

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.109
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2016)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language –
Unified modeling language profile for SDL-2010

Recommendation ITU-T Z.109

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109

Application of formal description techniques Z.110–Z.119

Message Sequence Chart (MSC) Z.120–Z.129

User Requirements Notation (URN) Z.150–Z.159

Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.349

Data-oriented human-machine interfaces Z.350–Z.359

Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY

Quality of telecommunication software Z.400–Z.409

Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS

Methods for validation and testing Z.500–Z.519

MIDDLEWARE

Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.109 (10/2016) i

Recommendation ITU-T Z.109

Specification and Description Language – Unified modeling language

profile for SDL-2010

Summary

Objective: Recommendation ITU-T Z.109 defines a unified modeling language (UML) profile that

maps to SDL-2010 semantics so that UML is able to be used in combination with the ITU-T

Specification and Description Language. Appendix I includes an (informative) Example language

specification for a concrete grammar and its mapping to the UML profile.

Coverage: This Recommendation presents a definition of the UML-to-SDL-2010 mapping for use in

the combination of SDL-2010 and UML.

Application: The main area of application of this Recommendation is the specification of

telecommunication systems. The combined use of SDL-2010 and UML permits a coherent way to

specify the structure and behaviour of telecommunication systems, together with data.

Status/Stability: This Recommendation is the complete reference manual describing the UML to

SDL-2010 mapping for use in the combination of SDL-2010 and UML. It replaces the previous

Recommendation ITU-T Z.109 that concerned earlier versions of UML and Specification and

Description Language.

Associated work: Recommendations ITU-T Z.100, ITU-T Z.101, ITU-T Z.102, ITU-T Z.103,

ITU-T Z.104 and ITU-T Z.107 concerning the ITU-T Specification and Description Language 2010

(SDL-2010).

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Z.109 1999-11-19 10 11.1002/1000/4767

2.0 ITU-T Z.109 2007-06-13 17 11.1002/1000/9117

3.0 ITU-T Z.109 2012-04-29 17 11.1002/1000/11583

3.1 ITU-T Z.109 (2012) Amd. 1 2012-11-29 17 11.1002/1000/11759

4.0 ITU-T Z.109 2013-10-14 17 11.1002/1000/12035

5.0 ITU-T Z.109 2016-10-14 17 11.1002/1000/13043

Keywords

Profile, SDL-2010, specification and description language, UML, Unified modeling language.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/4767
http://handle.itu.int/11.1002/1000/9117
http://handle.itu.int/11.1002/1000/11583
http://handle.itu.int/11.1002/1000/11759
http://handle.itu.int/11.1002/1000/12035
http://handle.itu.int/11.1002/1000/13043
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Z.109 (10/2016)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2017

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.109 (10/2016) iii

Table of Contents

 Page

1 Scope and objectives ... 1

1.1 Conformance .. 1

1.2 Restrictions on SDL-2010 and UML ... 2

1.3 Mapping .. 2

2 References ... 3

3 Definitions .. 3

3.1 Terms defined elsewhere .. 3

3.2 Terms defined in this Recommendation ... 3

4 Abbreviations and acronyms .. 4

5 Conventions and names .. 4

5.1 Conventions .. 4

5.2 Names and name resolution: NamedElement ... 5

5.3 Transformation ... 7

6 Summary of stereotypes and metaclasses ... 8

6.1 Stereotype summary ... 8

6.2 Metaclass summary .. 9

7 Structure .. 11

7.1 Structure metamodel diagrams ... 13

7.2 ActiveClass ... 14

7.3 ChoiceType ... 17

7.4 Classifier ... 18

7.5 Connector ... 20

7.6 DataTypeDefinition .. 21

7.7 Interface .. 24

7.8 LiteralType ... 25

7.9 Operation .. 26

7.10 Package ... 28

7.11 Parameter .. 29

7.12 Port ... 31

7.13 Property .. 32

7.14 Signal .. 34

7.15 Specification ... 35

7.16 StructureType ... 36

7.17 Syntype ... 37

7.18 Timer .. 37

8 State machines .. 38

8.1 State machine metamodel diagrams ... 39

8.2 DashNextstate ... 39

iv Rec. ITU-T Z.109 (10/2016)

 Page

8.3 CompositeStateGraph ... 40

8.4 CompositeStateTypeDefinition .. 40

8.5 DecisionNode ... 42

8.6 FinalState .. 43

8.7 JoinNode ... 43

8.8 ProcedureDefinition ... 44

8.9 ProcedureGraph .. 45

8.10 Pseudostate ... 46

8.11 Region ... 47

8.12 ReturnNode ... 48

8.13 State .. 48

8.14 StartNode .. 50

8.15 StateAggregationArea .. 51

8.16 StateMachine .. 52

8.17 StopNode .. 53

8.18 Transition .. 54

9 Actions and activities .. 57

9.1 Action and activity metamodel diagrams ... 58

9.2 Activity ... 59

9.3 AssignValueAction ... 61

9.4 Break ... 61

9.5 CallOperationAction ... 62

9.6 ConditionalNode ... 63

9.7 Continue ... 64

9.8 CreateObjectAction .. 65

9.9 ExpressionAction ... 65

9.10 LoopNode ... 66

9.11 ResetAction .. 67

9.12 Return ... 68

9.13 SequenceNode .. 68

9.14 SendSignalAction ... 69

9.15 SetAction .. 70

9.16 Stop ... 71

9.17 Variable .. 71

10 ValueSpecification .. 72

10.1 ValueSpecification metamodel diagrams ... 73

10.2 ActiveAgentsExpression .. 76

10.3 AnyExpression ... 76

10.4 ClosedRange ... 77

 Rec. ITU-T Z.109 (10/2016) v

 Page

10.5 ConditionalExpression ... 78

10.6 ConditionItem ... 78

10.7 EqualityExpression ... 79

10.8 ImperativeExpression ... 79

10.9 LiteralValue .. 80

10.10 NowExpression ... 81

10.11 OpenRange ... 81

10.12 OperationApplication ... 82

10.13 PidExpression ... 82

10.14 PidExpressionKind ... 83

10.15 RangeCheckExpression .. 83

10.16 RangeCondition .. 84

10.17 SdlExpression ... 85

10.18 SizeConstraint ... 85

10.19 StateExpression .. 86

10.20 TimerActiveExpression .. 86

10.21 TimerRemainingDuration ... 87

10.22 TypeCheckExpression .. 87

10.23 TypeCoercion ... 88

10.24 Undefined ... 89

10.25 ValueReturningCallNode ... 89

10.26 VariableAccess ... 90

11 Context parameters ... 90

11.1 Context parameter metamodel diagrams .. 91

11.2 ActualContextParameter ... 93

11.3 AgentContextParameter ... 94

11.4 AgentTypeContextParameter ... 95

11.5 CompositeStateTypeContextParameter .. 95

11.6 FormalContextParameter .. 96

11.7 GateContextParameter .. 97

11.8 GateConstraint .. 98

11.9 InterfaceContextParameter ... 98

11.10 ProcedureContextParameter ... 99

11.11 SignalContextParameter ... 100

11.12 SortContextParameter ... 100

11.13 SynonymContextParameter .. 101

11.14 TimerContextParameter ... 101

11.15 VariableContextParameter ... 102

12 Predefined data ... 103

vi Rec. ITU-T Z.109 (10/2016)

 Page

12.1 Non-parameterized data types .. 103

12.2 Parameterized data types .. 104

12.3 Pid ... 106

12.4 UndefinedVariable ... 106

Appendix I – Example language specification .. 107

I.1 Conventions .. 107

I.2 Lexical rules and names ... 110

I.3 Organization ... 119

I.4 Basic concepts .. 125

I.5 Structure ... 136

I.6 Communication .. 140

I.7 State machine .. 145

I.8 Sequential behaviour .. 157

I.9 Data ... 168

I.10 Exceptions .. 194

I.11 Generic system definition ... 195

Bibliography... 197

 Rec. ITU-T Z.109 (10/2016) vii

Introduction

The UML profile presented in Recommendation ITU-T Z.109 is intended to support the usage of

UML (version 2 or later) as a front-end for tools supporting specification and implementation of

reactive systems, in particular for telecommunication applications. The intention is to enable tool

vendors to create tools that benefit from the closure of semantic variations in UML with SDL-2010

semantics and benefit from the Specification and Description Language tool technology that supports

this particular application area.

The intention is that when the profile is applied to a model, the set of stereotypes and metaclasses

defined in this Recommendation extends the elements in the model and has several consequences:

– additional properties are available as specified by the stereotype attributes;

– constraints defined for the stereotypes apply to the model elements introducing more

semantic checks that need to be fulfilled for the model;

– semantics, in particular dynamic semantics, are defined for the model elements as specified

by the mapping of the stereotyped UML concepts to the SDL-2010 abstract grammar.

The details of the profile mechanism in this Recommendation follow: The Recommendation is

structured into a number of clauses. Each clause defines one stereotype or metaclass. Each stereotype

usually captures the semantics of one SDL-2010 concept based on a UML concept. A stereotype in

most cases constrains a UML element with a multiplicity of [1..1] (that is, the stereotype is required),

but in some cases extends rather than constrains the basic UML language. The UML user never

manually has to apply the stereotype to a UML element: instead stereotypes are applied automatically

when applying the profile to the model itself, or if the user has not kept within the language defined

by this profile a suitable message is displayed to the user. As a consequence, applying this profile

results in extra properties, extra semantic checks, and a clearly comprehensible semantics that can be

used in tools to provide features such as static model analysis, simulation and application generation

as the model is sufficiently well defined to be executable.

