|

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.105

TELECOMMUNICATION (10/2001)
STANDARDIZATION SECTOR
OF ITU

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) — Specification and
Description Language (SDL)

SDL combined with ASN.1 modules (SDL/ASN.1)

ITU-T Recommendation Z.105

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) 7.100-Z.109

Application of Formal Description Techniques Z.110-Z.119

Message Sequence Chart 7.120-Z.129
PROGRAMMING LANGUAGES

CHILL: The ITU-T programming language 7.200-Z.209
MAN-MACHINE LANGUAGE

General principles 7.300-Z.309

Basic syntax and dialogue procedures 7.310-Z.319

Extended MML for visual display terminals 7.320-72.329

Specification of the man-machine interface 7.330-2.399
QUALITY OF TELECOMMUNICATION SOFTWARE 7.400-Z.499
METHODS FOR VALIDATION AND TESTING Z2.500-Z.599

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation Z.105

SDL combined with ASN.1 modules (SDL/ASN.1)

Summary

This Recommendation defines how Abstract Syntax Notation One (ASN.1) modules can be used in
combination with Specification and Description Language (SDL). This text replaces the semantic
mappings from ASN.1 to SDL defined in ITU-T Rec. Z.105 (1999). The use of ASN.I notation
embedded in SDL previously defined in ITU-T Rec. Z.105 (1995) is not defined by this
Recommendation.

The main area of application of this Recommendation is the specification of telecommunication
systems. The combined use of SDL and ASN.1 permits a coherent way to specify the structure and
behaviour of telecommunication systems, together with data, messages and encoding of messages
that these systems use.

Source

ITU-T Recommendation Z.105 was revised by ITU-T Study Group 10 (2001-2004) and approved
under the WTSA Resolution 1 procedure on 29 October 2001.

ITU-T Rec. Z.105 (10/2001) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2002

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

il ITU-T Rec. Z.105 (10/2001)

1.1
1.2
1.3
1.4
1.5

4.1
4.2

43

4.4
45

5.1
5.2
53
54

CONTENTS

N0 LTSRS
ODJECTIVE ...ttt ettt ettt et et e et et e ettt e bt e eabe e beesabeenseaeaaeenseessseenseesseesnseennseenne
The characteristics of the combination of SDL and ASN.1 modules.........................
ASN.1 that can be used in combination with SDLcccoociiiiiiiiiiiiiiicieeeee
The structure of this Recommendation.............ccccveeviiiieriiiieriiieeecee e
Conventions used in this Recommendation.............ccocceeeiieniiniiiiieniieieeeee
RETCIEICES ..ottt ettt ettt e e b e e saeeateesaeeenbeesnesnsaens
PaACKAZE ..o et ae e naeeeaaeeens
Definition and use of data..........coeovieeiiiieiiieeeeceeeeeee e
INAME MAPPINE ..ottt sttt ettt ettt sbe et et sbe e be st e sbeenbeeabesbee bt eaeesaeenbeeane
Variable and data definitionscoooueieiiiiiiiieeiieeeeeee e
4.2.1 TYPE ASSIZNIMENLeeeeiiiieeiiiieeiieeeieeesieeeseteeestreeessteesseeesseeesseesssseeessseesssseenns
4.2.2 Value aSSIZNMENL.......cccuiiiiiiiiieiie ettt et e e eseesaeeas
TYPE EXPIESSIONS.eeevieniieeiiieiie et eite ettt ettt et e eae e bt e s aeeesbeesaaeenbeessseenseesseeenseenseeenne
43,1 SEQUEIICEeiieiiiieeiiieeeiee ettt eette et e et e e ta e e et e e eaaeessaeeesaseeesnseesnnseesnseesnnseenns
4.3.2 SEQUENCEOT......uiiiiiieciie ettt tte e e tre et e e e e s e e e sabeeeabeeenaeeenaeeens
TG T O 1 T) [SRRSO
4.3.4 ENUMETALEd......ooiiiiiieiieeciie ettt et e e e e e e eaa e e earee s
4.3.5 Integer and Bit NAMINGcccceeviiiiiiiiieiiierie ettt
43,0 SUDIANZE ..c.eeiiiiieiicee ettt ettt et ens
437 BIESHING..cciiiiiieiiieiiecte ettt ettt ettt e st eeteestae e b e e saeenbeesaeeenbeensaeensaens
4.3.8 OCHEESIIINE ..ccuviieeiiieeeiieesiieestee ettt e erreeetreeeteeeeseeessaeeensseeessseesssseesssseessseenns
e TN N 1< o) USRS
RaANGE CONAILION ...ttt ettt e enaeens
Value EXPIrESSIONS. ...cccuiiiiiiieiiieesiieesiee et e et e e tte e e iteeeaeeesaeeeseseeesaseeenseessneeennaeenns
4.5.1 ChoiCE ValUCoeoiiiieiiiecieecee ettt e e e e ssreeenneeen
4.5.2 COMPOSILE PIIMATY ...eeuvieeirieiieeiieeieeiiesteeteesteesiteeseesseeebeessteenseessseenseesasens
4.5.3 SHUNG PIIMATY ..eeiiiiniiiiiieiie ettt ettt et et e e bt e s ebeebeesabeenbeesaneeseesaeeas
4.5.4 Element set SPECTTICAtIONccuvieiieiiieiieeiieiie ettt ere e e

Mapping of ASN.1 types defined in ASN.1 modules using information objects,

ClaSSES AN SELS....uueeeeeeeeeeeeeee e

INtrodUCTION.coiiiiiieiiiiee

Information object class definition and assignment

Object class field type......ccocverieeciieniieiieieeeeeeen

Information object definition and assignment

ITU-T Rec. Z.105 (10/2001)

O© 00 0 13 N O L L I B B~ W

e T e S,
_— = O O O

— = =
DN D W NN

16
16
16
16
18

il

5.5
5.6

6.1
6.2
6.3
6.4
6.5

v

Information from objects

Constraint Specification..............

5.6.1 User defined constraints

5.6.2 Table constraints............

Mapping of parameterized ASN.1 Specifications.........ccccecueriererrierieneriienienenienaes

Parameterized assignment...........

Parameterized type assignment...

Referencing ASN.1 parameterized type definitionsccceccveeveiieevcieincieeniee e,

Referencing ASN.1 parameterized value definitions...........cccceevveveeneniiniincnicneenne.

Referencing other ASN.1 parameterized definitions..........ccccveeecvieerieeinieeeniieeiiene

Additions to package Predefined

ITU-T Rec. Z.105 (10/2001)

Introduction

. Objective

This Recommendation defines how Abstract Syntax Notation One (ASN.1) modules can be used in
combination with Specification and Description Language (SDL). The intention is that the structure
and the behaviour of systems are described with SDL, while parameters of exchanged messages are
described with ASN.1. This Recommendation defines a mapping of ASN.1 constructs to already
existing SDL constructs and contains only a small extension to ITU-T Rec. Z.100 to allow ASN.1
modules to be used.

. Coverage

This Recommendation presents a semantic definition for the combination of SDL and ASN.1
modules. A mapping of the ASN.1 data defined in a module to the corresponding SDL constructs
defined in ITU-T Rec. Z.100 [1] is given, including the operators that can be applied to the ASN.1
data. The ASN.1 data items can then be used within SDL (using SDL notation).

The use of ASN.1 notation embedded in SDL is defined in ITU-T Rec. Z.107 [2].

. Application

The main area of application of this Recommendation is the specification of telecommunication
systems. The combined use of SDL and ASN.1 permits a coherent way to specify the structure and

behaviour of telecommunication systems, together with data, messages and encoding of messages
that these systems use.

NOTE - "Specification" in this Recommendation includes definition of requirements in a standard,
Recommendation, or procurement document, and description of an implementation.

A specification conforms to this Recommendation if and only if it conforms to the syntactic and
semantic grammar rules for the formal technical language defined by the Recommendation (which
includes the referenced ASN.1 and SDL languages). Conformance implies that every possibly
dynamic interpretation of the specification conforms to the language rules. A specification that uses
extensions of the language does not conform.

A tool does not fully support the language if it rejects some constructs of the language or that has a
static or dynamic interpretation of a specification in the language that does not conform to language
semantics.

. Status/stability

This text replaces the semantic mappings from ASN.1 to SDL defined in ITU-T Rec. Z.105 (1999).
The use of ASN.I notation embedded in SDL previously defined in ITU-T Rec. Z.105 (1995) is not
defined by this Recommendation.

Changes to ITU-T Recs. X.680 [3], X.681 [4], X.682 [5] and X.683 [6] or Z.100 [1] may require
modifications to this Recommendation.

This Recommendation is the complete reference manual describing the combination of SDL and
ASN.1 modules.

. Associated work

— ITU-T Rec. Z.100 (1999), Specification and Description Language (SDL).

— ITU-T Rec. X.680 (1997), ASN.1: Specification of basic notation.

— ITU-T Rec. X.681 (1997), ASN.1: Information object specification.

— ITU-T Rec. X.682 (1997), ASN.1: Constraint specification.

— ITU-T Rec. X.683 (1997), ASN.1: Parameterization of ASN.1 specifications.
- ITU-T Rec. Z.107 (1999), SDL with embedded ASN.1.

