum 16 */,

 /*Integer1*/ Unsigned_char,

 /*Integer2*/ Unsigned_short,

 /*Integer3*/ Unsigned_long,

 /*Integer4*/ Unsigned_long_long >

 (to_Unsigned_int = integer);

synonym sizeof_Unsigned_int Integer = sizeof_Signed_int;

value type Star_Unsigned_int

 inherits Star_type < Unsigned_int, sizeof_Unsigned_int>

 { Star_Unsigned_int_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Unsigned_int = Star_void_to_Star_type,

 Star_Unsigned_int_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Unsigned_int = Integer_to_Star_type);

synonym sizeof_Star_Unsigned_int Integer = sizeof_Star_void;

/*

C.1.6.7 C signed and unsigned long types

A C long is a minimum of 32 bits.

*/

value type Signed_long

 inherits Integers <

 /*n*/ LONG_BIT /*external, minimum 32 – twice int */,

 /*Integer1*/ Signed_char,

 /*Integer2*/ Signed_short,

 /*Integer3*/ Signed_int,

 /*Integer4*/ Signed_long_long >

 (to_Signed_long = integer);

synonym sizeof_Signed_long Integer = (LONG_BIT+7)/8 /*minimum 4*/;

value type Star_Signed_long

 inherits Star_type < Signed_long, sizeof_Signed_long>

 { Star_Signed_long_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Signed_long = Star_void_to_Star_type,

 Star_Signed_long_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Signed_long = Integer_to_Star_type);

synonym sizeof_Star_Signed_long Integer = sizeof_Star_void;

value type Unsigned_long

 inherits Integeru <

 /*n*/ LONG_BIT /*external, minimum 32 */,

 /*Integer1*/ Unsigned_char,

 /*Integer2*/ Unsigned_short,

 /*Integer3*/ Unsigned_int,

 /*Integer4*/ Unsigned_long_long >

 (to_Unsigned_long = integer);

synonym sizeof_Unsigned_long Integer = sizeof_Signed_ilong;

value type Star_Unsigned_long

 inherits Star_type < Unsigned_long, sizeof_Unsigned_long>

 { Star_Unsigned_long_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Unsigned_long = Star_void_to_Star_type,

 Star_Unsigned_long_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Unsigned_long = Integer_to_Star_type);

synonym sizeof_Star_Unsigned_long Integer = sizeof_Star_void;

/*

C.1.6.8 C signed and unsigned long long types

A C long long is a minimum of 64 bits.

*/

value type Signed_long_long

 inherits Integers <

 /*n*/ LLONG_BIT /*external, minimum 64 – twice long */,

 /*Integer1*/ Signed_char,

 /*Integer2*/ Signed_short,

 /*Integer3*/ Signed_int,

 /*Integer4*/ Signed_long >

 (to_Signed_long_long = integer);

142 Rec. ITU-T Z.104 (04/2016)

synonym sizeof_Signed_long_long Integer = (LLONG_BIT+7)/8 /*minimum 8*/;

value type Star_Signed_long_long

 inherits Star_type < Signed_long_long, sizeof_Signed_long_long>

 { Star_Signed_long_long_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Signed_long_long = Star_void_to_Star_type,

 Star_Signed_long_long_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Signed_long_long = Integer_to_Star_type);

synonym sizeof_Star_Signed_long_long Integer = sizeof_Star_void;

value type Unsigned_long_long

 inherits Integeru <

 /*n*/ LLONG_BIT /*external, minimum 64 */,

 /*Integer1*/ Unsigned_char,

 /*Integer2*/ Unsigned_short,

 /*Integer3*/ Unsigned_int,

 /*Integer4*/ Unsigned_long >

 (to_Unsigned_long = integer);

synonym sizeof_Unsigned_long_long Integer = sizeof_Signed_long_long;

value type Star_Unsigned_long_long

 inherits Star_type < Unsigned_long_long, sizeof_Unsigned_long_long>

 { Star_Unsigned_long_long_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Unsigned_long_long = Star_void_to_Star_type,

 Star_Unsigned_long_long_to_Integer = Star_type_to_Integer,

 Integer_to_Star_Unsigned_long_long = Integer_to_Star_type);

synonym sizeof_Star_Unsigned_long_long Integer = sizeof_Star_void;

/*

C.1.6.9 C floating numbers types

C has three different floating types: Float, Double and Long_double with potentially different levels

of precision and range of the values. By contrast, <<package Predefined>>Real in theory can

represent values to any level of precision and an unbounded range. In practice the implementation of

floating numbers is (usually) dependent on hardware support and therefore is implementation

dependent. The 3 types (Float, Double and Long_double) are therefore considered formally

equivalent in this Recommendation except the size of each as defined by synonyms below, so that

Double and Long_double are each defined as a syntype of Float.