Apart from the set of stereotypes, the Recommendation defines a set of metaclasses as extensions to

the UML metamodel in order to represent SDL-2010 expressions and value specifications. This is

because the UML concepts for value specification are not appropriate for this purpose.

This Recommendation introduces no particular textual notation for stereotypes defined by this UML

profile. Instead, a textual notation and its mapping to corresponding model elements has to be defined

by an additional description (possibly an ITU-T Recommendation or information provided by a tool

supplier). So that the application of transformation models of SDL-2010 referenced in this profile are

understandable, the syntax for an appropriate textual notation should be a subset of the concrete

syntax of SDL-2010 or an SDL-like syntax, which is modified to the particular requirements of a

UML-based domain specific language.

The idea is that when a user enters the described syntax, a tool should automatically create the

corresponding model element with the correct stereotype applied.

 Rec. ITU-T Z.109 (10/2016) 1

Recommendation ITU-T Z.109

Specification and Description Language – Unified modeling language

profile for SDL-2010

1 Scope and objectives

This Recommendation defines a unified modeling language (UML) profile for SDL-2010. It ensures

a well-defined mapping between parts of a UML model and the SDL-2010 semantics. The profile is

based upon the UML metamodel and upon the abstract grammar of SDL-2010, and in the following

text is referred to as SDL-UML.

The specializations and restrictions are defined in terms of stereotypes for metaclasses of the UML

metamodel and the abstract grammar of SDL-2010 and are in principle independent of any notation.

However, to generate particular model elements, especially those that are instances of UML actions

or activities, it is assumed that an appropriate notation is specified (see an Example language

specification in Appendix I).

A software tool that claims to support this Recommendation (hereafter referred to as a tool) should

be capable of creating, editing, presenting and analysing descriptions compliant with this

Recommendation.

1.1 Conformance

A model that claims to be compliant to this Recommendation shall meet the metamodel constraints

of UML and this Recommendation and, when mapped to the abstract grammar of SDL-2010, shall

conform to the abstract grammar of the ITU-T Z.100 series of Recommendations included by

reference. A model is non-compliant if it does not meet the constraints of the ITU-T Z.100 series of

Recommendations, or if it includes an abstract grammar that is not allowed by the ITU-T Z.100 series

of Recommendations, or if it has analysable semantics that can be seen to differ from said series of

Recommendations.

The abstract grammar of this Recommendation is a profile of UML and a set of additional

metaclasses, which are specializations of the UML ValueSpecification metaclass. Therefore, any

model that conforms to this Recommendation also conforms to the requirements of UML.

A tool that supports the profile shall support the specializations and restrictions of UML defined in

the profile to conform to the Recommendation and should be capable of exporting such models to

other tools and of importing such models from other tools.

A conformance statement clearly identifying the profile features and requirements not supported

should accompany any tool that handles a subset of this Recommendation. If no conformance

statement is provided, it shall be assumed that the tool is fully compliant. It is therefore preferable to

supply a conformance statement; otherwise, any unsupported feature allows the tool to be rejected as

not valid. While it is suggested that tools provide a suitable notation, conformance to any particular

notation is not a requirement.

A compliant tool is a tool that is able to detect non-conformance of a model. If the tool handles a

superset of SDL-UML, it is allowed to categorize non-conformance as a warning rather than a failure.

It is required that for those 'Language Units' (see the UML specification [OMG UML] clause 2,

Conformance) handled by the tool, a compliant tool conforms to the metamodel defined by this profile

combined with the UML specification [OMG UML] and the mapping of those 'Language Units' to

the SDL-2010 abstract grammar as defined by this Recommendation.

A fully compliant tool is a compliant tool that supports the complete profile defined by this

Recommendation.

2 Rec. ITU-T Z.109 (10/2016)

A valid tool is a compliant tool that supports a subset of the profile. A valid tool should include

enough of the profile for useful modeling to be done. The subset shall enable the implementation of

structured applications with communicating extended finite state machines.

1.2 Restrictions on SDL-2010 and UML

There are no restrictions on SDL-2010. However, SDL-2010 is only partially covered by SDL-UML.

A general restriction on SDL-UML is that only the metamodel elements defined in this profile ensure

a one-to-one mapping. In a combined use of UML and SDL-2010, more parts of UML are usable, but

the mapping of these cannot be guaranteed to work the same way with different tools.

This profile focuses on the following clauses of the UML Superstructure specification:

– Classes;

– Composite structures;

– Common behaviours;

– Actions;

– Activities;

– State machines.

Metamodel elements defined in these clauses are included in this profile if they are specifically

mentioned in this Recommendation. Any metamodel element of the UML Superstructure

specification that is not mentioned in this Recommendation is not included in this profile. A

metamodel element that is a generalization of one of the included metamodel elements (that is, it is

inherited) is included as part of the definition of the included metamodel element. Other

specializations of such a generalization are only included if they are also specifically mentioned. If

an included metamodel element has a property that is allowed to be non-empty, the metamodel

element for the property is included. However, if the property is constrained so that it is always empty,

such a property is effectively deleted from the model and therefore does not imply that the metamodel

element for the property is included.

Metamodel elements introduced in the following clauses of the UML Superstructure specification are

not included in this profile:

– Components;

– Deployments;

– Use cases;

– Interactions;

– Auxiliary constructs;

– Profiles.

1.3 Mapping

UML classes generally represent entity types of SDL-2010. In most cases, the entity kind is

represented by a stereotype. Where predefined model-elements or stereotypes or notation exist in

UML that have a similar meaning as in SDL-2010, they have been used.

 Rec. ITU-T Z.109 (10/2016) 3

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Z.100] Recommendation ITU-T Z.100 (2016), Specification and Description Language –

Overview of SDL-2010.

[ITU-T Z.101] Recommendation ITU-T Z.101 (2016), Specification and Description Language –

Basic SDL-2010.

[ITU-T Z.102] Recommendation ITU-T Z.102 (2016), Specification and Description Language –

Comprehensive SDL-2010.

[ITU-T Z.103] Recommendation ITU-T Z.103 (2016), Specification and Description Language –

Shorthand notation and annotation in SDL-2010.

[ITU-T Z.104] Recommendation ITU-T Z.104 (2016), Specification and Description Language –

Data and action language in SDL-2010.

[ITU-T Z.107] Recommendation ITU-T Z.107 (2016), Specification and Description Language –

Object-oriented data in SDL-2010.

[ITU-T Z.119] Recommendation ITU-T Z.119 (2007), Guidelines for UML profile design.

[OMG UML] OMG. OMG Unified Modeling Language (OMG UML), Superstructure. Version

2.4.1, document no. formal/2011-08-06.
http://www.omg.org/spec/UML/2.4.1/Superstructure

NOTE – This Recommendation references specific paragraphs of [ITU-T Z.101], [ITU-T Z.102],

[ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.107] and [OMG UML]. The specific paragraph references are only

valid for the editions specifically referenced above. If a more recent edition of [ITU-T Z.101], [ITU-T Z.102],

[ITU-T Z.103], [ITU-T Z.104] and [ITU-T Z.107] or [OMG UML] is used, it is possible that the corresponding

paragraph number or paragraph heading is different. In particular, UML 2.4.1 has been replaced by UML 2.5:

OMG. OMG Unified Modeling Language (OMG UML) Version 2.5 document no. formal/2015-03-01. UML

2.5 is formally a minor revision to the UML 2.4.1 specification, having been rewritten as solicited by the OMG

UML Specification Simplification RFP ad/09-12-10. It supersedes formal/2011-08-06 (Superstructure).

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

The terms and definitions given in [ITU-T Z.100] apply.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms, which apply if they are also defined elsewhere:

3.2.1 compliant tool: A tool that is able to detect non-conformance of a model to the profile

defined by this Recommendation.

3.2.2 direct container: A is the direct container of B (B is directly contained in A; A directly

contains B), if A contains B and there is no intermediate C that contains B such that C is contained

in A.

http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.5

4 Rec. ITU-T Z.109 (10/2016)

3.2.3 fully compliant tool: A compliant tool that supports the complete profile defined by this

Recommendation.

3.2.4 type conformance: The UML type conformance (applied by "conforms to") is as defined in

clause 7.3.8 Classifier of [UML-SS], and corresponds to SDL-2010 sort compatibility as defined in

clause 12.1.9 of [ITU-T Z.104].

3.2.5 valid tool: A compliant tool that supports a subset of the profile defined by this

Recommendation where the subset enables the definition of models containing structured

applications with communicating extended finite state machines.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

SDL-2010 Specification and Description Language 2010, particularly as it relates to the relevant

ITU-T Z.100 series Recommendations for the term.

SDL-UML The language defined by the UML profile in this Recommendation.

UML Unified Modeling Language 2.0 (see [OMG UML]).

UML-SS OMG UML-2.4 Superstructure Specification (see [OMG UML]).

5 Conventions and names

This clause defines conventions used throughout the rest of this Recommendation and the general

handling of name resolution and template expansion that apply for the whole metamodel.

5.1 Conventions

The conventions defined in [ITU-T Z.119] apply. For convenience, these conventions are repeated

below.

A term in this Recommendation is a sequence of printing characters usually being either an English

word or a concatenation of English words that indicate the meaning of the term.

A term preceded by the word "stereotype" names a UML stereotype used for this profile, according

to the stereotype concept defined in the UML Superstructure specification documentation (usually in

a phrase "The stereotype X extends the metaclass X" where X is a term). If the multiplicity of the

stereotype is [1..1], the stereotype is required (that is, the derived attribute isRequired of the Extension

association between the extended metaclass and the stereotype is true). If the multiplicity of the

stereotype is [0..1], the stereotype is not required.