ITU-T Rec. Z.105 (10/2001) v

ITU-T Recommendation Z.105

SDL combined with ASN.1 modules (SDL/ASN.1)

1 Scope

This Recommendation defines how ASN.1 modules can be used in combination with SDL. ASN.1
modules are imported in SDL descriptions so that ASN.1 data definitions are mapped to internal
SDL representation using equivalent SDL constructs and forming together with the rest of the SDL
description a complete specification.

SDL is a language for the specification and description of telecommunication systems. SDL has
concepts for:

. structuring systems;
. defining behaviour of systems;
. defining data used by systems.

ASN.1 is a language for the definition of data. Related to ASN.1 are encoding rules that define how
ASN.1 values are transferred as bit streams during communication.

1.1 Objective

The combination of SDL and ASN.I permits a coherent way of specifying the structure and
behaviour of telecommunication systems, together with data, messages, and encoding of messages
that these systems use. Structure and behaviour can be described using SDL, and data and messages
using ASN.1. Encoding of these messages can be described by reference to the relevant encoding
rules that are defined for ASN.1.

The full use of SDL (including data types) is supported by this Recommendation.

1.2 The characteristics of the combination of SDL and ASN.1 modules

Systems described in SDL combined with ASN.1 modules have the following characteristics:

. structure and behaviour are defined using SDL concepts;

. parameters of signals are defined by ASN.1 types;

. data used in signals is defined with ASN.1 type definitions;

. internal data may be defined by either ASN.1 types or SDL sorts;

. encoding of data values defined in ASN.1 can be defined by reference to the relevant

encoding rules. Encoding is not in the scope of this Recommendation.

1.3 ASN.1 that can be used in combination with SDL

The use of ASN.1 as defined in ITU-T Recs. X.680, X.681, X.682 and X.683 is supported in
combination with SDL, with a recognition that some ASN.1 constructs cannot be successfully
mapped to SDL (or at least the mapping has not been identified and specified in this
Recommendation). The constructs that cannot be mapped to SDL will exist in ASN.1 packages used
as a source of transformation. During the transformation to SDL they are effectively treated as if not
present and should not cause any problems for successful transformation of other constructs. Such
constructs are the extension marker and exception marker defined in ITU-T Rec. X.680, which may
be present in ASN.I1 but are ignored in the transformation to SDL. Parts of the ASN.1 grammar
(1997) related to extension and exception markers are therefore not used in this Recommendation.

ITU-T Rec. Z.105 (10/2001) 1

Some constructs of ASN.1 are never transformed to SDL as such, but contain information that can
direct or be used in the transformation. The prominent examples of such constructs are relational
constraints as defined in ITU-T Rec. X.682, object classes and object sets.

The use of SDL as defined in ITU-T Rec. Z.100 [1] is supported.

ASN.1 modules that are used in the transformation to SDL can also be used for generation of
encoders and decoders, provided that encoding rules are defined. The SDL data specification derived
from ASN.1 modules should not be used for such a purpose since some information that is relevant
for encoding may be lost in the transformation to SDL.

14 The structure of this Recommendation

This Recommendation is not self-contained: the mapping defined in this Recommendation is based
on ITU-T Rec. Z.100 and ITU-T Recs. X.680, X.681, X.682 and X.683. The language as defined in
ITU-T Rec. Z.100 applies, except that the <package> production rule is extended to allow direct use
of ASN.1 modules. This Recommendation is structured in the following manner:

Clause 3 defines the changes to ITU-T Rec. Z.100 in order to incorporate ASN.1 modules.

Clause 4 defines the mapping of X.680 ASN.1 types and values to ITU-T Rec. Z.100 data in order to
incorporate ASN.1 data types and values.

Clause 5 defines the mapping of ASN.1 types defined using information objects, classes and
information object sets. The use of X.682 constructs is also treated in this clause.

Clause 6 defines the mapping of parameterized ASN.1 types to ITU-T Rec. Z.100 data in order to
incorporate parameterized ASN.1 data types.

Clause 7 defines the additions to the package Predefined needed to support the use of ASN.1.

1.5 Conventions used in this Recommendation

The conventions of ITU-T Rec. Z.100 normally apply: for example, keywords appear in lowercase
boldface, and predefined names start with a capital. However, in ASN.1 examples, the ASN.I
conventions are used in order to respect ASN.1 rules and improve readability for ASN.1 users: for
example, keywords are in capitals.

For ASN.1 grammar productions, references to original documents are given. However, ASN.1
grammar productions are also copied in this Recommendation in places where this is felt necessary
to increase its readability. In case of conflict, the original ASN.1 productions take precedence.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[1] ITU-T Recommendation Z.100 (1999), Specification and description language (SDL).
[2] ITU-T Recommendation Z.107 (1999), SDL with embedded ASN. 1.

[3] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information technology —
Abstract Syntax Notation One (ASN.1): Specification of basic notation, plus Amendments 1
and 2 (1999) and Corrigendum 1 (1999).

2 ITU-T Rec. Z.105 (10/2001)

[4] ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, Information technology —
Abstract Syntax Notation One (ASN.1): Information object specification, plus Amendment 1

(1999), and Corrigendum 1 (1999).

[5] ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, Information technology —

Abstract Syntax Notation One (ASN.1): Constraint specification.

[6] ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998, Information technology —
Abstract Syntax Notation One (ASN.1): Parameterization of ASN.Il specifications, plus

Amendment 1 (1999).

[7] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998, Information technology —
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding

Rules (CER) and Distinguished Encoding Rules (DER).

3 Package
ASN.1 grammar

Modul eDef i ni ti on is defined in clause 12.1 of [3].

Modul eDefinition ::=
Modul el denti fi er
DEFI NI TI ONS
TagDef aul t
BEG N
Modul eBody
END
Modul el dentifier ::=
nodul er ef er ence
Definitiveldentifier
Definitiveldentifier ::=
"{" DefinitiveCbjldConmponentList "}" | enpty

Model

The production <package> is extended as follows:

<package> n=
<package definition> | <package diagram> | <module definition>
<module definition> =

ModuleDefinition

where ModuleDefinition is a non-terminal defined in ITU-T Rec. X.680:1997.

A <module definition> has the same meaning as a <package definition> where:

. Modul el denti fi er (without any Definitivel dentifier) corresponds to the <package
name>;

. | npor t s corresponds to the <package use clause>s;

. Export s corresponds to the <interface>.

An ASN.1 package is transformed into the equivalent SDL, before it is considered as a package, and
before any Z.100 transformations. In this transformation, names are transformed into fully qualified
identifiers where SDL requires or allows an identifier rather than a name. However, for conciseness,

this is often omitted from the examples in this Recommendation.

ITU-T Rec. Z.105 (10/2001)

3

Example
The ASN.1 module definition:

myway DEFINITIONS :: =

BEG N
EXPORTS yes, no;
yes BOOLEAN ::= TRUE
no BOOLEAN :: = FALSE
END
is the same as:
package myway

Public
Synonym yes, synonym no;

Synonym yes Boolean = true;
Synonym no Boolean = false;

Similarly, when the package is used in the i nport s of another package:

| MPORTS yes FROM nyway;
This is the same as the <package reference clause>:
use myway/yes;

NOTE — Because SDL does not support object identifier values for package identification, ASN.1 modules
with the same nodul er ef erence but different Definitivel dentifiers will potentially cause name
resolution problems.

4 Definition and use of data

The different definitions of the use of data are described the following way:

ASN.1 grammar Defining the grammar production rules representing the construction to be
represented in SDL

Model Describing the transformations of the different parts of the ASN.1 grammar into
SDL productions.

This part is referencing both the SDL grammar, represented as <SDL grammar
rule>, and the ASN.1 grammar, represented as ASN1Gr anmar Rul e.

4.1 Name mapping
ASN.1 grammar

ASN.1 names are allowed to contain dash characters ("-"). If this is used in SDL this would be
interpreted as the minus operator.

Model

ASN.1 names containing dash characters are mapped to lexically similar SDL names except that
dash characters are converted to underline characters.

Example

The ASN.1 name ny- exanpl e- nane is mapped to my example name in SDL.

4 ITU-T Rec. Z.105 (10/2001)

4.2 Variable and data definitions

4.2.1 Type assignment
ASN.1 grammar

TypeAssi gnnment is defined in clause 15.1 of [3].
TypeAssi gnnent 1= typereference "::=" Type
Model

If the Type is a typer ef er ence, then the TypeAssi gnment is the same as a <syntype definition>
containing only the SDL equivalent of the Type.

If the Type is a const r ai nedType, then the TypeAssi gnnent is the same as a <syntype definition>
containing only the SDL equivalent of the Const rai nt .

If the Type is a neither a typereference nor a constrai nedType the TypeAssi gnnent is
represented by a <partial type definition> where <properties expression> is empty and where
<formal context parameters> is omitted.