*/

syntype Double = Float {} /* alternative name for Float */

syntype Long_double = Float {} /* alternative name for Float */

synonym sizeof_Float Integer = external /* at least 4 */;

synonym sizeof_Double Integer = external /* at least 8 */;

synonym sizeof_Long_double Integer = external /* at least 16 */;

/*

A new value type is introduced for Float (rather than define a syntype of Real) to define arithmetic

operators (such as "+" between each of the C integer types and Float. An operator such as "+" is

defined between Float and each of the following: Real, Integer, Signed_char, Unsigned_char,

Signed_short, Unsigned_short, Signed_int, Unsigned_int, Signed_long, Unsigned_long,

Signed_long_long and Unsigned_long_long. The corresponding operator is also defined in each

case where the sorts of the parameters are interchanged so the second parameter sort is Float and for

the case where both parameter sorts are Float. The result sort of each arithmetic operator is Real.

For each such operator name there are therefore 25 signatures.

Comparison operators ("==","!=","<",">","<=",">=") are defined between the pairs of sorts as

above, but also for both Boolean and Integer results. For each such operator name there are therefore

50 signatures.

Assignment expression methods ("=","*=","/=","+=","-=") are defined where the right-hand side is

a Float, Integer Real or C integer type and the result is the Real value of the updated Float

variable.

The operators between C integer types and Float are defined with the type for the integer rather than

below, to shorten the description of Float.

 Rec. ITU-T Z.104 (04/2016) 143

Similar to integers, it is assumed that the result of all operators (except comparisons or "&" for

pointers) involving floating numbers is a Real. Also, there are no literals for Float: the constructor

is the operator
 to_Float (Real) -> Float;

To shorten the description of Float below, for each operation only the <operation definition> is given

from which the <operation signature> is constructed (see the Model part of clause 12.1.7).
value type Float {

 literals unordered; /* "<", ">","<=",">=", first, last, pred, succ,

 and num are not implicitly defined

 operators and methods signature lists are constructed from the definitions

 of the operations below */

 operator to_Real (f Float) -> Real external;

 operator to_Float(r Real) ->Float external; /* constructor */

 /* the casting operators are not formally defined.

 It is assumed that:

 to_Real (to_Float(r)) has the value r, and

 to_Float (to_Real(f)) has the value f. */

 operator Integer_to_Float(i Integer) ->Float {return to_Float(float(i))}

 operator "&" (f Float)-> Void_star external; /* 'address of' operator.*/

 operator "+"(f Float)-> Real{return to_Real(f)} /*unary plus */

 operator "-"(f Float)-> Real{return -to_Real(f)} /*unary minus*/

 /* addition */

 operator "+"(f1 Float, f2 Float)-> Real{return to_Real(f1) + to_Real(f2)}

 operator "+"(f Float, r Real)-> Real{return to_Real(f) + r}

 operator "+"(r Real, f Float)-> Real{return to_Real(f) + r}

 operator "+"(f Float, i Integer)-> Real{return to_Real(f) + float(i)}

 operator "+"(i Integer, f Float)-> Real{return to_Real(f) + float(i)}

 /* subtraction */

 operator "-"(f1 Float, f2 Float)-> Real{return to_Real(f1) - to_Real(f2)}

 operator "-"(f Float, r Real)-> Real{return to_Real(f) - r}

 operator "-"(r Real, f Float)-> Real{return r - to_Real(f) }

 operator "-"(f Float, i Integer)-> Real{return to_Real(f) - float(i)}

 operator "-"(i Integer, f Float)-> Real{return float(i) - to_Real(f)}

 /* multiplication */

 operator "*"(f1 Float, f2 Float)-> Real{return to_Real(f1) * to_Real(f2)}

 operator "*"(f Float, r Real)-> Real{return to_Real(f) * r}

 operator "*"(r Real, f Float)-> Real{return to_Real(f) * r}

 operator "*"(f Float, i Integer)-> Real{return to_Real(f) * float(i)}

 operator "*"(i Integer, f Float)-> Real{return to_Real(f) * float(i)}

 /* division */

 operator "/"(f1 Float, f2 Float)-> Real{return to_Real(f1) / to_Real(f2)}

 operator "/"(f Float, r Real)-> Real{return to_Real(f) / r}

 operator "/"(r Real, f Float)-> Real{return r / to_Real(f)}

 operator "/"(f Float, i Integer)-> Real{return to_Real(f) / float(i)}

 operator "/"(i Integer, f Float)-> Real{return to_Real(i) / float(f)}

 /* equal to – Boolean result */

 operator "=="(f1 Float,f2 Float)-> Boolean{return to_Real(f1)=to_Real(f2)}

 operator "=="(f Float, r Real)-> Boolean{return to_Real(f) = r}

 operator "=="(r Real, f Float)-> Boolean{return r = to_Real(f)}

 operator "=="(f Float, i Integer)-> Boolean{return to_Real(f) = float(i)}

 operator "=="(i Integer, f Float)-> Boolean{return float(i) = to_Real(f)}

 /* not equal to – Boolean result */

 operator "!="(f1 Float,f2 Float)->Boolean{return to_Real(f1)/=to_Real(f2)}

 operator "!="(f Float, r Real)-> Boolean{return to_Real(f) /= r}

 operator "!="(r Real, f Float)-> Boolean{return r /= to_Real(f)}

 operator "!="(f Float, i Integer)-> Boolean{return to_Real(f) /= float(i)}

 operator "!="(i Integer, f Float)-> Boolean{return float(i) /= to_Real(f)}

 /* less than – Boolean result */

 operator "<"(f1 Float,f2 Float)-> Boolean{return to_Real(f1)<to_Real(f2)}

 operator "<"(f Float, r Real)-> Boolean{return to_Real(f) < r}

 operator "<"(r Real, f Float)-> Boolean{return r < to_Real(f)}

 operator "<"(f Float, i Integer)-> Boolean{return to_Real(f) < float(i)}

 operator "<"(i Integer, f Float)-> Boolean{return float(i) < to_Real(f)}

 /* greater than - Boolean result */

144 Rec. ITU-T Z.104 (04/2016)

 operator ">"(f1 Float,f2 Float)-> Boolean{return to_Real(f1)>to_Real(f2)}

 operator ">"(f Float, r Real)-> Boolean{return to_Real(f) > r}

 operator ">"(r Real, f Float)-> Boolean{return r > to_Real(f)}

 operator ">"(f Float, i Integer)-> Boolean{return to_Real(f) > float(i)}

 operator ">"(i Integer, f Float)-> Boolean{return float(i) > to_Real(f)}

 /* less than or equal – Boolean result */

 operator"<="(f1 Float,f2 Float)-> Boolean{return to_Real(f1)<=to_Real(f2)}

 operator"<="(f Float, r Real)-> Boolean{return to_Real(f) <= r}

 operator"<="(r Real, f Float)-> Boolean{return r <= to_Real(f)}

 operator"<="(f Float, i Integer)-> Boolean{return to_Real(f) <= float(i)}

 operator"<="(i Integer, f Float)-> Boolean{return float(i) <= to_Real(f)}

 /* greater than or equal - Boolean result */

 operator">="(f1 Float,f2 Float)-> Boolean{return to_Real(f1)>=to_Real(f2)}

 operator">="(f Float, r Real)-> Boolean{return to_Real(f) >= r}

 operator">="(r Real, f Float)-> Boolean{return r >= to_Real(f)}

 operator">="(f Float, i Integer)-> Boolean{return to_Real(f) >= float(i)}

 operator">="(i Integer, f Float)-> Boolean{return float(i) >= to_Real(f)}

 /* equal to – Integer result */

 operator "=="(f1 Float,f2 Float)-> Integer

 {return if to_Real(f1)=to_Real(f2)then 1 else 0 fi}

 operator "=="(f Float, r Real)-> Integer{return if to_Real(f) = rthen 1 else 0 fi}

 operator "=="(r Real, f Float)-> Integer{return if r = to_Real(f)then 1 else 0 fi}

 operator "=="(f Float, i Integer)-> Integer

 {return if to_Real(f) = float(i)then 1 else 0 fi}

 operator "=="(i Integer, f Float)-> Integer

 {return if float(i) = to_Real(f)then 1 else 0 fi}

 /* not equal to – Integer result */

 operator "!="(f1 Float,f2 Float)->Integer

 {return if to_Real(f1)/=to_Real(f2)then 1 else 0 fi}

 operator "!="(f Float, r Real)-> Integer{return if to_Real(f) /= rthen 1 else 0

fi}

 operator "!="(r Real, f Float)-> Integer{return if r /= to_Real(f)then 1 else 0

fi}

 operator "!="(f Float, i Integer)-> Integer

 {return if to_Real(f) /= float(i)then 1 else 0 fi}

 operator "!="(i Integer, f Float)-> Integer

 {return if float(i) /= to_Real(f)then 1 else 0 fi}

 /* less than – Integer result */

 operator "<"(f1 Float,f2 Float)-> Integer

 {return if to_Real(f1)<to_Real(f2) then 1 else 0 fi}

 operator "<"(f Float, r Real)-> Integer{return if to_Real(f) < r then 1 else 0 fi}

 operator "<"(r Real, f Float)-> Integer{return if r < to_Real(f) then 1 else 0 fi}

 operator "<"(f Float, i Integer)-> Integer

 {return if to_Real(f) < float(i) then 1 else 0 fi}

 operator "<"(i Integer, f Float)-> Integer

 {return if float(i) < to_Real(f) then 1 else 0 fi}

 /* greater than - Integer result */

 operator ">"(f1 Float,f2 Float)-> Integer

 {return if to_Real(f1)>to_Real(f2) then 1 else 0 fi}

 operator ">"(f Float, r Real)-> Integer{return if to_Real(f) > r then 1 else 0 fi}