New metaclasses are also introduced in this Recommendation (usually by a phrase such as "The

abstract metaclass SdlExpression is a specialization of the UML metaclass ValueSpecification").

Some stereotypes and metaclasses are introduced only to define common elements shared between

different metaclasses based on them and an instance of the base stereotype or metaclass is not allowed:

in UML terminology the stereotype or metaclass is abstract and this is stated in the definition of the

stereotype or metaclass.

An underlined term refers to a UML term or a term defined by a stereotype of this profile. A term

starting with a capital letter by convention is the name of a metaclass.

A term is not underlined at the point at which it is introduced (for example, "X" in "The stereotype X

extends the metaclass X", or SdlExpression in the phrase given above). Also in an attribute definition,

neither the name nor the kind of the attribute is underlined, because the name is a defining occurrence

and use of the kind as a term is obvious from context.

 Rec. ITU-T Z.109 (10/2016) 5

If a stereotype is required and has the same name as the metaclass it extends, the underlined term

refers to both the metaclass and the stereotype. For example, "The visibility of the NamedElement

shall not be package" means the same as the constraint: "The visibility of the <<NamedElement>>

NamedElement shall not be package".

A term in italic in a stereotype or metaclass description refers to an SDL-2010 abstract syntax item.

A term in Courier font refers to some text that appears in the model either as written by a user or to

represent some text created from the expansion of a shorthand notation (as outlined in clause 5.3,

Transformation, below and in detail for the relevant construct).

The terms "supertype" and "subtype" are widely used in this Recommendation, SDL-2010

Recommendations and UML-SS and it is assumed that they are well understood. When the term

"supertype" is used in relation to the metamodel in this Recommendation, for Classifier (and

metaclasses or stereotypes derived from Classifier) supertype corresponds to the general property of

the Classifier. For a Class (and metaclasses or stereotypes derived from Class) supertype corresponds

to the superClass property of the Class (which redefines general from Classifier). The term "subtype"

is the inverse of "supertype": if A is a supertype of B, B is a subtype of A.

The metamodel diagrams in this Recommendation are informative overviews rather than normative.

5.1.1 References

UML-SS [OMG UML]:

 6.3 The UML Metamodel

 18.3.9 Stereotype (from Profiles)

5.2 Names and name resolution: NamedElement

The stereotype NamedElement extends the metaclass NamedElement with multiplicity [1..1].

NOTE – Names are resolved according to the UML name binding rules. However, there are constraints applied

to names that are mapped to the SDL-2010 abstract syntax.

5.2.1 Attributes

No additional attributes are defined.

5.2.2 Constraints

[1] Any item that inherits from NamedElement and maps to SDL-2010 abstract syntax requiring

a Name shall have a name. Any such name shall have a non-empty String value of characters

derived from the syntax as defined in the Notation clause below.

[2] When a complete SDL-UML model maps to the SDL-2010 abstract syntax, no item shall

have the same Name as another item of the same entity kind in the same defining context.

 NOTE 1 – It is always possible to modify a UML model to meet the above naming requirement by

renaming elements that generate name clashes so that the UML model is a valid SDL-UML model

for this profile.

[3] A NamedElement shall have a visibility and qualifiedName.

[4] The visibility of the NamedElement shall not be package.

[5] The visibility of the NamedElement (or of any item derived from it) shall be protected or

private only if the NamedElement is an operation (including a literal) of a data type.

[6] If a NamedElement is of kind Namespace, but it is not of kind Operation or Classifier, its

packageImport and elementImport properties shall be empty.

 NOTE 2 – Only instances of the metaclasses Operation or Classifier map to elements in the abstract

syntax of SDL-2010 (scope units) for that an import of type definitions is possible.

6 Rec. ITU-T Z.109 (10/2016)

5.2.3 Semantics

The characters of the String for a name are each of the characters of the <name> taken in order.

Whenever a Name is required in the SDL-2010 abstract syntax (usually for the definition of an item),

the Name is mapped from the name of the appropriate item derived from NamedElement. Whenever

an Identifier is required in the SDL-2010 abstract syntax (usually to identify to a defined item), the

Identifier is mapped from the name of the appropriate item derived from NamedElement. The detail

of these mappings is described in the following paragraphs.

When a name maps to a Name, the String value of the name maps to the Token and if two items

have a distinct String value each item maps a different Token. If two items have the same Token for

their Name, they have the same String value for their name. If two items have the same String

value for their name, they have the same Token for their Name, except if two UML elements are

distinguishable by some additional means (such as distinct signatures of operations with the same

name and same type in the same namespace). In such exceptional cases, each name maps to a different

unique Token.

When the SDL-2010 abstract syntax requires an Identifier, the String value of the qualifiedName is

used. A qualifiedName is a derived attribute that allows the NamedElement to be identified in a

hierarchy. The Qualifier of the Identifier is a Path-item list that specifies uniquely the defining context

of the identified entity and is derived from the qualifiedName. Starting at the root of the hierarchy,

each name and class pair of the containing namespaces maps to the corresponding qualifier (Package-

qualifier, Agent-qualifier, etc.) and name (Package-name, Agent-name, etc. respectively) pair. This

mapping excludes the name of the NamedElement itself, which maps to the Name of the Identifier.

NOTE 1 – In SDL-2010 the Qualifier is usually derived by name resolution and context, and Identifier is

usually represented in the concrete syntax by an SDL-2010 <name> and the SDL-2010 qualifier part of an

SDL-2010 <identifier> is omitted. Even in cases where an SDL-2010 qualifier needs to be given, usually some

parts of the SDL-2010 qualifier are optional, so that a full context does not have to be given. Similarly in UML,

qualifiedName is usually derived, and is not given explicitly in the concrete syntax. Thus in both UML and

SDL-2010 an item is usually identified in the concrete syntax simply by a name, whereas in the metamodel

and SDL-2010 abstract syntax the item will be identified by a qualifiedName and Identifier respectively.

NOTE 2 – The visibility of a Package contained in another Package or a Class or other entity contained in a

Package is handled by name resolution.

5.2.4 Notation

<name> ::=

 <underline>+ <word> {<underline>+ <word>}* <underline>*

 | <word> <underline>+ [<word>{<underline>+ <word>}* <underline>*]

 | <decimal digit>* <letter> <alphanumeric>*

NOTE – The syntax given for <name> assumes a one-to-one mapping between a <name> and an SDL-2010

<name> that has the same Token. The characters normally allowed in an SDL-2010 <name> are defined by

Recommendation [b-ITU-T T.50]: uppercase letters A (Latin capital letter A) to Z (Latin capital letter Z);

lowercase letters a (Latin small letter a) to z (Latin small letter z); decimal digits 0 (Digit zero) to 9 (Digit nine)

and underline. The above syntax for <name> requires a name to include at least one underline (first

2 alternatives of <name>) or at least one <letter>. The ITU-T T.50 characters do not occur in the abstract

grammar, therefore for alphabets and characters other than the Latin alphabet in Recommendation

[b-ITU-T T.50] there just has to be a consistent mapping of name in an extended alphabet to a Name. Because

the notation is a guideline and not mandatory, it is permitted to extend the syntax of <name> for this case.

<word> ::=

 <alphanumeric>+

<alphanumeric> ::=

 <letter>

 | <decimal digit>

 Rec. ITU-T Z.109 (10/2016) 7

<letter> ::=

 <uppercase letter> | <lowercase letter>

<uppercase letter> ::=

 A | B | C | D | E | F | G | H | I | J | K | L | M

 | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<lowercase letter> ::=

 a | b | c | d | e | f | g | h | i | j | k | l | m

 | n | o | p | q | r | s | t | u | v | w | x | y | z

<decimal digit> ::=

 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

When a <name> occurs in syntax that defines a name, the qualifiedName is derived from the defining

context. Otherwise, a name shall be bound according to the UML name binding rules and if necessary

the name is qualified by containing namespaces.

It is suggested to use the SDL-2010 syntax for <identifier> in [ITU-T Z.101] for specifying optionally

qualified names.

An alternative suggestion is to use the following UML-like syntax for <identifier> for specifying

optionally qualified names.

<identifier> ::=

 [<containing namespaces>] <name>

<containing namespaces> ::=

 [<name separator>] { <name> <name separator> }+

<name separator> ::=

 <colon> <colon>

<colon> ::= :

In this case, if the <name> of an <identifier> is not unique and is ambiguous in the context where the

<identifier> occurs, it is disambiguated by adding a <containing namespaces> item that contains one

or more <name> elements. In the absence of an initial <name separator>, the right-most <name>

elements in the <containing namespaces> have to unambiguously identify a context where the

<name> of the <identifier> is defined. If the context is not identified unambiguously by the right-

most <name> elements in the <containing namespaces>, further <name> elements are added until the

context is unambiguous. If the initial <name separator> is given, the left-most name is a name defined

at the top level of the model.

5.2.5 References

SDL-2010 [ITU-T Z.101]:

 6.1 Lexical rules

 6.6 Names and identifiers, name resolution and visibility

UML-SS [OMG UML]:

 7.3.34 NamedElement (from Kernel, Dependencies)

 7.3.44 PrimitiveType (from Kernel)

5.3 Transformation

The SDL-2010 abstract syntax of a model is generated from a concrete grammar (as defined outside

the scope of this Recommendation) of an SDL-UML model by the following process.

8 Rec. ITU-T Z.109 (10/2016)

The model is parsed according to the concrete grammar defined for SDL-UML. Where the concrete

grammar defines shorthand notations, these are expanded during the parsing process before the

corresponding metamodel items are generated.