Example
The ASN.1 type assignment:

M/t ype ::= Anot herType -- typereference

is the same as:

syntype Mytype = AnotherType endsyntype Mytype; /* full qualification omitted here. */
The ASN.1 type assignment:

S ::= INTEGER (0..5 | 10)

is the same as:

syntype S = <<package Predefined>>Integer constants (0..5,10) endsyntype S;

The ASN.1 type assignment:

Integerlist ::= SEQUENCE OF | NTEGER

is the same as:

value type Integerlist {
inherits <<package Predefined>>String
< <<package Predefined>> Integer> (" = <<package Predefined>>Emptystring)

}

4.2.2 Value assignment

ASN.1 grammar

Val ueAssi gnment is defined in clause 15.2 of [3].

Val ueAssi gnnent .. = valuereference Type "::=" Val ue

Model

A Val ueAssi gnnent is represented by a <synonym definition item>.

ITU-T Rec. Z.105 (10/2001) 5

Example
The ASN.1 definition:

yes BOOLEAN ::= TRUE
is the same as:

synonym yes <<package Predefined>>Boolean = <<package Predefined>> true;

4.3 Type expressions

4.3.1 Sequence

ASN.1 grammar
SequenceType is defined in clause 24.1 of [3]. Set Type is defined in clause 26.1 of [3].

SequenceType :: =
SEQUENCE "{" "}" |
SEQUENCE "{" Extensi onAndException "}" |
SEQUENCE "{" Conponent TypelLists "}"

Ext ensi onAndException :: = ... | "..." ExceptionSpec

Conponent TypelLi sts :: =
Root Conmponent TypelLi st |
Root Conponent TypelLi st ", " ExtensionAndException |
Root Conponent TypelLi st ", " ExtensionAndException ", "
Addi t i onal Conponent TypelLi st |
Ext ensi onAndException "," Additional Conponent TypeLi st
Root Component TypelLi st :: = Conponent TypelLi st
Addi ti onal Conponent TypelLi st ::= Conponent TypeLi st
Conponent TypelList ::=
Conponent Type |
Conponent TypelLi st "," Conmponent Type
Conmponent Type ::=
NanedType |
NanedType OPTI ONAL |
NanedType DEFAULT Val ue |
COVPONENTS OF Type
NanedType c:= identifier Type

Model

A SequenceType is represented as a <structure definition> containing a <field> for each NamedType
of the SequenceType. The <field> contains one <field name>, which is the same as the ASN.1
i dentifier of the NamedType, and a <field sort> that is the Type transformed to an SDL <sort
identifier>.

If the Conponent Type containing the NanedType is OPTI ONAL, the SDL field has the keyword
optional.

If the Conponent Type containing the NanedType has a DEFAULT Val ue, the SDL field has the
keyword def aul t and the value is transformed into the <constant expression> after def aul t .

A Conponent Type that is COVPONENTS OF Type is represented as a list of ordered <field>s, one for
each field associated to Type. These fields are inserted in the position of the COVPONENTS OF Type in
the order that the fields exist in the Type.

The occurrences of Ext ensi onAndExcept i on in SequenceType are ignored in the transformation.

6 ITU-T Rec. Z.105 (10/2001)

Example
The ASN.1 type:

S i1 = SEQUENCE {
a | NTECGER,
b | A5String OPTI ONAL,

C Printabl eString DEFAULT "d"}
is the same as:

value type S

{

struct

a <<package Predefined>> Integer;

b <<package Predefined>> [A5String optional;

¢ <<package Predefined>> PrintableString default 'd';
}

NOTE 1 —There is no distinction between use of keyword SEQUENCE and SET. This is a relaxation
compared to ITU-T Rec. X.680.

NOTE 2 — In this Recommendation, tags are not necessary to distinguish between components of the same
type: ASN.1 automatic tagging is assumed.

4.3.2 Sequenceof

ASN.1 grammar
Sequenced Type is defined in clause 25.1 of [3].

Sequenced Type i = SEQUENCE CF Type
Model

Specifying a SequenceCf Type is the same as specifying the predefined String sort having the SDL
transform of Type as the first <actual context parameter> and the name Emptystring defined as the
literal name for the empty string.

If an ASN.1 size constraint is specified for Type, the SequenceXf Type is a syntype having the
transformed size constraint as a <range condition> (see 4.4). The parent sort of the syntype is the
SequenceO Type without the ASN.1 size constraint. This parent sort has an implicit and unique
name and is defined in the nearest scope unit enclosing the occurrence of the Sequencef Type.
Example

The ASN.1definition:

phonenunber ::= SEQUENCE Sl ZE (8) OF I NTEGER (0..9)
is the same as the three SDL definitions:

value type S1
{

h
syntype S2 = <<package Predefined>> Integer constants (0..9) endsyntype;

syntype phonenumber = S1 constants size (8) endsyntype phonenumber;

inherits <<package Predefined>> String <S2> (" = Emptystring)

ITU-T Rec. Z.105 (10/2001) 7

4.3.3 Choice

ASN.1 grammar
Choi ceType is defined in clause 28.1 of [3].

Choi ceType = CHOCE "{" AlternativeTypeLists "}"

Al ternativeTypeli sts D=
Root Al t ernati veTypeLi st |
Root Al t ernati veTypelLi st "," Extensi onAndException |
Root Al t ernati veTypelLi st "," Extensi onAndException ","
Addi ti onal Al ternativeTypeLi st
Al ternativeTypeli st
Al ternativeTypelLi st

Root Al t er nati veTypelLi st
Addi tional Al ternativeTypelLi st
Al ternativeTypelLi st

NanedType | .
Al ternativeTypelList "," NanmedType

Model

A Choi ceType is represented as a <choice definition> containing a <field> for each NamedType of
the Choi ceType.

The occurrences of Ext ensi onAndExcept i on in Choi ceType are ignored in the transformation.

Example
The ASN.I1 choice type:

C ::= CHO CE {
a | NTEGER
b REAL }

is the same as:

value type C Choice
{

a <<package Predefined>> Integer;
b <<package Predefined>> Real;

h

4.3.4 Enumerated

ASN.1 grammar

Enumner at edType is defined in clause 19.1 of [3].

Enurer at edType = ENUMERATED "{" Enunerations "}"
Enuner ati ons =

Root Enunerati on |
Root Enuneration "," " "

Root Enuner at i on , e , Addi ti onal Enuner ati on
Root Enuner ati on L= Enuner ati on

Enuner ati on

Addi ti onal Enunerati on ::

Enumer ati on M Enunerationltem | Enunerationltem™," Enumeration
Enuner ationltem = identifier | NanedNunber
NanmedNumber M identifier "(" SignedNunber ")"|

identifier "(" DefinedValue ")"

8 ITU-T Rec. Z.105 (10/2001)

Model

An Enurrer at edType is represented by a <partial type definition> where <properties expression> is
empty and where <formal context parameters> is omitted. For each Enunerationltem the
identifier is transformed into a <literal signature> that has the same name as the
Enunerati onltem If the Enunerationltem contains a Si gnedNunmber (or DefinedVal ue), the
<literal name> of the <literal signature> is followed by the SDL transform of the Si gnedNunber (or
Def i nedVal ue respectively).

The instances of "..." in Enuner at edType are ignored in the transformation to SDL.

The definition:

col ours ::= ENUMERATED {bl ue(3),red, yellow0)};
is the same as:

value type colours {
literals blue = 3, red, yellow = 0
}

4.3.5 Integer and Bit Naming

ASN.1 grammar
I nt eger Type is defined in clause 18.1 of [3]. Bi t St ri ngType is defined in clause 21.1 of [3]

I nt eger Type i = | NTEGER |

I NTEGER "{" NamedNunberList "}"
NarmedNunber Li st ;.= NanedNunber |

NamedNunber Li st "," NamedNunber
NanmedNurber = identifier "(" SignedNumber ")" |

identifier "(" Definedvalue ")"

Bit StringType BIT STRING | BIT STRING "{" NanedBitList "}"

NanedBi t Li st = NanedBit | NanedBitList "," NanmedBit
NanedBi t = identifier "(" nunmber ")" |

identifier "(" Definedvalue ")"
Model

Specifying an | nt eger Type with a NamedNunber Li st (or Bi t Stri ngType with a NanedBi t Li st) is
the same as specifying a <synonym definition> in the nearest enclosing scope unit with one
<synonym definition item> for each NamedNunber (or NanedBitList respectively). The
i dentifier of the NamedNunber (or NanmedBit respectively), is transformed into the <synonym
name>. The <sort> of the <synonym definition item> is <<package Predefined>>Integer in the case
of a NanedNunber , and <<package Predefined>>Bit in the case of a NanedBi t . The Si gnedNunber
or DefinedVal ue or nunber of the NamedNunber or NanmedBitList is used as the <constant
expression> of the <synonym definition item>.

Example

The ASN.1 definition:

Standards :: = SEQUENCE OF | NTEGER{z100(0), x680(1),z10x(2)}
is the same as:

value type standards {
inherits
<< package Predefined >> String < <<package Predefined>> Integer> ("= EmptyString)

ITU-T Rec. Z.105 (10/2001) 9

synonym z100 Integer = 0;
synonym x680 Integer =1,
synonym z10x Integer =2;

4.3.6 ValueRange

ASN.1 grammar

Val ueRange is defined in clause 48.4.1 of [3].