 operator ">"(r Real, f Float)-> Integer{return if r > to_Real(f) then 1 else 0 fi}

 operator ">"(f Float, i Integer)-> Integer

 {return if to_Real(f) > float(i) then 1 else 0 fi}

 operator ">"(i Integer, f Float)-> Integer

 {return if float(i) > to_Real(f) then 1 else 0 fi}

 /* less than or equal – Integer result */

 operator"<="(f1 Float,f2 Float)-> Integer

 {return if to_Real(f1)<=to_Real(f2) then 1 else 0 fi}

 operator"<="(f Float, r Real)-> Integer{return if to_Real(f) <= r then 1 else 0

fi}

 operator"<="(r Real, f Float)-> Integer{return if r <= to_Real(f) then 1 else 0

fi}

 operator"<="(f Float, i Integer)-> Integer

 {return if to_Real(f) <= float(i) then 1 else 0 fi}

 operator"<="(i Integer, f Float)-> Integer

 Rec. ITU-T Z.104 (04/2016) 145

 {return if float(i) <= to_Real(f) then 1 else 0 fi}

 /* greater than or equal - Integer result */

 operator">="(f1 Float,f2 Float)-> Integer

 {return if to_Real(f1)>=to_Real(f2) then 1 else 0 fi}

 operator">="(f Float, r Real)-> Integer{return if to_Real(f) >= r then 1 else 0

fi}

 operator">="(r Real, f Float)-> Integer{return if r >= to_Real(f) then 1 else 0

fi}

 operator">="(f Float, i Integer)-> Integer

 {return if to_Real(f) >= float(i) then 1 else 0 fi}

 operator">="(i Integer, f Float)-> Integer

 {return if float(i) >= to_Real(f) then 1 else 0 fi}

 /* Simple assignment */

 method " =" (f Float) -> Real {this:=f; return to_Real(this)}
 method " =" (r Real) -> Real {this:=to_Float(r); return to_Real(this)}
 method " =" (i Integer) -> Real {this:=to_Float(float(i)); return to_Real(this)}
 method " =" (i Signed_char) -> Real

 {this:=to_Float(float(num(i))); return to_Real(this)}

 method " =" (i Signed_short) -> Real
 {this:=to_Float(float(num(i))); return to_Real(this)}

 method " =" (i Signed_int) -> Real
 {this:=to_Float(float(num(i))); return to_Real(this)}

 method " =" (i Signed_long) -> Real
 {this:=to_Float(float(num(i))); return to_Real(this)}

 method " =" (i Signed_long_long) -> Real
 {this:=to_Float(float(num(i))); return to_Real(this)}

 method " =" (i Unsigned_char) -> Real
 {this:=to_Float(float(num(i))); return to_Real(this)}

 method " =" (i Unsigned_short) -> Real
 {this:=to_Float(float(num(i))); return to_Real(this)}

 method " =" (i Unsigned_int) -> Real
 {this:=to_Float(float(num(i))); return to_Real(this)}

 method " =" (i Unsigned_long) -> Real
 {this:=to_Float(float(num(i))); return to_Real(this)}

 method " =" (i Unsigned_long_long) -> Real
 {this:=to_Float(float(num(i))); return to_Real(this)}

 /* multiplication assignment */

 method " *=" (f Float) -> Real {this:=this * f; return to_Real(this)}
 method " *=" (r Real) -> Real {this:=this * r; return to_Real(this)}
 method " *=" (i Integer) -> Real {this:=this * i; return to_Real(this)}
 method " *=" (i Signed_char) -> Real {this:=this * i; return to_Real(this)}
 method " *=" (i Signed_short) -> Real {this:=this * i; return to_Real(this)}
 method " *=" (i Signed_int) -> Real {this:=this * i; return to_Real(this)}
 method " *=" (i Signed_long) -> Real {this:=this * i; return to_Real(this)}
 method " *=" (i Signed_long_long) -> Real {this:=this * i; return to_Real(this)}
 method " *=" (i Unsigned_char) -> Real {this:=this * i; return to_Real(this)}
 method " *=" (i Unsigned_short) -> Real {this:=this * i; return to_Real(this)}
 method " *=" (i Unsigned_int) -> Real {this:=this * i; return to_Real(this)}
 method " *=" (i Unsigned_long) -> Real {this:=this * i; return to_Real(this)}

 method " *=" (i Unsigned_long_long) -> Real {this:=this * i; return to_Real(this)}

 /* division assignment */

 method " /=" (f Float) -> Real {this:=this / f; return to_Real(this)}
 method " /=" (r Real) -> Real {this:=this / r; return to_Real(this)}
 method " /=" (i Integer) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Signed_char) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Signed_short) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Signed_int) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Signed_long) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Signed_long_long) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Unsigned_char) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Unsigned_short) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Unsigned_int) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Unsigned_long) -> Real {this:=this / i; return to_Real(this)}
 method " /=" (i Unsigned_long_long) -> Real {this:=this / i; return to_Real(this)}