NOTE – The transformations that are applied to expand shorthand notations of the concrete grammar are

intended to be the same as the models defined for the corresponding shorthand notation in SDL-2010. For

example, an SDL-2010 remote procedure call is expanded into an exchange of implicit signals, and an

SDL-UML remote operation call is similarly expanded into an exchange of signals.

To determine whether a model written in a concrete grammar is valid requires all uses of names to be

resolved, but names are resolved according to the SDL-UML metamodel. It is, therefore, not possible

to parse the model as represented in the concrete grammar independently of generating the

metamodel.

Apart from name resolution, instances of metamodel elements are generated from the concrete

grammar of an SDL-UML model according to the relationship between the concrete grammar and

the metamodel. If the resultant model (expressed in terms of instances of metamodel elements) does

not conform to the abstract grammar of SDL-UML, that model is not valid.

Conformance to the rules of the abstract grammar of SDL-UML is a necessary (but not sufficient)

condition for an SDL-UML model to be a valid model.

The model expressed in terms of instances of SDL-UML metamodel elements maps to a model

expressed in the abstract grammar of SDL-2010. The behaviour of this resultant model is determined

by the semantics of SDL-2010. Any static semantic constraints of SDL-2010 are reflected in

constraints of the SDL-UML metamodel. To obtain the dynamic behaviour of the resultant model,

this model is interpreted according to the dynamic semantics of SDL-2010. The model is not valid if

violation of a dynamic constraint of SDL-2010 is possible during interpretation of the model

expressed in the abstract grammar of SDL-2010.

6 Summary of stereotypes and metaclasses

6.1 Stereotype summary

The following table gives a summary of the stereotypes defined in this profile with the

UML metaclass each stereotype extends.

Stereotype
Stereotyped

metaclass

ActiveClass Class

Activity Activity

AssignValueAction OpaqueAction

Break OpaqueAction

CallOperationAction CallOperationAction

ChoiceType Class

Classifier Classifier

ConditionalNode ConditionalNode

Connector Connector

Continue OpaqueAction

CompositeStateGraph Region

CompositeStateTypeDefinition StateMachine

CreateObjectAction CreateObjectAction

 Rec. ITU-T Z.109 (10/2016) 9

Stereotype
Stereotyped

metaclass

DashNextstate Pseudostate

DataTypeDefinition Class

DecisionNode Pseudostate

ExpressionAction ValueSpecificationAction

FinalState FinalState

Interface Interface

JoinNode Pseudostate

LiteralType Class

LoopNode LoopNode

Operation Operation

Package Package

Parameter Parameter

Port Port

ProcedureDefinition StateMachine

ProcedureGraph Region

Property Property

Pseudostate Pseudostate

Region Region

ResetAction SendSignalAction

Return ActivityFinalNode

ReturnNode Pseudostate

SendSignalAction SendSignalAction

SequenceNode SequenceNode

SetAction SendSignalAction

Signal Signal

Specification Model

StartNode Pseudostate

State State

StateAggregationArea Region

StateMachine StateMachine

Stop ActivityFinalNode

StopNode Pseudostate

StructureType Class

Syntype Class

Timer Signal

Transition Transition

Variable Variable

6.2 Metaclass summary

The following tables give a summary of metaclasses defined in this profile for representing SDL-2010

expressions and context parameters. In general, the introduced metaclasses are specializations of the

10 Rec. ITU-T Z.109 (10/2016)

UML metaclass ValueSpecification (see clause 7.3.55 of [OMG UML]) or of the metaclass Element

(see clause 7.3.14 of [OMG UML]). For the metamodel diagrams, semantics and associated

constraints of metaclasses to represent SDL-2010 expressions see clause 10. For the metamodel

diagrams, semantics and associated constraints of metaclasses to represent context parameters see

clause 11.

If an introduced metaclass is a direct subtype of the metaclass ValueSpecification or the metaclass

Element, this is indicated in the second column of the table. The third column indicates if the

metaclass is for SDL-2010 expressions or if it is for context parameters. The fourth column indicates

if the metaclass is abstract.

Metaclass
Specialized UML

metaclass

Represents Abstract

metaclass

ActiveAgentsExpression – SDL-2010

expressions

ActualContextParameter Element Context parameters

AgentContextParameter – Context parameters

AgentTypeContextParameter – Context parameters

AnyExpression – SDL-2010

expressions

ClosedRange – SDL-2010

expressions

CompositeStateTypeContextParameter – Context parameters

ConditionalExpression – SDL-2010

expressions

ConditionItem ValueSpecification SDL-2010

expressions

abstract

EqualityExpression – SDL-2010

expressions

FormalContextParameter Element Context parameters abstract

GateConstraint Element Context parameters

GateContextParameter – Context parameters

ImperativeExpression – SDL-2010

expressions

abstract

InterfaceContextParameter – Context parameters

LiteralValue – SDL-2010

expressions

NowExpression – SDL-2010

expressions

OpenRange – SDL-2010

expressions

OperationApplication – SDL-2010

expressions

PidExpression – SDL-2010

expressions

ProcedureContextParameter – Context parameters

 Rec. ITU-T Z.109 (10/2016) 11

Metaclass
Specialized UML

metaclass

Represents Abstract

metaclass

RangeCheckExpression – SDL-2010

expressions

RangeCondition ValueSpecification SDL-2010

expressions

SdlExpression ValueSpecification SDL-2010

expressions

abstract

SignalContextParameter – Context parameters

SizeConstraint – SDL-2010

expressions

SortContextParameter – Context parameters

StateExpression – SDL-2010

expressions

SynonymContextParameter – Context parameters

TimerActiveExpression – SDL-2010

expressions

TimerContextParameter – Context parameters

TimerRemainingDuration – SDL-2010

expressions

TypeCheckExpression – SDL-2010

expressions

TypeCoercion – SDL-2010

expressions

Undefined – SDL-2010

expression

ValueReturningCallNode – SDL-2010

expressions

VariableAccess – SDL-2010

expressions

VariableContextParameter – Context parameters

7 Structure

The stereotypes below define static structural aspects of an SDL-UML model.

The following packages from UML are included:

– Communications

– Constructs (from Infrastructure library)

– Dependencies

– Interfaces

– InternalStructures

– Models

– Kernel

– Ports.

12 Rec. ITU-T Z.109 (10/2016)

The following metaclasses from UML are included:

– Class

– Connector

– Interface

– Model

– Operation

– Package

– Parameter

– Port

– Property

– Signal.

The metaclass ValueSpecification is included in clause 10.

 Rec. ITU-T Z.109 (10/2016) 13

7.1 Structure metamodel diagrams

«Metaclass»

FormalContextParameter

{required}

«stereotype»

Classifier

«Metaclass»
Model

«Metaclass»
Package

«Metaclass»
Class

{required} {required}

«stereotype»
Specification

«stereotype»
Package

«stereotype»
ActiveClass

«Metaclass»

Classifier

«Metaclass»
ActualContextParameter

+formatContextParameterList

{ordered}

{ordered}

+actualContextParameterList

+isConcurrent : Boolean

«Metaclass»
Property

«Metaclass»
Operation

«Metaclass»
Parameter

{required}{required}{required}

«Metaclass»
Connector

«Metaclass»
Port

«Metaclass»
Interface

«Metaclass»
Signal

{required} {required} {required}{required}

«stereotype»
Operation

«stereotype»
Parameter

«stereotype»
Property

+isOperator : Boolean = true +initialNumber :
+literalValue :

UnlimitedNatural [0..1]
UnlimitedNatural [0.. 1]

«stereotype»
Interface

«stereotype»
Signal

«stereotype»
Connector

«stereotype»
Port

+delay : Boolean = true

«stereotype»
Timer

+defaultValue

0..1

«Metaclass»

SdlExpression

«enumeration»
AnchoredKind

this
parent

+aggregation :
+anchored :

AggregationKind = none
AnchoredKind [0.. 1]

Z.109(13)_F7-1

Figure 7-1 – Structure stereotypes

14 Rec. ITU-T Z.109 (10/2016)

Z.109(13)_F7-2

«Metaclass»

Class

«stereotype»
LiteralType

«stereotype»
ChoiceType

«stereotype»
StructureType

«stereotype»
Syntype

+isPredefined : Boolean = false

«stereotype»

DataTypeDefinition+defaultValue

0..1

«Metaclass»

SdlExpression

«Metaclass»
RangeCondition

«Metaclass»
Classifier

+constraint

+parentSortIdentifier

Figure 7-2 – Data type stereotypes

7.2 ActiveClass

The stereotype ActiveClass extends the metaclass Class with multiplicity [0..1]. The metamodel

diagram for the stereotype is defined in Figure 7-1.

The concept of an active class (a class with isActive true) is separated from a data type definition

(a Class with isActive false) to distinguish the classes for executable agents that map onto SDL-2010

agent types.

Specialization: A specializing active class A2 is able to add attributes, port, operations, behaviour

specifications and nested classifiers to those inherited from its supertype A1 (see clause 8.4.1 in

[ITU-T Z.102]).

Redefinition: If a classifier C2 specializes a more general supertype C1, an enclosed active class EA

of C2 is able to redefine an active class EA that is specified in C1.

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the

common constraints and semantics see clause 7.4.

7.2.1 Attributes

• isConcurrent: Boolean

 defines the concurrency semantics of an active class. If isConcurrent is false, all

contained instances execute interleaved. If isConcurrent is true, contained instances

execute concurrently, provided they are not also contained in an instance for which

isConcurrent is false.

7.2.2 Constraints

[1] An <<ActiveClass>> Class shall have isActive true.