Val ueRange ::= LowerEndpoint ".." Upper Endpoi nt
Model

Specifying an ASN.1 ValueRange restriction is represented as specifying the contained <sort> and
adding the representation of the ASN.1 ValueRange restriction after the constants keyword in the
<syntype>.

Example
The ASN.1 definition:
S ::= INTEGER(O..5 | 10)
is equivalent to:
syntype S = <<package Predefined>> Integer constants (0..5, 10) endsyntype S;
How the <range condition> is derived is described below.
4.3.7 BitString
ASN.1 grammar
BitStringType ::=
BI T STRI NG |
BIT STRING "{" NamedBitList "}"
Model
The ASN.1 Bi t St ri ngType is mapped to SDL <<package Predefined>> Bitstring.
4.3.8 OctetString
ASN.1 grammar
Cctet StringType ::= OCTET STRI NG
Model
The ASN.1 type Cct et St ri ngType is mapped to SDL <<package Predefined >>Octetstring.

4.3.9 Setof

ASN.1 grammar

Set Of Type is defined in clause 27.1 of [3].
Set Of Type 1= SET OF Type
Model

Specifying a Set O Type is the same as specifying the << package Predefined>> Bag sort having the
SDL transform of Type as the first <actual context parameter> and the name Emptybag defined as
the literal name for the empty bag.

10 ITU-T Rec. Z.105 (10/2001)

If an ASN.1 size constraint is specified for Type, the Set Of Type is a syntype having the transformed
size constraint as a <range condition> (see 4.4). The parent sort of the syntype is the Set Of Type
without the ASN.1 size constraint. This parent sort has an implicit and unique name and is defined in
the nearest scope unit enclosing the occurrence of the Set Of Type.

4.4 Range condition

Model

A range condition defines a set of values. It is used for defining a syntype. It has an associated parent
sort, which is the sort specified in the syntype definition. A value is within the value set if the
operator denoted by the operator identifier yields true when applied to the value.

The operator identifier for a given range condition is thus defined as:

value type A

operators o: S -> Boolean;

/* where o is derived from the ASN.1 concrete syntax as explained below */
endvalue type A;

Each Range in the ASN.1 range condition contributes to the properties of the operator defining the
value set:

o(V) == rangel or range2 or ... or rangeN
If a syntype is specified without a range condition, then the operator result is true.

In the following explanation of how each Range contributes to the operator result, V denotes the
argument value. Each contribution must be well-formed, which means that used operators must exist
with a signature appropriate for the context.

. If neither of the keywords M N and MAX are specified in a G osedRange, a C osedRange
contributes with:

El rell Vand V rel2 E2
where E1 is Value of Lower EndVal ue and E2 is Value of Upper EndVval ue.

If "<" is specified for Lower EndVal ue then rell is the "<" operator, otherwise it is the "<="

operator.
If "<" is specified for Upper EndVal ue then rel2 is the "<" operator, otherwise it is the "<="
operator.
If the keyword M N is specified and the keyword MAX is not specified, Range contributes
with:

V rel2 E2
If the keyword MAX is specified and the keyword M N is not specified, Range contributes
with:

Elrell V
If both keywords M N and MAX are specified, the operator always yields true.

. A Cont ai nedSubType contributes with:
ol(V)

where ol is the implicit operator defining the value set for the Type mentioned in the
Cont ai nedSubType.

. A Si zeConstrai nt contributes with:
ol(length(V))

ITU-T Rec. Z.105 (10/2001) 11

where ol is the implicit operator defining the value set for the <range condition> mentioned
in the Si zeConstrai nt.

I nner TypeConst r ai nt s contributes with either:
if length(V) = 0 then true else o1(first(V)) and o(Substring(V,2,length(V)-1)) fi; or
if length(V) = 0 then true else ol(take(V)) and o(del(take(V), V)) fi

whatever is appropriate for the sort of V. o is the implicit operator | nner TypeConst r ai nt s
contributes to and ol is the implicit operator for Range specified in
I nner TypeConstraints.

I nner TypeConstrai nts has a contribution for each contained NanedConstrai nt that
specifies constraints of the field (see 4.2.1) denoted by I dentii fi er of the parent sort.

The keyword PRESENT is added to the NamedConstrai nts that have no ending keyword
(PRESENT, ABSENT or OPTI ONAL) and NanmedConst rai nts of the form | denti fi er ABSENT
are added for all fields (i.e. | denti fi er s) not mentioned explicitly in a NamedConst r ai nt .
The NanedConst rai nts are added to the | nner TypeConst r ai nt s before the contributions
of each NanedConst r ai nt are derived.
If a Range is specified for a NanedConst r ai nt, the contribution is:

E and if FPresent(V) then 01(V) else true fi

where E is the present constraint for the field, F (from the operator name FPresent) is the
name of the optional field and ol is the implicit operator for the Range. If the Range is
omitted, the contribution is only the present constraint E.

The present constraint for a field F is:
FPresent(V)
in case the NamedConst r ai nt for the field contains the keyword PRESENT; and
not FPresent(V)

in case the NanedConst r ai nt for the field contains the keyword ABSENT. In all other cases,
the present constraint is true.

4.5 Value expressions
4.5.1 Choice Value
ASN.1 grammar

Choi ceVal ue is defined in clause 28.8 of [3].

Choi ceVal ue .= identifier ":" Value

Model

A Choi ceVal ue is represented as an <operator application> having the Val ue as argument. The
<operator identifier> in the <operator application> contains a <qualifier> representing the Type and
an operator name being the i denti fier.

Example

The Choi ceVal ue:

myval ue : Mychoice

is represented as:

myvalue(Mychoice)

12

ITU-T Rec. Z.105 (10/2001)

In case that a Choi ceVal ue can denote one of several operator applications (i.e. a field of more than
one choice sort), a qualifier is used:

My Type ::= CHO CE ...
myval ue : Mychoice

which is then represented as:

<<type Mytype>> myvalue(Mychoice)

4.5.2 Composite primary

A composite primary is built up of the values for the SDL-representation of respective composite
types.

4.5.2.1 Sequence value

ASN.1 grammar
SequenceVal ue is defined in clause 24.16 of [3].

SequenceVal ue = "{" ConponentVal ueList "}" | "{" "}"
Conponent Val uelLi st = NanedVal ue |
Conponent Val ueLi st "," NanedVal ue

NOTE - There is no distinction between Set Val ue and SequenceVal ue. This is a relaxation compared to
ITU-T Rec. X.680.

Model

The sequence value specification in ASN.1 is mapped to SDL synonym definition. In the mapping
Conponent Val uelLi st is provided to structure data type constructor in SDL. The SDL data type
constructor requires that all the fields are given as input so that fields that are omitted in
Conponent Val ueLi st have to be provided empty in the SDL The application of structure data type
constructor will have the same effects in SDL as it would in ASN.1.

Example
MYTYPE : : = SEQUENCE{
a | NTEGER,
b | NTEGER OPTI ONAL,
c | NTEGER DEFAULT O,
d | NTEGER,
e | NTEGER OPTI ONAL,
f | NTEGER DEFAULT O
}
myVal ue MYTYPE ::={a 1, b1, ¢ 1, d 1}

In this example fields a, b, ¢ and d of myValue have a value assigned and fields e and f have no
assignment.

synonym myValue MYTYPE=(. 1,1, 1, 1,,.);

The consequence would be that fields a, b, ¢ and d of myValue would be set to 1, e would be absent
and f would get the default value 0.

4.5.2.2 Sequence of value

ASN.1 grammar
Sequenced Val ue is defined in clause 25.3 of [3].

Sequenced Val ue
Val ueli st

"{" ValueList "}" | "{" "}"
Val ue | ValueList "," Value

ITU-T Rec. Z.105 (10/2001) 13

Model
A SequenceO Val ue is represented as:
MkString(E1) // MkString(E2)// ... // MkString(En)

where E1, E2, ..., En are the Val ues of the SequenceX™ Val ue in the order of appearance. If no
Val ues are specified, the Sequencef Val ue is represented as the name Emptystring.

The Type qualifier of the Composite Primary that contains the SequenceOf Val ue precedes each
MkString operator or the Emptystring literal respectively.

4.5.2.3 Object identifier value

ASN.1 grammar
bj ect I denti fi erVal ue is defined in clause 31.3 of [3].

Model
bj ect I denti fi er Val ue is ignored in the transformation to SDL.

bj ect I dentifierValue is in ASN.1 used to distinguish between the modules that have same
names but different object identifiers. Because the module names and object identifiers cannot
uniquely be mapped to a package identifier that is used in package use clauses, the object identifier
component is ignored in the transformation to SDL. The identification of appropriate module is thus
open to manual or tool specific solutions.

4.5.2.4 Real value

ASN.1 grammar
Real Val ue is defined in clause 20.6 of [3].

Real Val ue M

Nuneri cReal Val ue | Speci al Real Val ue
Nurrer i cReal Val ue =

0o |

SequenceVal ue -- Value of the associated sequence type
Speci al Real Val ue D=

PLUS-INFINITY | M NUS-INFINTY

The form 0 is used for zero values; the alternate form for Numer i cReal Val ue shall not be used for
zero values.