 /* addition assignment */

 method " +=" (f Float) -> Real {this:=this + f; return to_Real(this)}
 method " +=" (r Real) -> Real {this:=this + r; return to_Real(this)}
 method " +=" (i Integer) -> Real {this:=this + i; return to_Real(this)}
 method " +=" (i Signed_char) -> Real {this:=this + i; return to_Real(this)}
 method " +=" (i Signed_short) -> Real {this:=this + i; return to_Real(this)}

146 Rec. ITU-T Z.104 (04/2016)

 method " +=" (i Signed_int) -> Real {this:=this + i; return to_Real(this)}
 method " +=" (i Signed_long) -> Real {this:=this + i; return to_Real(this)}
 method " +=" (i Signed_long_long) -> Real {this:=this + i; return to_Real(this)}
 method " +=" (i Unsigned_char) -> Real {this:=this + i; return to_Real(this)}
 method " +=" (i Unsigned_short) -> Real {this:=this + i; return to_Real(this)}
 method " +=" (i Unsigned_int) -> Real {this:=this + i; return to_Real(this)}
 method " +=" (i Unsigned_long) -> Real {this:=this + i; return to_Real(this)}
 method " +=" (i Unsigned_long_long) -> Real {this:=this + i; return to_Real(this)}

 /* subtraction assignment */

 method " -=" (f Float) -> Real {this:=this - f; return to_Real(this)}
 method " -=" (r Real) -> Real {this:=this - r; return to_Real(this)}
 method " -=" (i Integer) -> Real {this:=this - i; return to_Real(this)}
 method " -=" (i Signed_char) -> Real {this:=this - i; return to_Real(this)}
 method " -=" (i Signed_short) -> Real {this:=this - i; return to_Real(this)}
 method " -=" (i Signed_int) -> Real {this:=this - i; return to_Real(this)}
 method " -=" (i Signed_long) -> Real {this:=this - i; return to_Real(this)}
 method " -=" (i Signed_long_long) -> Real {this:=this - i; return to_Real(this)}
 method " -=" (i Unsigned_char) -> Real {this:=this - i; return to_Real(this)}

 method " -=" (i Unsigned_short) -> Real {this:=this - i; return to_Real(this)}
 method " -=" (i Unsigned_int) -> Real {this:=this - i; return to_Real(this)}
 method " -=" (i Unsigned_long) -> Real {this:=this - i; return to_Real(this)}
 method " -=" (i Unsigned_long_long) -> Real {this:=this - i; return to_Real(this)}

 /* Assignment methods with names " %=" (remainder), " <<=" (shift left),
 " >>=" (shift right), " &=" (logical and>, " ^=" (logical xor),
 and " |=" (logical or) are not defined for Float */
 default to_Float(0.0);

} /* end value type Float*/

value type Star_Float

 inherits Star_type < Float, sizeof_Float >

 { Star_Float_to_Star_void = Star_type_to_Star_void,

 Star_void_to_Star_Float = Star_void_to_Star_type);

synonym sizeof_Star_Float Integer = sizeof_Star_void;

/*

C.1.6.10 Parameterized type for arrays Cvector

Cvector is used to define the types of arrays.

*/

value type Cvector < type Itemsort; synonym MaxIndex Integer >

 inherits Array< Indexsort, Itemsort >

 {syntype Indexsort = Integer constants 0:MaxIndex-1;}

/* end value type Cvector

C.1.6.11 Package end
*/

endpackage C_Predefined;

/* */

 Rec. ITU-T Z.104 (04/2016) 147

Bibliography

[b-ISO/IEC 9899] ISO/IEC 9899:2011, Information technology – Programming languages – C.

Printed in Switzerland
Geneva, 2016

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	1 Scope and objective
	1.1 Objective
	1.2 Application

	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 General rules
	7 Organization of Specification and Description Language specifications
	7.1 Framework
	7.2 Package
	<package use clause> ::=
	<data binding> ::=

	7.3 Referenced definition
	<definition> ::=

	8 Structural concepts
	8.1 Types, instances and gates
	8.1.1 Structural type definitions
	8.1.2 Type expressions
	8.1.3 Abstract types
	8.1.4 Gates with encoding rules
	Gate-definition :: Gate-name
	<gate definition> ::=
	<interface gate definition> ::=
	<as gate> ::=

	8.2 Type references and operation references
	<operation kind> ::=

	8.3 Context parameters
	8.4 Specialization

	9 Agents
	10 Communication
	10.1 Channel
	Abstract grammar
	Channel-definition :: Channel-name
	<channel definition area> ::=
	<as channel> ::=