[2] The clientDependency shall not include an InterfaceRealization, because interfaces are not

realized directly but only via ports.

[3] If isConcurrent is false, the isConcurrent property of any contained instance shall be false.

[4] If the <<ActiveClass>> Class has a classifierBehavior, it shall be a

<<CompositeStateTypeDefinition>> StateMachine.

[5] If an <<ActiveClass>> Class has a classifierBehavior and it has a superClass that also has a

classifierBehavior, the StateMachine of the subclass shall redefine the StateMachine of the

superClass.

 NOTE 1 – The reason is that in SDL-2010 the state machines of agents automatically extend each

other, whereas they do not in UML.

 Rec. ITU-T Z.109 (10/2016) 15

[6] An ownedAttribute that has a type that is an <<ActiveClass>> Class and where

aggregationKind composite shall not have public visibility.

 NOTE 2 – An agent instance set cannot be made visible outside the enclosing agent type.

[7] A nestedClassifier shall not have public visibility.

 NOTE 3 – An agent type, data type, interface type or signal definition cannot be made visible outside

the enclosing agent type.

[8] An ownedConnector shall not have public visibility.

 NOTE 4 – A channel cannot be made visible outside the enclosing agent type that owns the channel.

[9] An ownedPort shall have public visibility.

 NOTE 5 – Gates are visible outside the enclosing agent type.

[10] An ownedBehavior shall be a set of StateMachine items (one or more).

The following constraints shall apply, when the isConcurrent property of an <<ActiveClass>> Class

is true and the owner is a <<Specification>> Model (indicating a system agent type):

[11] There shall be at least one ownedAttribute that has a type that is an <<ActiveClass>> Class

or the classifierBehavior shall not be empty.

[12] The superClass property shall be empty.

[13] The redefinedClassifier shall be empty.

[14] If present, the formalContextParameterList shall not contain items that are of kind

AgentContextParameter, VariableContextParameter or TimerContextParameter.

7.2.3 Semantics

An <<ActiveClass>> Class maps to an Agent-type-definition.

The name of the <<ActiveClass>> Class maps to the Agent-type-name of the Agent-type-definition.

The isConcurrent attribute maps to the Agent-kind of the Agent-type-definition. If isConcurrent is true

and the owner is a <<Specification>> Model, the <<ActiveClass>> Class maps to an Agent-type-

definition with an Agent-kind SYSTEM. If isConcurrent is true and the owner is not a

<<Specification>> Model, the Agent-kind is a BLOCK; otherwise (isConcurrent false) the Agent-kind

is a PROCESS.

NOTE 1 – The concurrency behaviour is that state machines within a PROCESS instance (for the instance

itself and contained PROCESS instances) are interleaved, and agent instances directly contained within a

BLOCK (even multiple instances of the same PROCESS) are logically concurrent. Actual concurrency depends

on implementation constraints such as the number of execution engines.

If the isAbstract property is true, the optional Abstract node in the abstract syntax of an Agent-type-

definition is present.

The qualifiedName of the optional general property maps to the Agent-type-identifier of the Agent-

type-definition that represents inheritance in the SDL-2010 abstract syntax.

If the redefinedClassifier property is not empty, this is an implicit generalization of another

<<ActiveClass>> Class. In this case, the qualifiedName of the redefinedClassifier maps to the Agent-

type-identifier of the Agent-type-definition.

The nestedClassifier, ownedAttribute, ownedConnector, ownedPort and ownedBehavior associations

map to the rest of the contents of the Agent-type-definition as described below.

 Mappings of nested classifiers

A nestedClassifier that is an <<ActiveClass>> Class maps to an element of the Agent-type-definition-

set of the Agent-type-definition.

16 Rec. ITU-T Z.109 (10/2016)

A nestedClassifier that is a <<DataTypeDefinition>> Class maps to a Value-data-type-definition that

is an element of the Data-type-definition-set of the Agent-type-definition.

A nestedClassifier that is an Interface maps to an Interface-type-definition that is an element of the

Data-type-definition-set of the Agent-type-definition.

A nestedClassifier that is a Signal maps to a Signal-definition that is an element of the Signal-

definition-set of the Agent-type-definition.

 Mappings of owned attributes

An ownedAttribute is a Property. The mapping defined in clause 7.13, applies.

An ownedAttribute that maps to a Variable-definition (see clause 7.13) is an element of the Variable-

definition-set of the Agent-type-definition. An ownedAttribute that is visible outside the

<<ActiveClass>> Class (public visibility) and that has a type that is a <<DataTypeDefinition>> Class

or <<Interface>> Interface is the Variable-definition for an exported variable and also maps to an

implicit Signal-definition pair for accessing this exported variable in the defining context of the

Agent-type-definition.

An ownedAttribute that maps to an Agent-definition (see clause 7.13) is an element of the Agent-

definition-set of the Agent-type-definition.

 Mappings of connectors and ports

Each Connector of the ownedConnector maps to an element of the Channel-definition-set of the

Agent-type-definition.

Each Port of the ownedPort maps to an element of the Gate-definition-set of the Agent-type-definition.

 Mappings of ownedBehavior

Each Behavior of the ownedBehavior maps to an element of either the Composite-state-type-

definition-set or the Procedure-definition-set. If the owned Behavior is the method of an Operation,

it is an element of the Procedure-definition-set; otherwise it is an element of the Composite-state-

type-definition-set.

The <<CompositeStateTypeDefinition>> StateMachine that is the Behavior of the optional

classifierBehavior maps to the State-machine-definition of the Agent-type-definition (see clause 8.6).

The name of the optional classifierBehavior maps to the State-name of the State-machine-definition.

The Composite-state-type-identifier of this State-machine-definition identifies the Composite-state-

type derived from the StateMachine that is the classifierBehavior.

NOTE 2 – The UML StateMachine maps to the behaviour of an SDL-2010 composite state type, and the

State-machine-definition references this behaviour.

The ownedParameter set of the <<CompositeStateTypeDefinition>> StateMachine that is the

classifierBehavior maps to the Agent-formal-parameter list of the Agent-type-definition. The specific

mappings are defined in clause 7.11.

NOTE 3 – It is a semantic variation in UML-SS whether one or more behaviours are triggered when an event

satisfies multiple outstanding triggers.

NOTE 4 – It is currently not allowed to give actual parameter value to a formal parameter of an agent (see

clause 9.10).

An event satisfies only one trigger (a signal initiates only one input transition).

NOTE 5 – In UML-SS, ordering of the events in the input pool and therefore the selection of the next event to

be considered is a semantic variation.

At any specific wait point (that is, in a specific state), events for a trigger of higher priority are

considered before those of triggers of lower priority. Within a given trigger priority, the events in the

input pool are considered in the order of arrival in the input pool; therefore if all triggers have the

 Rec. ITU-T Z.109 (10/2016) 17

same priority, the events are considered in order of arrival. If an event in the input pool of events

satisfies no triggers at a wait point, it is left in the input pool if it is deferred at that wait point, or (if

it is not deferred) it is consumed triggering an empty transition leading to the same wait point.

7.2.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.1 Structural type definitions

 8.1.3 Abstract type

 8.2 Type references and operation references

 8.4 Specialization

UML-SS [OMG UML]:

 7.3.6 BehavioredClassifier (from Interfaces)

 7.3.7 Class (from Kernel)

 9.3.1 Class (from StructuredClasses)

 9.3.8 EncapsulatedClassifier (from Ports)

 13.3.2 Behavior (from BasicBehaviors)

 13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

 13.3.8 Class (from Communications)

7.3 ChoiceType

The ChoiceType stereotype is a subtype of the <<DataTypeDefinition>> Class. The metamodel

diagram for the stereotype is defined in Figure 7-2.

The <<ChoiceType>> Class corresponds to an SDL-2010 choice data type and it maps to a Value-

data-type-definition. A choice data type comprises a set of different data types, but only one of those

types is used as the actual type for a value for any given assignment or subsequent access. In

SDL-UML, the ownedAttribute items of a <<ChoiceType>> Class represent the different variants of

a choice type.

Specialization and redefinition for choice types is not supported in SDL-2010.

7.3.1 Attributes

No additional attributes.

7.3.2 Constraints

[1] The ownedAttribute shall not be empty.

[2] An ownedAttribute shall have a type that is a <<DataTypeDefinition>> Class (or one of its

subtypes) or <<Interface>> Interface.

[3] A Property that is an ownedAttribute item shall have a multiplicity of [0..1].

[4] The general and redefinedClassifer properties shall be empty.

7.3.3 Semantics

A <<ChoiceType>> Class represents a choice data type of the concrete grammar of SDL-2010 and it

maps to a Value-data-type-definition. Before the mapping is carried out, the transformation as

specified in clause 12.1.6.3 of [ITU-T Z.101] shall be applied.

In addition, the mappings specified in the context of the <<DataTypeDefinition>> Class (clause 7.6)

apply.

18 Rec. ITU-T Z.109 (10/2016)

7.3.4 References

SDL-2010 [ITU-T Z.101]:

 12.1 Data definitions

 12.1.1 Data type definition

 12.1.6.3 Choice data types

UML-SS [OMG UML]:

 13.3.8 Class (from Communications)

7.4 Classifier

The stereotype Classifier extends the metaclass Classifier with multiplicity [1..1]. The metamodel

diagram is defined in Figure 7-1.

A <<Classifier>> Classifier represents the SDL-2010 concepts for specialization and redefinition of

type definitions. In addition, this stereotype introduces support for SDL-2010 context parameters,

which are used instead of UML templates in order to specify generic type definitions (see clause 11).