The associated type for value definition and subtyping purposes is:

SEQUENCE {
manti ssa | NTEGER,
base I NTEGER (2| 10),

exponent | NTEGER
-- The associ ated mat hemati cal real nunber is "mantissa"
-- multiplied by "base" raised to the power "exponent"

}
Model

An ASN.1 Nurerical Real Val ue is mapped to an SDL real sort value with the actual value
calculated in the transformation. The Speci al Real Val ue shall be transformed to the largest possible
positive or negative value respectfully.

14 ITU-T Rec. Z.105 (10/2001)

NOTE - The transformation of Speci al Real Val ue is not in accordance with the intended ASN.1 semantics
because this is a directive to the encoder/decoder to use a special code indicating the —co (minus infinite)
values. Since encoding is not related to data in SDL transformed from ASN.ldata, such relaxation should be
acceptable.

Example
The ASN.1 definition:

r50 REAL ::={ nantissa 5, base 10, exponent 1}
is the same as:

synonym 150 Real = 50.0;

4.5.3 String primary

ASN.1 grammar
Character string in ASN.1 is defined in clause 11.11 of [3].
Bi t Stri ngVal ue is defined in clause 21.9 of [3].

BitStringValue ::=
bstring |
hstring |
“{" ldentifierList "}" |

II{II II}II

IdentifierList ::=
identifier |
IdentifierList "," identifier

Model

An ASN.1 StringVal ue containing a cstring (ASN.1 name for character string delimited by " at
both beginning and end) represents a <character string literal identifier> consisting of the Type and a
<character string literal> with the same <text> as the ASN.1 String Text . The Type for cstring is
an | A5Type as defined by this Recommendation.

A StringVal ue containing a Bi t St ri ngVal ue or HexSt ri ngVal ue are mapped to SDL <<package
Predefined>> Bitstring operators with the same syntax.

4.5.4 Element set specification

ASN.1 grammar
El ement Set Specs is defined in clause 46.1 of [3].

El enent Set Specs i=
Root El enent Set Spec |
Root El ement Set Spec ", " " "
o Addi ti onal El errent Set Spec |
Root El ement Set Spec ", " . "," Additional El ement Set Spec

Root El enent Set Spec
Addi ti onal El enent Set Spec
El enent Set Spec

El enent Set Spec
El enent Set Spec
Uni ons |

ALL Excl usions

Uni ons = Intersections |
UEl ens Uni onMark | ntersections
UEl ens Uni ons

I ntersections I ntersectionEl enents |
| El ens IntersectionMark | ntersectionEl enents
I ntersections

El ements | El ens Excl usions

| El ens
I nt ersecti onEl ement s

ITU-T Rec. Z.105 (10/2001) 15

El ens = El enents

Excl usi ons = EXCEPT El enents

Uni onMar k = "|" | UNION

I ntersecti onMar k = "A" | | NTERSECTI ON
Model

Two or more value sets can be combined using this notation. The resulting set is evaluated in the
transformation and the result is mapped to SDL.

The instances of "..." in El ement Set Specs are ignored in the transformation to SDL.

5 Mapping of ASN.1 types defined in ASN.1 modules using information objects, classes
and sets
5.1 Introduction

ITU-T Rec. X.681 provides the ASN.1 notation that allows information object classes as well as
individual information objects and sets thereof to be defined and given reference names. An
information object class is a template for a collection of information that makes up the attributes of
any members of that class. Information objects provide a generic table mechanism within the ASN.1
language. Such a generic table defines the association of specific sets of field values or types. This
feature replaces the earlier MACRO construct (available in ASN.1:1990) and is primarily used to
fillin gaps in a type definition dependent on one or more key fields.

This clause assumes that all ASN.1 constructs defined in ITU-T Recs. X.681, X.682 and X.683 can
be used in ASN.1 modules. It then identifies what information contained in ASN.1 information
object classes, information objects and information object sets can be useful when mapped to
appropriate SDL targets. The mappings that are possible and useful are defined. It has to be noted
that some information will not be represented in SDL because of the differences in nature of the two
languages.

5.2 Information object class definition and assignment

ASN.1 grammar
bj ect A assAssi gnnent is defined in clause 9.1 of [4].

Model

The Obj ect A ass definitions in ASN.1 have no direct correspondence in SDL.

5.3 Object class field type

ASN.1 grammar

bj ect A assFi el dType is defined in clause 14.1 of [4].
Obj ect d assFi el dType ::= DefinedObjectC ass "." Fiel dNane
Fi el dSpec :: =

TypeFi el dSpec |

Fi xedTypeVal ueFi el dSpec |

Vari abl eTypeVal ueFi el dSpec |

Fi xedTypeVal ueSet Fi el dSpec |
Vari abl eTypeVal ueSet Fi el dSpec |
oj ect Fi el dSpec |

hj ect Set Fi el dSpec

16 ITU-T Rec. Z.105 (10/2001)

Model

ASN.1 types can be defined using Obj ect C assFi el dType notation to extract information from the
fields of class specifications without presence of table constraints. Such ASN.1 types can be mapped
to SDL, provided that in their definition only Fi xedTypeVal ueFiel dSpec or
Fi xedTypeVal ueSet Fi el dSpec are used. The mapping to an SDL value type is done as defined in
4.3 once the meaning of Fi xedTypeVal ueFi el dSpec or Fi xedTypeVal ueSet Fi el dSpec is
determined from the referenced class specifications.

bj ect C assFi el dType notation is also used in relation to table constraints as defined in 5.5.2.

Example
If the ASN.1 contains the following specification:

EXAMPLE- CLASS :: = CLASS {
&TypeFi el d OPTI ONAL, -- class field 1
&f i xedTypeVal ueFi el d | NTEGER OPTI ONAL, -- class field 2
&vari abl eTypeVal ueFi el d &TypeFi el d OPTI ONAL, -- class field 3
&Fi xedTypeVal ueSet Fi el d I NTEGER OPTI ONAL, -- class field 4
&Vari abl eTypeVal ueSet Field &TypeField OPTI ONAL -- class field 5
}
W TH SYNTAX {
[TYPE- FI ELD &TypeFi el d]
[FI XED- TYPE- VALUE- FI ELD & i xedTypeVal ueFi el d]
[VARI ABLE- TYPE- VALUE- FI ELD &vari abl eTypeVal ueFi el d]
[FI XED- TYPE- VALUE- SET- FI ELD &Fi xedTypeVal ueSet Fi el d]
[VARI ABLE- TYPE- VALUE- SET- FI ELD &Vari abl eTypeVal ueSet Fi el d]
}
Exanpl eType ::= SEQUENCE {
i nt eger Component 1 EXAMPLE- CLASS. &f i xedTypeVal ueFi el d, -- field 1
i nt eger Component 2 EXAMPLE- CLASS. &Fi xedTypeVal ueSetField -- field 2
}
exanpl eVal ue Exanpl eType ::= {
i nt eger Conmponent 1 123, -- field 1
i nt eger Conmponent 2 456 -- field 2
}
Things that can be mapped to SDL are Exanpl eType and exanpl eVal ue:
value type ExampleType {
struct
integerComponent1 <<package Predefined>> Integer, /* field 1 */
integerComponent2 <<package Predefined>> Integer /* field 2 */
h
synonym exampleValue ExampleType = (. 123, 456 .);
54 Information object definition and assignment
ASN.1 grammar

Obj ect Assi gnnent is defined in clause 11.1 of [4].

Model
Obj ect definitions in the ASN.1 module have no equivalent mapping in SDL.

ITU-T Rec. Z.105 (10/2001) 17

5.5 Information from objects

ASN.1 grammar

I nf or mat i onFr onObj ect s is defined in clause 15.1 of [4].

Model

Information from the column of the associated table for an object or an object set can be referenced
by the various cases of the I nf or mat i onFr onbj ect s notation.

In the ASN.l1 module, an ASN.1 type can be specified with fields defined using
I nf or mat i onFr omObj ect s notation. Such an ASN.1 type can be mapped to SDL, provided that all
occurrences of | nf or mat i onFr onObj ect s notation can be expanded to a value or a type. The ASN.1
type as such is mapped as specified in 4.3, while the semantics of | nf or mati onFr onbj ect s
expansion follows the ASN.1 semantics.

5.6 Constraint specification

ASN.1 grammar

Gener al Constrai nt is defined in clause 8.1 of [5].

Ceneral Constraint ::=
User Def i nedConstraint |
Tabl eConstrai nt

Model

The types specified using Tabl eConstrai nt are mapped to SDL according to rules given in 5.5.2.
The types specified using User Def i nedConst r ai nt cannot be mapped to SDL.

5.6.1 User-defined constraints
ASN.1 grammar

User Def i nedConst r ai nt is defined in clause 9.1 of [5].

User Defi nedConstraint ::=
CONSTRAI NED BY "{" UserDefi nedConstrai nt Paraneter "," * "}"

Model

This form of constraint specification can be regarded as a special form of ASN.1 comment, since it is
not fully = machine-processable. Therefore, ASN.1 type specifications using
User Def i nedConst r ai nt cannot be mapped to SDL.

5.6.2 Table constraints
ASN.1 grammar

Tabl eConst rai nt is defined in clause 10.3 of [5].