	10.2 Connection
	10.3 Signal
	<signal definition> ::=
	<named fields sort list> ::=
	<as signal> ::=

	10.4 Signal list area
	10.5 Remote procedures
	10.6 Remote variables
	10.7 Communication path encoding rules, encode and decode
	Encoding-rules :: Rules-identifier
	Encoding-expression :: Signal-identifier
	Encoding-path :: { Gate-identifier |
	Decoding-expression :: Expression
	Rules-identifier :: Literal-identifier
	<encoding rules> ::=
	<rules identifier> ::=
	<encoding expression> ::=
	<encoding path> ::=
	<decoding expression> ::=
	10.7.1 The set of text encoding rules
	10.7.2 The sets of encoding rules standardized in the ITU-T X.69x series

	11 Behaviour
	11.1 Start
	11.2 State
	11.3 Input
	Input-node :: [Priority-name]
	In-choice :: Variable-identifier
	<input list> ::=
	<in choice> ::=
	<encoded input> ::=

	11.4 Priority input
	11.5 Continuous signal
	11.6 Enabling condition
	11.7 Save
	11.8 Implicit transition
	11.9 Spontaneous transition
	11.10 Label
	11.11 State machine and composite state
	11.12 Transition
	11.13 Action
	11.13.1 Task
	11.13.2 Create
	11.13.3 Procedure call
	11.13.4 Output
	Output-node :: { Signal-identifier Actual-parameters | Expression | Encoded-expression}
	Encoded-expression = Expression
	<output body item> ::=
	<expression output> ::=
	<encoded output> ::=

	11.13.5 Decision

	11.14 Statement list
	11.15 Timer

	12 Data
	12.1 Data definitions
	<sort> ::=
	<inline data type definition> ::=
	<inline syntype definition> ::=
	<basic sort> ::=
	<anchored sort> ::=
	12.1.1 Data type definition
	<entity in data type> ::=
	<data type definition> ::=
	<data type heading> ::=
	<legacy data type definition> ::=
	<legacy generators> ::=
	<legacy generator actual> ::=

	12.1.2 Interface definition
	<interface definition> ::=
	<interface heading> ::=
	<entity in interface> ::=
	<interface variable definition> ::=
	<interface procedure definition> ::=
	<as interface> ::=

	12.1.3 Operation signature
	<operation signatures> ::=
	<legacy operator signatures> ::=
	<legacy operator signature> ::=
	<method list> ::=
	<operation signature> ::=
	<operation preamble> ::=

	12.1.4 Generic data type operations
	12.1.5 Pid and pid sorts
	12.1.6 Data type constructors
	12.1.6.1 Literals
	<literal list> ::=

	12.1.6.2 Structure data types
	<structure definition> ::=
	<fields of sort> ::=
	Semantics

	12.1.6.3 Choice data types
	<choice definition> ::=
	<choice of sort> ::=

	12.1.7 Behaviour of operations
	<operation definition item> ::=
	<operation definition> ::=
	<operation heading> ::=
	<formal operation parameters> ::=
	<entity in operation> ::=
	<operation result> ::=
	<external operation definition> ::=
	<operation diagram> ::=
	<operation text area> ::=
	<legacy operator definition> ::=
	<start> is defined in [ITU-T Z.106].
	<legacy operator reference> ::=
	<legacy external operator definition> ::=

	12.1.8 Additional data definition constructs
	12.1.8.1 Syntypes
	<syntype definition> ::=
	<syntype definition data type> ::=
	<legacy syntype definition> ::=

	12.1.8.2 Constraint
	12.1.8.3 Synonym definition
	<synonym definition> ::=
	<synonym definition item> ::=
	<internal synonym definition item> ::=
	<external synonym definition item> ::=

	12.1.8.4 Restricted visibility
	<visibility> ::=

	12.1.9 Specialization of data types
	<data type specialization> ::=
	<interface specialization> ::=
	<renaming> ::=
	<rename list> ::=
	<rename pair> ::=
	<rename pair operation name> ::=
	<rename pair literal name> ::=
	<legacy data inheritance> ::=
	<legacy literal renaming> ::=
	<legacy inheritance list> ::=
	<legacy inherited operator> ::=

	12.2 Use of data
	12.2.1 Expression and expressions as actual parameters
	Constant-expression :: Literal
	Agent-instance-pid-value = Agent-instance*
	Agent-instance = Agent-name Instance-number
	Instance-number = Expression
	Active-expression = Variable-access
	<expression0> ::=
	<agent instance pid value> ::=
	<agent instance> ::=
	<primary> ::=

	12.2.2 Literal
	12.2.3 Extended primary
	<field primary> ::=
	<field number> ::=

	12.2.4 Equality expression
	12.2.5 Conditional expression
	12.2.6 Operation application
	<operation application> ::=
	<method application> ::=

	12.2.7 Range check expression
	12.2.8 Synonym
	<synonym> ::=

	12.3 Active use of data
	12.3.1 Variable definition
	12.3.2 Variable access
	<variable access> ::=

	12.3.3 Assignment
	12.3.3.1 Extended variable
	<field variable> ::=

	12.3.3.2 Default initialization
	<default initialization> ::=

	12.3.4 Imperative expression
	Imperative-expression = Now-expression
	<imperative expression> ::=
	12.3.4.1 Now expression
	12.3.4.2 Pid expression
	<create expression> ::=