Hence, the <<Classifier>> Classifier defines a common set of constraints, which also apply to

metaclasses that inherit from the Classifier metaclass. In particular, the following metaclasses, which

are relevant for SDL-UML, directly or indirectly inherit from Classifier:

• Class

• Signal

• Interface

• StateMachine

• Activity.

In general, each stereotype that extends one of the metaclasses listed above defines the specific

semantics for specialization and redefinition. The common mechanisms of both concepts are

described in the following paragraphs.

Specialization: A Classifier C2 that specializes another Classifier C1 is able to add particular kinds of

features to those inherited from its superClass C1 (see clause 8.4.1 in [ITU-T Z.102]). The kinds of

features that it is possible to add to a Classifier depend on the stereotype applied to a specific Classifier

instance. Hence, the semantics is defined in the scope of the relevant stereotypes.

NOTE 1 – The SDL-2010 concept of renaming is not supported in SDL-UML.

Redefinition: If a Classifier C2 specializes a more general superClass C1, an enclosed classifier EC of

C2 is able to redefine (see clause 7.3.47 [OMG UML]) the Classifier EC, which is specified in C1. In

SDL-2010, this corresponds to the redefinition of virtual types (see clause 8.4.2 in [ITU-T Z.102]).

The redefined Classifier EC of C1 corresponds to an SDL-2010 type that is denoted as 'virtual'. The

redefining Classifier EC of C2 represents a 'redefined' type of SDL-2010. When the isLeaf property

of a Classifier is true, this corresponds to an SDL-2010 type denoted as 'finalized' and therefore this

Classifier is no longer redefinable.

NOTE 2 – The redefinition of a classifier EC of C1 by a classifier EC of C2 implies that EC of C2 is an implicit

specialization of EC of C1.

NOTE 3 – The SDL-2010 concept of virtuality constraints is not supported in SDL-UML.

NOTE 4 – Parameterized types: Each actual context parameter in the actualContextParameterList corresponds,

by position, to a formal context parameter in the formalContextParameterList of the supertype.

7.4.1 Attributes

• formalContextParameterList: FormalContextParameter [0..*] {ordered}

 Rec. ITU-T Z.109 (10/2016) 19

 specifies the formal context parameters of a data type definition (see clause 11.6).

• actualContextParameterList: ActualContextParameter [0..*] {ordered}

 specifies the actual context parameters of a data type definition (see clause 11.2).

NOTE – An SdlExpression represents an actual synonym context parameter. A variable access expression has

to be used in order to access a synonym context parameter.

7.4.2 Constraints

[1] The general property of an <<ActiveClass>> Class shall contain at most one element.

 NOTE 1 – Multiple inheritance is not allowed for SDL-2010 agent type definitions.

[2] The general property of a <<DataTypeDefinition>> Class shall contain at most one supertype

that has an isAbstract property of false.

 NOTE 2 – Multiple inheritance is only allowed for abstract data type definitions and interface

definitions (see clause 12.1.9 in [ITU-T Z.107]).

[3] A Classifier that is a subtype and its more general supertype shall have the same kind of

stereotype applied.

[4] Multiple redefinitions are not allowed, so there shall be at most one element in the

redefinedClassifier property of a Classifier.

[5] A Classifier and its redefinedClassifier shall have the same name.

 NOTE 3 – In SDL-2010, redefined types have the same name as the original type.

[6] A Classifier and its redefinedClassifier shall have the same kind of stereotype applied.

[7] If the redefinedClassifier property is not empty, the general property shall be absent.

 NOTE 4 – When a Classifier A in context AB is a redefinition of another Classifier A in context AA,

this implies an implicit generalization so that A in context AB is a subtype of A in context AA.

[8] The actualContextParameterList and formalContextParameterList shall be empty except in

the stereotypes <<DataTypeDefinition>> Class, <<Interface>> Interface, <<ActiveClass>>

Class, <<StateMachine>> StateMachine or <<Signal>> Signal.

 NOTE 5 – The SDL-2010 concept of context parameters is applicable only for agent type definitions,

state type definitions, procedure definitions, signal definitions or data type definitions.

[9] The number of actualContextParameterList items shall be less than or equal to the number of

formalContextParameterList items in the supertype.

7.4.3 Semantics

 Specialization and redefinition

The stereotypes for metaclasses that inherit from Classifier define the semantics of redefinition and

specialization.

NOTE – The set of features inherited by a subtype are derived from the inheritedMember property of that

subtype.

 Parameterized types

A parameterized type is a type that has at least one formalContextParameterList item or has a

supertype with at least one formalContextParameterList item and less actualContextParameterList

items than the number of formalContextParameterList items in the supertype. A parameterized type

has isAbstract true.

NOTE – An SDL-2010 type with unbound formal parameters is abstract (see clause 8.1.3 of [ITU-T Z.102]).

A Classifier with an actualContextParameterList is an anonymous type (it has an anonymous unique

name) that is defined by applying the actual context parameters to the parameterized supertype as

specified in clause 8.1.2 of [ITU-T Z.102]. This anonymous type is then used as type in the context

20 Rec. ITU-T Z.109 (10/2016)

where the actual context parameters are given to the parameterized supertype, for example, as the

supertype for inheritance in a type definition. If the Classifier is a parameterized type, it does not have

a mapping to the SDL-2010 abstract grammar. Otherwise (that is, all the formal context parameters

are bound) the resulting Classifier is mapped to the SDL-2010 abstract grammar in the same manner

as any other non-parameterized type.

7.4.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.2 Type expression

 8.1.3 Abstract type

 8.2 Type references and operation references

 8.3 Context parameters

 8.4 Specialization

 8.4.1 Adding properties

 8.4.2 Virtuality and virtual type

UML-SS [OMG UML]:

 7.3.8 Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)

 7.3.47 RedefinableElement (from Kernel)

7.5 Connector

The stereotype Connector extends the metaclass Connector with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 7-1.

In UML-SS, Connector is a general concept for a communication link between two instances and the

mechanism for communication could be by parameter passing in variables or slots, via pointers or

some other means. In this profile Connector items only provide communication by signals, which are

identified by the information flows associated with the Connector and the Connector maps to a

Channel-definition.

7.5.1 Attributes

• delay: Boolean

 If true, the signals transported on the connector are potentially delayed. The default value

is true.

7.5.2 Constraints

[1] In the case of an InformationItem associated with an InformationFlow associated with a

Connector, the represented property of the InformationItem shall be a Signal or an Operation

or an Interface.

[2] There shall always be exactly 2 end properties.

[3] A ConnectorEnd that is part of the end property shall have empty lowerValue and upperValue

properties.

[4] The role property of a ConnectorEnd that is part of the end property of the Connector shall

be a Port.

[5] The type property shall be empty.

[6] The redefinedConnector property shall be empty.

[7] The isStatic property shall be false.

 Rec. ITU-T Z.109 (10/2016) 21

[8] There shall be at least one InformationFlow associated with a Connector.

7.5.3 Semantics

A <<Connector>> Connector maps to a Channel-definition.

The name attribute defines the Channel-name.

If the delay attribute of a <<Connector>> Connector is false, this maps to NODELAY. Otherwise the

NODELAY is omitted.

An InformationFlow associated with a <<Connector>> Connector maps to an item in the Channel-

path-set of a Channel-definition as follows:

• The conveyed property of an InformationFlow defines the Signal-identifier-set of the

Channel-path.

• If the conveyed property is omitted, the Signal-identifier-set of a Channel-path is computed

based on the realizedInterface and requiredInterface of the Port items attached to the

Connector that is associated with the InformationFlow.

• If the conveyed property refers to an Interface, the Signal-identifier-set of a Channel-path is

computed according to the transformation rules of SDL-2010 (see clause 7.7).

• The informationSource and informationTarget properties of an InformationFlow map to the

Originating-gate and Destination-gate of a Channel-path. The Gate-identifier is derived

from the name of the Port given by the informationSource or the informationTarget property.

NOTE 1 – InformationFlow in one direction only (with or without any InformationItem) implies that the

channel is unidirectional. InformationFlow in both directions (with or without any InformationItem) implies

that the channel is bidirectional.

NOTE 2 – If the partWithPort property of a ConnectorEnd is non-empty, Gate-identifier contains as its last

path-name (before the name of the gate) the name of the part identified with partWithPort.

7.5.4 References

SDL-2010 [ITU-T Z.101]:

 10.1 Channel

UML-SS [OMG UML]:

 9.3.6 Connector (from InternalStructures)

 9.3.7 ConnectorEnd (from InternalStructures, Ports)

 17.2 InformationFlows (from InformationFlows)

7.6 DataTypeDefinition

The stereotype DataTypeDefinition extends the metaclass Class with multiplicity [0..1]. The

metamodel diagram for the stereotype is defined in Figure 7-2. The concept of date type definition (a

class with isActive false) is separated from active class (a class with isActive true).

The <<DataTypeDefinition>> Class represents a Value-data-type-definition in the SDL-2010 abstract

syntax. In particular, this stereotype introduces the features of redefinition and specialization that are

inherited by the subtypes of the <<DataTypeDefinition>> Class.

Specialization: A specializing data type D2 is able to add literals, fields, choice variants, context

parameters, and operations; and add default initializations or default assignments to those features

inherited from its supertype D1 (see clauses 8.4 in [ITU-T Z.102] and 12.1.9 in [ITU-T Z.104]). In

the case of parameterized data types (a data type definition with context parameters), a subtype is

allowed to add additional formal context parameters or to bind inherited formal context parameters

of its supertype to actual context parameters.