Tabl eConstraint ::=
Si npl eTabl eConstrai nt |
Conponent Rel ati onConstrai nt

Si npl eTabl eConstrai nt ::= Object Set
Conponent Rel ati onConstraint ::=

"“{" DefinedObjectSet "}" "{" AtNotation "," + "}"
At Notation ::=

"@ Conponent|dList |
"@" Conponentl|dLi st
Conponent | dLi st ;= identifier "." +

18 ITU-T Rec. Z.105 (10/2001)

Model

Constraint notation can appear (in round brackets) after any use of the syntactic construct "Type".
Application designers can use this notation to define a structured data type with further constraints
on their field values. Examples of such constraints are restricting the range of some component(s), or
to specify a relation between components. The former is a Si npl eTabl eConst r ai nt and the latter is
a Conponent Rel ati onConstrai nt.

For types with Si npl eTabl eConst r ai nt, the following transformation rules apply.

Before the constrained type can be mapped to SDL, some SDL value types need to be constructed
from the class specification and the constraining set specification in the following manner:

a) For each object set a number of SDL value types are created. The types are generated so that
for each field of the CLASS associated with the object set, one SDL value type is generated.
The name of the type is the concatenation of the name of the object set, an underscore (' ')
and the name of the matching class field.

b) If the class field is a Fi xedTypeVal ueFi el dSpec, a SDL syntype is constructed. The
syntype has a range constraint that is a union of values specified by the matching field of
each object in the object set.

c) If the class field is a Vari abl eTypeVal ueFi el dSpec, a SDL choice type is constructed. The
choice type is constructed so that all the types found in the matching field of all the objects
belonging to the constraining object set are included in the choice. The choice field names
are derived as lower case equivalents of the matching types.

The constrained ASN.1-type can now be mapped to SDL. The type as such is mapped as defined in
4.3. The SDL field names are the same as ASN.l1 field names. The ASN.1 specification of
optionality is preserved in the transformation. For each ASN.1 field constrained by an object set, the
SDL type is specified as type constructed from the class specification and the constraining set
specification (items a) to c)).

For ASN.1-type specifications using Conponent Rel ati onConst r ai nt, the same type transformation
rules are applied. On top of that, for each ASN.1 type with Conponent Rel ati onConstraint, a
check method that traverses the object and checks the constraints is also generated. The check
method returns "true" if all relational constraints are respected and "false" if any of the relational
constraints are violated.

The steps for constructing the check method are:

For each element that is involved in relational constraint (has a Conponent Rel ati onConst r ai nt
attached to it or is mentioned in any ConponentRel ati onConstraint), a local test variable
declaration is generated. The generation follows the following scheme:

'dcl <test var name> <field type>; <test var name> := <field ref>;'

where <test var name> is a unique name for each test variable, <field type> is the type of the
element, <field ref> is a reference to the element. If the element is present, the variable is initialized
to the value of the corresponding field of the object.

For each relational constraint, one test is generated for each combination of constraining values or
types in the object set definition. Each test is generated using the following scheme:

"if (<test expr> and not (<value test>) then { return False; }

where the <test expr> is the result of combining one tests for each constraining value or type using
the 'and' operator. For constraining values the test is defined as:

'<test var name> = <test value>'

where <test var name> is the name of the test variable as described above and <test value> is the
corresponding value from the object set definition.

ITU-T Rec. Z.105 (10/2001) 19

For constraining types, the test is defined as:
'<test var name>.<ispresent method>"'

where <test var name> is the name of the test variable as described above and the <ispresent
method> is the method that checks that the corresponding type is present.

The <value test> is the result of combining one test for each value or type of the constrained element
in the object set definition, that corresponds to the values and types in the <test expr> above, using
the 'or' operator. For values each test is given as:

'<test var name> = <value>'
where the <test var name> is the name of the variable corresponding to the constrained field and
<value> is a value from the object set definition.
For types, the test is defined as:
'<test var name>.<ispresent method>"'

where <test var name> is the name of the variable corresponding to the constrained field and the
<ispresent method> is the method that checks that the corresponding type is present.
For each String field in the type, a loop is generated according to the following scheme:

'loop(dcl <loop var> Integer := 1; <loop var> <= length(<string field>);

<loop var> := <loop var> + 1) { <loop body> }'
where <loop var> is a unique variable name, <string field> a reference to the treated string field and

<loop body> the result of applying the transformations steps in this clause to the elements in the
string.

Example 1
An example of a type with Si npl eTabl eConstrai nt:

ErrorReturn ::= SEQUENCE
{
error Cat egory ERROR- CLASS. &cat egory({Error Set}) OPTI ONAL,
errors SEQUENCE OF SEQUENCE
{
error Code ERROR- CLASS. &code
({ErrorSet}),
errorl nfo ERROR- CLASS. &Type
({ErrorSet})

} OPTI ONAL
}
Provided that the specifications of class and object set were:
ERROR- CLASS :: = CLASS
{
&category PrintableString (Sl ZE(1)),
&code | NTECGER,
&Type

}
W TH SYNTAX { &cat egory &code &Type }

Error Set ERROR- CLASS :: =

{
{ "A" 1 INTEGER } |
{ "A" 2 REAL } |
{ "B" 1 CHARACTER STRING } |
{ "B" 2 General String }
}

20 ITU-T Rec. Z.105 (10/2001)

The SDL types derived from constraint specification would be:

syntype ErrorSet_category = PrintableString (SIZE(1))
constants 'A'", 'B
endsynt ype;

syntype ErrorSet_code = <<package Predefined>> |nteger
constants 1, 2
endsynt ype;

val ue type ErrorSet_Type { choice
i nt eger <<package Predefi ned>> I|nteger;
r eal <<package Predefi ned>> Real;
characterString <<package Predefined>> CharacterString;
general String <<package Predefined>> General String;

}
The constructed SDL type would be the following:

val ue type ErrorReturn { struct
errorCategory ErrorSet_category optional;
errors String <
{ struct
error Code ErrorSet_ code,
errorinfo ErrorSet_Type } > optional;

}
No check method would be generated.

Example 2

An example of a type with Conponent Rel ati onConst r ai nt .

ErrorReturn ::= SEQUENCE
{
error Cat egory ERROR- CLASS. &cat egory({ErrorSet}) OPTI ONAL,
errors SEQUENCE OF SEQUENCE
{
error Code ERROR- CLASS. &code
({ErrorSet}{@rrorCategory}),
errorl nfo ERROR- CLASS. &Type
({ErrorSet}{@rrorCategory, @errorCode})
} OPTI ONAL

}
The corresponding SDL type would be the following:

val ue type ErrorReturn {
struct
errorCategory ErrorSet_category optional;
errors String <
{ struct
error Code ErrorSet code,
errorinfo ErrorSet_Type } > optional;
met hod Check() -> Bool ean
{
dcl t1 ErrorSet_category;
dcl pl Bool ean;
pl := this.errorCategoryPresent();
if (pl = True)

tl :=this.errorCategory;

if ((pl = False) and (this.errorsPresent() = True))

ITU-T Rec. Z.105 (10/2001)

21

return Fal se;

}
loop (dcl il Integer :=1; | <=length(errors); i1l :=i1+1)
{
dcl t2 ErrorSet_code, t3 ErrorSet_Type;
t2 :=this.errors[il].errorCode;
t3 :=this.errors[il].errorlnfo ;
if (t1="A" and not(t2=1 or t2=2))
{
return Fal se;
}
if (t1="B" and not(t2=1 or t2=2))
{
return Fal se;
}
if (t1="A" and t2=1 and not (t3.integerPresent()))
{
return Fal se;
}
if (t1="A" and t2=2 and not (t3.real Present()))
{
return Fal se;
}
if (t1="B" and t2=1 and not (t3.characterStringPresent()))
{
return Fal se;
if (t1="B" and t2=2 and not (t3.general StringPresent))
{
return Fal se;
}
}
}
}
6 Mapping of parameterized ASN.1 specifications

ITU-T Rec. X.683 [6] defines the way to parameterize ASN.1 specification. All ASN.1:1997
concepts can be parameterized. This feature allows the partial specification of types or values within
an ASN.1 module with the specification being completed by the addition of the actual parameters at
instantiation time.

ITU-T Rec. Z.100 defines an equivalent concept of formal context parameters.

6.1 Parameterized assignment

ASN.1 grammar

There are parameterized assignment statements corresponding to each of the assignment statements
specified in ITU-T Recs. X.680 and X.681. The "ParameterizedAssignment" construct is:

Par anet eri zedAssi gnnent :: =
Par anet eri zedTypeAssi gnnent |
Par aret er i zedVal ueAssi gnnent |
Par arret er i zedVal ueSet TypeAssi gnnent |
Par aret eri zedObj ect Cl assAssi gnnent |
Par aret eri zedObj ect Assi gnnent |
Par anet eri zedOhj ect Set Assi gnnent

Model

The use of all forms of Par anet eri zedAssi gnment is supported within ASN.1 modules.

22 ITU-T Rec. Z.105 (10/2001)

Par amet eri zedTypeAssi gnnent can be mapped to SDL as defined in 6.2 relying on the SDL
formal context parameters mechanisms.