	12.3.4.3 Timer active expression and timer remaining duration
	12.3.4.4 Active agents expression
	12.3.4.5 Import expression
	12.3.4.6 Any expression
	Any-expression :: Sort-reference-identifier
	<any expression> ::=

	12.3.4.7 State expression
	State-expression :: { }
	Concrete grammar
	<state expression> ::=

	12.3.4.8 Signal expression
	Signal-expression :: { }
	Concrete grammar
	<signal expression> ::=

	12.3.4.9 Signallist expression
	Signallist-expression :: { }
	Concrete grammar
	<signallist expression> ::=
	<as signallist> ::=

	12.3.5 Value returning procedure call
	<value returning procedure call> ::=

	13 Generic system definition
	14 Package Predefined
	14.1 Boolean sort
	14.1.1 Definition
	14.1.2 Usage

	14.2 Character sort
	14.2.1 Definition
	14.2.2 Usage

	14.3 String sort
	14.3.1 Definition
	14.3.2 Usage

	14.4 Charstring sort
	14.4.1 Definition
	14.4.2 Usage

	14.5 Integer sort
	14.5.1 Definition
	14.5.2 Usage

	14.6 Natural syntype
	14.6.1 Definition

	14.6.2 Usage
	14.7 Real sort
	14.7.1 Definition
	14.7.2 Usage

	14.8 Array sort
	14.8.1 Definition
	14.8.2 Usage

	14.9 Vector
	14.9.1 Definition

	14.10 Powerset sort
	14.10.1 Definition
	14.10.2 Usage

	14.11 Duration sort
	14.11.1 Definition
	14.11.2 Usage

	14.12 Time sort
	14.12.1 Definition
	14.12.2 Usage

	14.13 Bag sort
	14.13.1 Definition
	14.13.2 Usage

	14.14 ASN.1 Bit and Bitstring sorts
	14.14.1 Definition

	14.15 ASN.1 Octet and Octetstring sorts
	14.15.1 Definition

	14.16 Pid sort
	14.16.1 Definition

	14.17 Encoding sort
	14.18 Support for ASN.1 character, symbol string and NULL types
	14.19 Predefined exceptions

	Annex A Abstract data types and axioms
	A.1 Introduction
	A.2 Notation
	A.2.1 Axioms
	<axiomatic operation definitions> ::=
	<axioms> ::=
	<equation> ::=
	<unquantified equation> ::=
	<term> ::=
	<quantified equations> ::=
	<quantification> ::=

	A.2.2 Conditional equations
	<conditional equation> ::=
	<restricted equation> ::=
	<restriction> ::=

	A.2.3 Equality
	<noequality> ::=

	A.2.4 Boolean axioms
	<Boolean axiom> ::=

	A.2.5 Conditional term
	A.2.6 Error term
	<error term> ::=

	A.2.7 Unordered literals
	<unordered> ::=

	A.2.8 Literal equations
	<literal equation> ::=
	<literal quantification> ::=

	A.2.9 Name class
	<name class literal> ::=
	<name class operation> ::=
	<regular expression> ::=
	<partial regular expression> ::=
	<regular element> ::=
	<regular interval> ::=

	A.2.10 Name class mapping
	<spelling term> ::=

	Annex B Specification of the set of text encoding rules
	B.1 Boolean
	B.2 Character
	B.3 String
	B.4 Charstring, IA5String, NumericString, PrintableString, VisibleString
	B.5 Integer
	B.6 Natural
	B.7 Real
	B.8 Array
	B.9 Vector
	B.10 Powerset
	B.11 Duration
	B.12 Time
	B.13 Bag
	B.14 Bit, Bitstring
	B.15 Octet, Octetstring
	B.16 Pid, pid sorts
	B.17 Null
	B.18 Enumerated (literal list)
	B.19 Structures
	B.20 Choice
	B.21 Inherits and syntype

	Annex C Language binding
	C.1 C Language binding
	C.1.1 Extensions to lexical rules
	<lexical unit> ::=
	C.1.1.1 C keywords
	C.1.1.2 C integer constants
	<integer name> ::=
	<c integer constant> ::=
	<c decimal constant> ::=
	<c octal constant> ::=
	<c hexadecimal constant> ::=
	<c hexadecimal prefix> ::=
	<c nonzero digit> ::=
	<c octal digit> ::=
	<c hexadecimal digit> ::=

	C.1.1.3 C composite specials
	<composite special> ::=
	<c pointer operator> ::=
	<c shift left sign> ::=
	<c shift right sign> ::=
	<c increment operator> ::=
	<c decrement operator> ::=
	<c equality sign> ::=
	<c inequality sign> ::=
	<c logical and sign> ::=
	<c logical or sign> ::=
	<c multiplication assignment sign> ::=
	<c division assignment sign> ::=
	<c remainder assignment sign> ::=
	<c addition assignment sign> ::=
	<c subtraction assignment sign> ::=
	<c shift left assignment sign> ::=
	<c shift right assignment sign> ::=
	<c bitwise and assignment sign> ::=
	<c bitwise excl or assignment sign> ::=
	<c bitwise incl or assignment sign> ::=