22 Rec. ITU-T Z.109 (10/2016)

Redefinition: If a Classifier C2 specializes a more general superClass C1, an enclosed data type ED of

C2 is able to redefine a data type ED that is specified in C1.

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the

common constraints and semantics see clause 7.4.

Subtypes: The following subtypes are specified for the <<DataTypeDefinition>> Class:

• <<LiteralType>> Class that corresponds to types defined by a set of literal names.

• <<ChoiceType>> Class that corresponds to an SDL-2010 choice data type.

• <<StructureType>> Class that represents an SDL-2010 structure data type.

• <<Syntype>> Class that represents an SDL-2010 syntype definition.

7.6.1 Attributes

• isPredefined: Boolean

 if true, a data type definition represents one of the predefined data types. The default

value of the property is false.

• defaultValue: SdlExpression [0..1]

 a constant expression that defines the optional default initialization of a data type

definition.

NOTE 1 – The defaultValue maps to the Default-initialization of a Data-type-definition or Syntype-definition

of any otherwise un-initialized property of an active class or local variable definition within an activity (see

clause 12.3.3.2 of [ITU-T Z.101]).

NOTE 2 – Redefinition of a defaultValue occurs if both a subtype and an associated supertype have defined a

defaultValue. In this case, it is the defaultValue of the subtype that specifies the default initialization of the

subtype (see clause 12.3.3.2 of both [ITU-T Z.104] and [ITU-T Z.107]).

7.6.2 Constraints

[1] A <<DataTypeDefinition>> Class shall have isActive false.

[2] A <<DataTypeDefinition>> Class shall have no classifierBehavior.

[3] A nestedClassifier shall be a <<DataTypeDefinition>> Class (including its subtypes, e.g.,

<<LiteralType>>).

[4] An ownedAttribute where aggregation is composite shall have a type that is a

<<DataTypeDefinition>> Class (including its subtypes, e.g., <<LiteralType>>) or

<<Interface>> Interface.

[5] The ownedConnector, the ownedPort and the ownedTrigger properties shall be empty.

[6] Each ownedBehavior shall be an <<Activity>> Activity.

[7] The ownedReception shall be empty.

[8] If only the stereotype <<DataTypeDefinition>> is applied, the ownedAttribute property of a

Class shall be empty.

[9] The isPredefined property shall only be true, when the <<DataTypeDefinition>> Class is

contained in the package Predefined.

 NOTE 1 – The predefined data types of SDL-UML are specified in clause 12.

[10] The defaultValue shall be an SdlExpression with isConstant true.

[11] If present, the formalContextParameterList shall only contain items that are of kind

SynonymContextParameter or SortContextParameter.

 Rec. ITU-T Z.109 (10/2016) 23

7.6.3 Semantics

A <<DataTypeDefinition>> Class that is not parameterized (or has all the formal context parameters

of its parameterized supertype bound – see below) maps to a Value-data-type-definition. The name

of the <<DataTypeDefinition>> Class maps to the Sort.

A nestedClassifier that is a <<DataTypeDefinition>> Class (except of <<Syntype>> Class) maps to

a Value-data-type-definition that is an element of the Data-type-definition-set.

A nestedClassifier that is a <<Syntype>> Class maps to a Syntype-definition and is an element of the

Syntype-definition-set.

An ownedBehavior maps to a Procedure-definition in the Procedure-definition-set of the Value-data-

type-definition.

The ownedOperation items are mapped to items in the Static-operation-signature-set of the Value-

data-type-definition.

The optional defaultValue maps to the Default-initialization of a Value-data-type-definition.

If the isAbstract property is true, the optional Abstract node in the abstract syntax of a Value-data-

type-definition is present.

The qualifiedName of the optional general property maps to the Data-type-identifier of the Value-

data-type-definition that represents inheritance in the SDL-2010 abstract syntax.

If the redefinedClassifier property is not empty, this is an implicit generalization of another

<<DataTypeDefinition>> Class. In this case, the qualifiedName of the redefinedClassifier maps to

the Data-type-identifier of the Value-data-type-definition.

 Model for inheritance of operations

For the inheritance of Operation items specified in a <<DataTypeDefinition>> Class that is a

supertype of a subtype, the rules specified in clause 12.1.9 of [ITU-T Z.104] apply.

NOTE – The set of operations or attributes inherited by a subtype is derived from the inheritedMember

property of that subtype.

7.6.4 References

SDL-2010 [ITU-T Z.101]:

 12.1 Data definitions

 12.1.1 Data type definition

 12.3.3.2 Default initialization

SDL-2010 [ITU-T Z.102]:

 8.1.2 Type expression

 8.1.3 Abstract type

 8.2 Type references and operation references

 8.4 Specialization

 8.4.2 Virtuality and virtual type

SDL-2010 [ITU-T Z.104]:

 12.1.9 Specialization of data types

 12.3.3.2 Default initialization

 14 Package Predefined

24 Rec. ITU-T Z.109 (10/2016)

SDL-2010 [ITU-T Z.107]:

 12.3.3.2 Default initialization

UML-SS [OMG UML]:

 7.3.6 BehavioredClassifier (from Interfaces)

 7.3.7 Class (from Kernel)

 7.3.47 RedefinableElement (from Kernel)

 9.3.1 Class (from StructuredClasses)

 9.3.8 EncapsulatedClassifier (from Ports)

 13.3.2 Behavior (from BasicBehaviors)

 13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

 13.3.8 Class (from Communications)

7.7 Interface

The stereotype Interface extends the metaclass Interface with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 7-1.

An interface defines public features that are used to communicate with an object. In SDL-UML, these

are signals, remote variables and remote procedures. Accesses to remote variables and calls of remote

procedures are signal exchanges in the SDL-2010 abstract grammar, so the components of an

SDL-UML interface map to signals in the corresponding Interface-definition.

Specialization: A specializing interface is able to add signals, remote procedures and remote variables

to those inherited from its supertypes. In contrast to value data type definitions, an interface multiple-

inheritance is allowed (see clauses 12.1.2 and 12.1.9 in [ITU-T Z.104]).

Redefinition: If an enclosing agent A2 (an active class) specializes a more general agent A1, an

enclosed interface EI of A2 is able to redefine an interface EI that is specified in A1.

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the

common constraints and semantics see clause 7.4.

7.7.1 Attributes

No additional attributes.

7.7.2 Constraints

[1] Each nestedClassifier shall be a Signal.

[2] The ownedReception property shall be empty.

[3] If the general property is not empty, each referenced element shall be an Interface.

[4] If the redefinedInterface property is not empty, each referenced element shall be an Interface.

[5] If present, the formalContextParameterList shall only contain items that are of kind

SignalContextParameter or SortContextParameter.

7.7.3 Semantics

An <<Interface>> Interface maps to an Interface-definition.

The name defines the Sort of the Interface-definition.

The general property defines the optional Data-type-identifier list that represents inheritance in the

SDL-2010 abstract syntax.

 Rec. ITU-T Z.109 (10/2016) 25

If the redefinedClassifier property is not empty, this is an implicit generalization of another

<<Interface>> Interface. In this case, the qualifiedName of the redefinedClassifier maps to the Data-

type-identifier of the Interface-definition.

The nestedClassifier, ownedAttribute, and ownedOperation properties define the rest of the contents

of the interface.

The ownedAttribute and ownedOperation properties are transformed to signals according to the

SDL-2010 rules for remote variables (see clause 10.6 of [ITU-T Z.102]) and remote procedures (see

clause 10.5 of [ITU-T Z.102]) and are thus mapped to Signal items in the Signal-definition-set of the

Interface-definition.

Each nestedClassifier property (each of which is a Signal, see constraints above) maps to an element

of the Signal-definition-set of the Interface-definition.

7.7.4 References

SDL-2010 [ITU-T Z.102]:

 8.4.2 Virtuality and virtual type

 10.5 Remote procedures

 10.6 Remote variables

SDL-2010 [ITU-T Z.104]:

 12.1.2 Interface definition

 12.1.9 Specialization of data types

UML-SS [OMG UML]:

 7.3.24 Interface (from Interfaces)

 13.3.15 Interface (from Communications)

7.8 LiteralType

The stereotype LiteralType is a subtype of the <<DataTypeDefinition>> Class. The metamodel

diagram for the stereotype is defined in Figure 7-2.

A <<LiteralType>> Class corresponds to an SDL-2010 literal data type and its owned attributes

represent the set of user-defined literals. A <<LiteralType>> Class maps to a Value-data-type-

definition in the SDL-2010 abstract syntax.

Specialization: When a literal type is specialized, the subtype is able to add additional literals (in

terms of ownedAttribute items) and operations.

7.8.1 Attributes

No additional attributes.

7.8.2 Constraints

[1] The ownedAttribute property shall not be empty.

[2] The owner and the type property of each ownedAttribute shall be equal.

 NOTE – In contrast to a choice type, which consists of different kinds of data types, each literal of a

literal type shall be of the same type.

[3] The literalValue property of an ownedAttribute, which is a <<Property>> Property, shall be

distinct from the literalValue property of every other ownedAttribute.

26 Rec. ITU-T Z.109 (10/2016)

7.8.3 Semantics

For the mapping of a <<LiteralType>> Class to a Value-data-type-definition, the mappings defined

in clause 7.6 apply.

Each item of the ownedAttribute property of a <<LiteralType>> Class maps to a Literal-signature in

the Literal-signature-set of a Value-data-type-definition. The unique Literal-name is derived from

the name of the ownedAttribute plus the name of the enclosing <<LiteralType>> Class. The

literalValue maps to the Result of the Literal-signature.