ParameterizedValueSetTypeAssignment, ParameterizedObjectClassAssignment,
ParameterizedObjectAssignment, ParameterizedObjectSetAssignment can be used in ASN.1
modules in order to be used in other ASN.1 specifications but are not mapped to SDL themselves.
6.2 Parameterized type assignment
ASN.1 grammar
Par anet eri zedTypeAssi gnnent :: =

typereference

Par amet er Li st

Type

ParaneterList ::= "{" Paraneter "," + "}"

Paraneter ::= ParanmCovernor ":" DummyReference | DumyRef erence
Par anGover nor ::= Governor | DummyGover nor

CGovernor ::= Type | DefinedCbjectd ass

DunmmyGover nor ::= DunmyReference

DumryRef erence ::= Reference

Model

The difference between ordinary and parameterized ASN.1 types is that Par anet er Li st follows the
t yper ef er ence and formal parameters contained in Par anet er Li st are used in the Type definition.

A Type defined in ASN.1 using parameters from the Par anet er Li st is mapped to the appropriate
SDL type (as defined in 4.2.1) provided that ASN.1 parameters are either value or type parameters.
Such parameters are mapped to <formal context parameters> of the SDL type. ASN.1 type
parameter is mapped to SDL <sort context parameter> and ASN.1 value parameter is mapped to
SDL <synonym context parameter>.

ASN.1 parameterized types having parameters that are not types or values cannot be mapped to SDL
directly. However, if the parameters can be expanded first into types or values, the resulting ASN.1
type or value can be mapped to SDL as defined in 6.3.

Example

The ASN.1-type definition:

Templ at eMessage {I NTECER : m nSi ze, | NTEGER : maxSize, |ndicatorType } ::=
SEQUENCE

{
asp NTEGER,
pdu CTET STRI NG S| ZE(mi nSi ze. . maxSi ze)),
i ndi cat or I ndi cat or Type

}

is mapped to SDL type:

val ue type Tenpl at eMessage
<synonym ni nSi ze <<package Predefined>> |Integer; synonym maxSi ze <<package
Predefi ned>> Integer; value type |ndicatorType>

{

struct
asp I nt eger;
pdu <<package Predefined>>Cctetstring (SIZE(m nSi ze: maxSi ze));
i ndi cat or I ndi cat or Type;

}

ITU-T Rec. Z.105 (10/2001) 23

6.3 Referencing ASN.1 parameterized type definitions
ASN.1 grammar

Par anet eri zedType :: =

Si npl eDef i nedType

Act ual Par anet er Li st
Act ual ParaneterList ::=

“{" Actual Paraneter "," + "}"
Act ual Paraneter ::=

Type |

Val ue |

Val ueSet |

Def i nedObj ect Cl ass |
hj ect |

hj ect Set

Model

Par anet eri zedType and Par anet eri zedVal ue references are used in ASN.1 to define new ASN.1
types and values by providing an Act ual Par anet er Li st .

If the ParameterizedType definition was such that it was possible to map it to SDL and the
Act ual Par anmet er Li st contains only Type and Val ue parameters, then ASN.1 references to such
definitions can be mapped to SDL instantiations of the type with context parameters so that elements
of Actual Paranet er Li st are mapped to <actual context parameters>. Example 1 illustrates one
such mapping.

If according to 6.2 the Par anet eri zedType definition could not be mapped to SDL-type definition
with context parameters, the references to such Par anet eri zedType definitions can be mapped to
SDL so that the meaning of such a type is fully expanded to the level of types defined in clause 4
before a mapping to SDL is done.

If the Act ual Par anet er Li st contains Val ueSet , Def i nedCbj ect O ass, Cbj ect or Obj ect Set the
mapping of such type to SDL is done in such a way that the meaning of such type is fully expanded
to the level of types defined in clause 4 before a mapping to SDL is done. Example 2 illustrates one
such mapping.

The ASN.1 types and values derived from referenced ASN.1 parameterized definitions can be
mapped to SDL as defined in clause 4.

Example 1

The parameterized type used in the example in 6.2 can be used to define a simple ASN.1 as follows:

Act ual Message ::= Tenpl at eMessage{10, 20, BOOLEAN}
This can be mapped to SDL type:

val ue type Actual Message : Tenpl at eMessage < 10, 20, <<package Predefined>>
Bool ean >

Example 2

What follows is an example of the ASN.I-type definition derived using a parameter that is an
information object. The ASN.1 modules needs to contain the relevant information object class
definition with parameterized assignment having object of that class as dummy parameter,
information object value assignment and parameterised type definition reference.

MESSAGE- PARAMETERS :: = CLASS {
&maxi mum priority-1evel | NTEGER,
&maxi mum nessage- buf f er - si ze | NTEGER

24 ITU-T Rec. Z.105 (10/2001)

}
W TH SYNTAX {
THE MAXI MUM PRIORITY LEVEL | S &maxi mum-priority-1evel
THE MAXI MUM MESSAGE BUFFER SI ZE | S &maxi mum nessage- buf f er - si ze

}
Message- PDU { MESSAGE- PARAMETERS : param } ::= SEQUENCE {
priority-Ievel I NTEGER (0..param &raxi numpriority-Ilevel),
nessage BMPString (SIZE (0. . param &raxi num nessage- buf fer-size))
}
ny- nessage- par anet ers MESSAGE- PARAMETERS : : = {

THE MAXIMUM PRIORI TY LEVEL IS 10
THE MAXI MUM MESSAGE BUFFER SI ZE |'S 2000

}
MY- Message- PDU : : = Message- PDU { ny- nessage- paraneters }

The semantics of ASN.1 is that with such definition of class, parameterized type definition and
object value definition, the type resulting from transformation of MY-Message-PDU is equivalent to:

MY- Message- PDU : : = SEQUENCE {

priority-Ievel | NTEGER (0..10),

nessage BMPString (S| ZE (0..2000))
}

The resulting ASN.1 type can be mapped to SDL type as:

val ue type MY_Message PDU {

struct
priority_|evel <<package Predefined>> | NTEGER (O..10);
nessage <<package Predefined>> BWPString (SIZE (0..2000));
}
6.4 Referencing ASN.1 parameterized value definitions
ASN.1 grammar

Par anet eri zedVal ue :: =
Si npl eDef i nedVal ue
Act ual Par anet er Li st

Si npl eDefi nedval ue :: =
Ext er nal val uer ef erence |
val uer ef erence

Act ual ParaneterList ::=
“{" Actual Paraneter "," + "}"

Act ual Paraneter ::=
Type |
Val ue |
Val ueSet |
Def i nedObj ect Cl ass |
oj ect |
hj ect Set

Model

Par amet eri zedVal ue references are used in ASN.1 to define new ASN.1 values by providing an
Act ual Par anmet er Li st .

Par anet eri zedVal ue references are mapped to SDL in such a way that the meaning of such a value
specification is fully expanded to the level of value assignments defined in clause 4 before a
mapping to SDL is done.

ITU-T Rec. Z.105 (10/2001) 25

6.5 Referencing other ASN.1 parameterized definitions

Par anet eri zedVal ueSet Type :: =
Si npl eDef i nedType
Act ual Par amet er Li st

Par anet eri zedOhj ect G ass :: =
Def i nedObj ect Cl ass
Act ual Par aret er Li st

Par anet eri zedObj ect Set :: =
Def i nedObj ect Set
Act ual Par anet er Li st

Paraneteri zedObj ect ::=
Def i nedObj ect
Act ual Par anet er Li st

Act ual ParaneterList ::=
“{" Actual Paraneter "," + "}"

Act ual Par aneter ::=

Type |

Val ue |

Val ueSet |

Def i nedObj ect Cl ass |

oj ect |

bj ect Set
ANS.1 modules can contain the specification of value sets, object classes, object sets and objects
defined by referencing the Si npl eDefi nedType with Act ual Par anet er Li st. Such specifications

are not mapped to SDL.

7 Additions to package Predefined

The following definitions shall be added to the package Predefined in order to support the
combination of ASN.1 modules with SDL.

syntype NumericChar = Character constants
IV, lOV, lll, |2|’ 13V’ 1419 1513 V6V,
7', '8', '9' endsyntype;

[*/
/* NumericString sort */
/* Definition */

value type NumericString

inherits String < NumericChar > (" = emptystring)

adding

operators ocs in nameclass
" ((0%'9") or " or ('))+ "" -> this NumericString;

/* character strings of any length of any characters from a space ''toa'9' */
axioms

for all ¢ in NumericChar nameclass (

for all cs, csl, cs2 in ocs nameclass (

spelling(cs) == spelling(c) ==>c¢s == mkstring(c);
/* string 'A' is formed from character 'A' etc. */

spelling(cs) == spelling(cs1) // spelling(cs2),

length(spelling(cs2)) == 1 ==>c¢s ==csl // cs2;