	C.1.1.4 C character constants
	<c character constant> ::=
	<c char sequence> ::=
	<c char> ::=

	C.1.1.5 C string literals
	<c string literal> ::=
	<c s char sequence> ::=
	<c s char> ::=
	<c other character> ::=
	<c escape sequence> ::=
	<c simple escape sequence> ::=
	<c octal escape sequence> ::=
	<c hexadecimal escape sequence> ::=

	C.1.1.6 C identifiers, name resolution and visibility
	<c identifier> ::=

	C.1.1.7 Macros and pre-processing

	C.1.2 Data type definition
	<data definition> ::=
	<c type definition> ::=
	<c declarator> ::=
	<c direct declarator> ::=
	<c pointer> ::=
	<c type qualifier list> ::=
	C.1.2.1 Data type specifier
	<c type specifier> ::=
	<c type keywords> ::=

	C.1.2.2 Struct or union specifier
	<c struct or union specifier>::
	<c struct or union> ::=
	<c struct declaration list> ::=
	<c struct declaration> ::=
	<c specifier qualifier list> ::=
	<c struct declarator list> ::=
	<c struct declarator> ::=

	C.1.2.3 Enum specifier
	<c enum specifier> ::=
	<c enumerator list> ::=
	<c enumerator> ::=
	<c enumeration constant> ::=

	C.1.2.4 Sizeof data types

	C.1.3 Use of C variable definitions
	<variable definition> ::=
	<c declaration> ::=
	<c declaration specifiers> ::=
	<c storage class specifier> ::=
	<c type qualifier> ::=
	<c init declarator list> ::=
	<c init declarator> ::=
	<c initializer> ::=
	<c initializer list> ::=

	C.1.4 Use of C expressions
	<expression> ::=
	<c expression> ::=
	C.1.4.1 Assignment expression
	<c assignment expression> ::=
	<c assignment operator> ::=

	C.1.4.2 Conditional expression
	<c conditional expression> ::=
	<c constant expression> ::=

	C.1.4.3 Logical and bitwise operation expressions
	<c logical or expression> ::=
	<c logical and expression> ::=
	<c inclusive or expression> ::=
	<c exclusive or expression> ::=
	<c and expression> ::=

	C.1.4.4 Equality and relational expressions
	<c equality expression> ::=
	<c relational expression> ::=

	C.1.4.5 Bit shift expressions
	<c shift expression> ::=

	C.1.4.6 Binary operation expressions
	<c additive expression> ::=
	<c multiplicative expression> ::=

	C.1.4.7 Cast expressions
	<c cast expression> ::=
	<c type name> ::=

	C.1.4.8 Unary operation expression
	<c unary expression> ::=
	<c unary operator> ::=

	C.1.4.9 Postfix expression
	<c postfix expression> ::=
	<c call expression> ::=
	<c argument expression list> ::=

	C.1.4.10 Primary expression
	<c primary expression> ::=
	<c constant> ::=

	C.1.5 Use of C statements
	C.1.5.1 Compound statement
	Compound-node :: Connector-name
	<compound statement> ::=

	C.1.5.2 Non-terminating and terminating statement
	<non terminating statement> ::=
	<terminating statement> ::=

	C.1.5.3 Labeled statement
	<c labeled statement> ::=

	C.1.5.4 C statement
	<c statement> ::=
	<c expression statement> ::=
	<c assignment statement> ::=

	C.1.5.5 C selection statement
	<c selection statement> ::=

	C.1.5.6 C iteration and jump statements
	<c iteration statement> ::=
	<c jump statement> ::=

	C.1.6 Package C_Predefined
	C.1.6.1 Numerical limits
	C.1.6.1.1 Private limits
	C.1.6.1.2 Sizes of integer types
	C.1.6.1.3 Characteristics of floating types
	C.1.6.1.4 Sizes of package Predefined types

	C.1.6.2 Parameterized types for integers
	C.1.6.2.1 Integern for a generic integer type with n bits
	C.1.6.2.2 Integers for a signed integer type with n bits
	C.1.6.2.3 Integeru for an unsigned integer type with n bits

	C.1.6.3 Types for void and pointers
	C.1.6.4 C signed and unsigned char types
	C.1.6.5 C signed and unsigned short types
	C.1.6.6 C signed and unsigned int types
	C.1.6.7 C signed and unsigned long types
	C.1.6.8 C signed and unsigned long long types
	C.1.6.9 C floating numbers types
	C.1.6.10 Parameterized type for arrays Cvector
	C.1.6.11 Package end

	Bibliography