26 ITU-T Rec. Z.105 (10/2001)

));

endvalue type NumericString;
/* */
syntype PrintableChar = Character constants
' V, VOV, Vll’ |2|’ V3V, 141, |5|’ V6V,
|7|’ '8v, V91’ IAI’ VB|’ VCV’ lDl, VEI’
IFV, VGV, IHI’ |IV, VJl’ IKV’ !L', VMl’
INI’ VOV’ IPI’ IQI’ VR') ISI’ lTl, VUV’
lVl’ VWV’ |X|’ VYV, IZ!, lal’ VbV’ ICV,
ldI’ Ve|’ lf’ lgI’ VhV’ li', 'j|, VkV’
lll’ !mI’ |n|’ VOV’ lpl’ |q|’ Vrl’ IS',
't" |u|’ VVV’ 'W" VXV’ lyl, 'Z', "",
l(!, !)V’ V+V’ "V’ V_V’ V-l, '/', V:V,
|=l V")l

,

constants;
/* */

/* PrintableString sort */
/* Definition */
value type PrintableString

inherits String < PrintableChar > (" = emptystring)

adding

operators ocs in nameclass
" "&")or " or ('(:'?"))+ "" -> this PrintableString;

/* character strings of any length of any characters from a space ''toa'?" */
axioms

for all c in PrintableChar nameclass (

for all cs, csl, cs2 in ocs nameclass (

spelling(cs) == spelling(c) ==>cs == mkstring(c);
/* string 'A' is formed from character 'A' etc. */

spelling(cs) == spelling(cs1) // spelling(cs2),

length(spelling(cs2)) == ==>cs ==csl // cs2;

);
endvalue type PrintableString;
/%%
syntype TeletexChar = Character constants
/* characters specified in ITU-T Rec. X.680 clause 36.1 Table 3 */ endsyntype;
/% %/

/* TeletexString sort */
/* Definition */
value type TeletexString

inherits String < TeletexChar > (" = emptystring)

adding

operators ocs in nameclass

/* characters specified in ITU-T Rec. X.680 clause 36.1 Table 3 */ -> this TeletexString;
axioms

for all c in TeletexChar nameclass (

for all cs, csl, cs2 in ocs nameclass (

spelling(cs) == spelling(c) ==>cs == mkstring(c);
/* string 'A'" is formed from character 'A' etc. */

spelling(cs) == spelling(cs1) // spelling(cs2),

length(spelling(cs2)) == 1 ==>cs ==csl // cs2;

ITU-T Rec. Z.105 (10/2001)

27

);
endvalue type TeletexString;

syntype VideotexChar = Character constants
/* characters specified in ITU-T Rec. X.680 clause 36.1 Table 3 */ endsyntype;
/* */

/* VideotexString sort */
/* Definition */
value type VideotexString
inherits String < VideotexChar > (" = emptystring)
adding
operators ocs in nameclass
/* characters specified in ITU-T Rec. X.680 clause 36.1 Table 3 */ -> this VideotexString;
axioms
for all c in VideotexChar nameclass (
for all cs, csl1, cs2 in ocs nameclass (
spelling(cs) == spelling(c) ==>¢s == mkstring(c);
/* string 'A' is formed from character 'A' etc. */
spelling(cs) == spelling(cs1) // spelling(cs2),
length(spelling(cs2)) == ==>cs ==csl // cs2;
)
endvalue type VideotexString;

syntype IA5Char = Character endsyntype;

syntype [A5String = Charstring endsyntype;

value type GeneralChar
literals /* All G and all C sets + SPACE + DELETE ITU-T Rec. X.680 clause 36.1 Table 3
*/

operators
gchr (Integer) -> this GeneralChar;

endvalue type;

value type UniversalChar

literals /* see ITU-T Rec. X.680 clause 36.6 */
operators

uchr (Integer) -> this UniversalChar;
endvalue type;
/% %/

/* UniversalCharString sort ~ */
/* Definition */

value type UniversalCharString
inherits String < UniversalChar > (" = emptystring)
adding
operators ocs in nameclass
/* see ITU-T Rec. X.680 clause 36.6 */ -> this UniversalCharString;
axioms
for all ¢ in UniversalChar nameclass (
for all cs, csl, cs2 in ocs nameclass (
spelling(cs) == spelling(c) ==>cs == mkstring(c);

28 ITU-T Rec. Z.105 (10/2001)

/* string 'A' is formed from character 'A' etc. */
spelling(cs) == spelling(cs1) // spelling(cs2),

length(spelling(cs2)) == 1 ==>c¢s ==csl // cs2;
);

endvalue type UniversalCharString;

/* %/

/* UTF8String sort ~ */
syntype UTF8String = UniversalCharString endsyntype;
/% %/

/* GeneralCharString sort */
/* Definition */
value type GeneralCharString

inherits String < GeneralChar > (" = emptystring)

adding

operators ocs in nameclass

/* All G and all C sets + SPACE + DELETE ITU-T Rec. X.680 clause 36.1 Table 3 */
-> this GeneralCharString;
/* character strings of any length of any characters from a space ''toa'?" */
axioms

for all ¢ in GeneralChar nameclass (

for all cs, csl, cs2 in ocs nameclass (

spelling(cs) == spelling(c) ==>cs == mkstring(c);
/* string 'A' is formed from character 'A' etc. */

spelling(cs) == spelling(cs1) // spelling(cs2),

length(spelling(cs2)) == 1 ==>cs ==csl // cs2;
);

endvalue type GeneralCharString;

/% %/

syntype GraphicChar = GeneralChar constants

/* All GFSPACE+DELETE as specified in ITU-T Rec. X.680 clause 36.1 Table 3 */
endsyntype;

/% */

/* GraphicCharString sort */
/* Definition */
value type GraphicCharString
inherits String < GraphicChar > (" = emptystring)
adding
operators ocs in nameclass
/* All G + SPACE + DELETE as specified in ITU-T Rec. X.680 clause 36.1 Table 3 */
-> this GraphicCharString;
axioms
for all ¢ in GraphicChar nameclass (
for all cs, csl, cs2 in ocs nameclass (

spelling(cs) == spelling(c) ==>¢s == mkstring(c);
spelling(cs) == spelling(cs1) // spelling(cs2),

length(spelling(cs2)) == ==>cs ==csl // cs2;
)

endvalue type GraphicCharString;

syntype VisibleChar = Character constants

ITU-T Rec. Z.105 (10/2001) 29

/* characters specified in ITU-T Rec. X.680 clause 36.1 Table 3 */
endsyntype;
/% */

/* VisibleString sort */
/* Definition */
value type VisibleString
inherits String < VisibleChar > (" = emptystring)
adding
operators ocs in nameclass
/* characters specified in ITU-T Rec. X.680 clause 36.1 Table 3 */
-> this VisibleString;
axioms
for all ¢ in VisibleChar nameclass (
for all cs, csl, cs2 in ocs nameclass (
spelling(cs) == spelling(c) ==>c¢s == mkstring(c);
/* string 'A" is formed from character 'A' etc. */
spelling(cs) == spelling(cs1) // spelling(cs2),
length(spelling(cs2)) == ==>cs ==csl // cs2;
);
endvalue type VisibleString;

syntype BMPChar = UniversalChar CONSTANTS /* see ITU-T Rec. X.680 clause 36.12 */

endsyntype;

/* */

/* BMPCharString sort ~ */
/* Definition */

value type BMPCharString
inherits String < BMPChar > (" = emptystring)
adding
operators ocs in nameclass
/* see ITU-T Rec. X.680 clause 36.12 */-> this BMPCharString;
axioms
for all c in BMPChar nameclass (
for all cs, csl, cs2 in ocs nameclass (
spelling(cs) == spelling(c) ==>cs == mkstring(c);
/* string 'A'" is formed from character 'A' etc. */
spelling(cs) == spelling(cs1) // spelling(cs2),
length(spelling(cs2)) == 1 ==>cs ==csl // cs2;
);
endvalue type BMPCharString;
/% %/

value type NULL
literals NULL

endvalue type;

30 ITU-T Rec. Z.105 (10/2001)

Series A
Series B
Series C
Series D
Series E
Series F
Series G
Series H
Series [

Series J

Series K
Series L

Series M

Series N
Series O
Series P
Series Q
Series R
Series S
Series T
Series U
Series V
Series X
Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure and Internet protocol aspects

Languages and general software aspects for telecommunication systems

Geneva, 2002

	ITU-T Rec. Z.105 (10/2001) SDL combined with ASN.1 modules (SDL/ASN.1)
	Summary
	Source
	CONTENTS
	1 Scope
	1.1 Objective
	1.2 The characteristics of the combination of SDL and ASN.1 modules
	1.3 ASN.1 that can be used in combination with SDL
	1.4 The structure of this Recommendation
	1.5 Conventions used in this Recommendation

	2 References
	3 Package
	4 Definition and use of data
	4.1 Name mapping
	4.2 Variable and data definitions
	4.3 Type expressions
	4.4 Range condition
	4.5 Value expressions

	5 Mapping of ASN.1 types defined in ASN.1 modules using information objects, classes and sets
	5.1 Introduction
	5.2 Information object class definition and assignment
	5.3 Object class field type
	5.4 Information object definition and assignment
	5.5 Information from objects
	5.6 Constraint specification

	6 Mapping of parameterized ASN.1 specifications
	6.1 Parameterized assignment
	6.2 Parameterized type assignment
	6.3 Referencing ASN.1 parameterized type definitions
	6.4 Referencing ASN.1 parameterized value definitions
	6.5 Referencing other ASN.1 parameterized definitions

	7 Additions to package Predefined