NOTE – A <<LiteralType>> Class implies a set of Static-operation-signature items as specified in

clause 12.1.6.1 of [ITU-T Z.101].

7.8.4 References

SDL-2010 [ITU-T Z.101]:

 12.1 Data definitions

 12.1.1 Data type definition

 12.1.6.1 Literals constructor

UML-SS [OMG UML]:

 13.3.8 Class (from Communications)

7.9 Operation

The stereotype Operation extends the metaclass Operation with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 7-1.

An operation is a feature that determines how an object behaves. If the operation is contained in an

agent (that is, an <<ActiveClass>> Class), its method has to be a state machine (see clause 8.6) and

maps to a procedure. An operation contained in an interface is treated as a remote procedure.

Otherwise, the operation has to be an activity (see clause 9.2) and maps to an operation of the

SDL-2010 data type for the <<DataTypeDefinition>> Class that contains the operation.

7.9.1 Attributes

• isOperator: Boolean

 if true, the Operation of a data type definition represents an SDL-2010 operator;

otherwise it is an SDL-2010 method. The default value of the property is true.

7.9.2 Constraints

[1] If the owner of an <<Operation>> Operation is a <<DataTypeDefinition>> Class, the method

associated with the <<Operation>> Operation shall be an Activity.

[2] If the owner of an <<Operation>> Operation is an <<ActiveClass>> Class, the method shall

be a <<ProcedureDefinition>> StateMachine.

[3] Both the <<Operation>> Operation and the corresponding method shall be defined in the

scope of the same owner.

[4] An <<Operation>> Operation and its associated method shall have equal names.

[5] The ownedParameter set of the <<Operation>> Operation shall be the same as the

ownedParameter set of the method implementing the operation.

[6] The raisedException shall be empty.

[7] If the isOperator property is true, the redefinedOperation property shall be empty.

 NOTE 1 – Redefinition is only allowed for an Operation that represents an SDL-2010 method of a

data type definition (see clause 12.1.3 of [ITU-T Z.107]).

 Rec. ITU-T Z.109 (10/2016) 27

 NOTE 2 – The generalization and redefinition of a procedure definition is determined by the Behavior

specifying the method of an operation.

[8] If the redefinedOperation property is not empty, each ownedParameter shall be type

compatible by order with its corresponding Parameter of the redefinedOperation.

[9] If the redefinedOperation property is not empty, the redefining <<Operation>> Operation

and the redefinedOperation shall have an equal number of ownedParameters.

7.9.3 Semantics

 Operation in an active class

An <<Operation>> Operation directly contained in an <<ActiveClass>> Class maps to a Procedure-

definition. The name defines the Procedure-name. The rest of the mapping to a Procedure-definition

is defined in clause "Mapping to a procedure definition" below.

 Operation in a data type definition representing an operator

An <<Operation>> Operation directly contained in a <<DataTypeDefinition>> Class and with an

isOperator property of true maps to a Static-operation-signature and an anonymous Procedure-

definition identified by the Procedure-identifier in the abstract syntax for the Operation-signature.

The Procedure-definition is placed in the same context as the data type corresponding to the

<<DataTypeDefinition>> Class. The rest of the mapping to a Procedure-definition is defined in

clause "Mapping to a procedure definition" below.

The name of an <<Operation>> Operation defines the Operation-name of the Operation-signature.

An ownedParameter defines a Formal-argument or the Operation-result of the Operation-signature.

The detailed mappings are specified in clause 7.11.

NOTE 1 – When an <<Operation>> Operation of a <<DataTypeDefinition>> Class is inherited from a

supertype, the transformation specified in clause 7.11.3 has to be applied before the operation is mapped.

 Operation in a data type definition representing a method

An <<Operation>> Operation directly contained in a <<DataTypeDefinition>> Class and with an

isOperator property of false represents an SDL-2010 method. Before any mappings, the

transformation specified in clause 12.1.3 of [ITU-T Z.104] has to be applied.

An Operation with an isLeaf property of false maps to a Dynamic-operation-signature; otherwise it

maps to a Static-operation-signature. Furthermore, the Operation maps to an anonymous Procedure-

definition identified by the Procedure-identifier in the abstract syntax for the Operation-signature.

The Procedure-definition is placed in the same context as the data type corresponding to the

<<DataTypeDefinition>> Class. The rest of the mapping to a Procedure-definition is defined in

"Mapping to a procedure definition" below.

The name of an <<Operation>> Operation defines the Operation-name of the Operation-signature.

An ownedParameter defines a Formal-argument or the Operation-result of the Operation-signature.

The detailed mappings are specified in clause 7.11.

 Operation in an interface

An <<Operation>> Operation contained in an Interface maps to signals according to the rules

described in clause 7.7.3.

 Mapping to a procedure definition

If the <<Operation>> Operation maps to a Procedure-definition (named or anonymous), each

ownedParameter defines a Procedure-formal-parameter or the Result of the Procedure-definition.

The detailed mappings are specified in clause 7.11.

28 Rec. ITU-T Z.109 (10/2016)

The Behavior identified by the method property defines the Procedure-graph, Data-type-definition-

set, and Variable-definition-set of the Procedure-definition.

NOTE 2 – The Operation metaclass does not inherit from the Classifier metaclass that introduces the feature

of generalization. Therefore, while it is not allowed to specialize an <<Operation>> Operation directly, it is

possible to specialize the Behavior specifying the method of an Operation.

NOTE 3 – In UML-SS, an operation is not allowed to directly contain an operation itself, so therefore when

the model is mapped to the SDL-2010 abstract syntax, there will never be a procedure contained within a

procedure (that is, a local procedure).

7.9.4 References

SDL-2010 [ITU-T Z.101]:

 9.4 Procedure

 12.1.3 Operation signature

SDL-2010 [ITU-T Z.102]:

 10.5 Remote procedures

 10.6 Remote variables

SDL-2010 [ITU-T Z.104]:

 12.1.3 Operation signature

SDL-2010 [ITU-T Z.107]:

 12.1.3 Operation signature

UML-SS [OMG UML]:

 7.3.5 BehavioralFeature (from Kernel)

 7.3.37 Operation (from Kernel, Interfaces)

 13.3.3 BehavioralFeature (from BasicBehaviors, Communications)

 13.3.22 Operation (from Communications)

7.10 Package

The stereotype Package extends the metaclass Package with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 7-1.

The concept of a package in UML is simply mapped to a package in SDL-2010.

7.10.1 Attributes

No additional attributes are defined.

7.10.2 Constraints

[1] All ownedMember elements of the Package shall belong to items for which mappings or

transformations are described in this profile.

[2] The packageMerge composition shall be empty.

[3] The name of the Package shall not be empty.

7.10.3 Semantics

A <<Package>> Package maps to a Package-definition.

The name of the package maps to the Package-name of the Package-definition.

 Rec. ITU-T Z.109 (10/2016) 29

The elements of the ownedMember composition define the contents of the package, that is, the

Package-definition-set, Data-type-definition-set, Syntype-definition-set, Signal-definition-set, Agent-

type-definition-set, Composite-state-type-definition-set and Procedure-definition-set. Each

ownedMember that is a nestedPackage maps to an element of the Package-definition-set of the

Package-definition. An ownedMember that is not a nestedPackage is mapped as defined in other

clauses to a Data-type-definition, Syntype-definition, Signal-definition, Agent-type-definition,

Composite-state-type-definition or Procedure-definition element of the corresponding set of the

Package-definition.

NOTE – The UML ElementImport and PackageImport (which are not stereotyped in this profile) define the

import and visibility of elements of the package and define the name resolution of imported package elements.

The resolved items map to Name and Identifier items in the SDL-2010 abstract syntax as described in

clause 5.2.

7.10.4 References

SDL-2010 [ITU-T Z.101]:

 7.2 Package

UML-SS [OMG UML]:

 7.3.38 Package (from Kernel)

7.11 Parameter

The stereotype Parameter extends the metaclass Parameter with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 7-1.

Depending on the context in which a Parameter is used, it represents a formal parameter of a

procedure or an agent, or it represents a formal argument of an operation signature. In SDL-UML, a

Parameter has an aggregation kind, which is in contrast to UML. Furthermore, the Parameter

stereotype implements the SDL-2010 concept of anchored sorts.

7.11.1 Attributes

• anchored: AnchoredKind [0..1]

 This optional parameter represents an SDL-2010 anchored sort for parameters used for

operations of data type definitions.

• aggregation: AggregationKind

 The aggregation kind of a parameter. The default value is none.

7.11.2 Constraints

[1] The anchored property shall only be present for an <<Operation>> Operation that is owned

by a <<DataTypeDefinition>> Class.

 NOTE 1 – In SDL-2010, an anchored sort is legal concrete syntax only if it occurs within a

data type definition.

[2] If the anchored property is present, the type property of a Parameter shall refer to the next

enclosing <<DataTypeDefinition>> Class.

 NOTE 2 – An SDL-2010 anchored sort shall name the sort introduced by the enclosing data type

definition.

[3] The aggregation shall not be of AggregationKind shared.

30 Rec. ITU-T Z.109 (10/2016)

7.11.3 Semantics

 Parameters of a procedure definition

If the <<Operation>> Operation maps to a Procedure-definition (named or anonymous), each

Parameter that does not have a return direction defines (in order) a Procedure-formal-parameter. The

direction (in, inout, or out) of an ownedParameter determines (respectively) if the corresponding

Procedure-formal-parameter is an In-parameter or Inout-parameter or Out-parameter. Each of these

formal parameters is a Parameter and detailed mappings are defined below.

A Parameter that does have a direction of return defines the Result of the Procedure-definition. The

Sort-reference-identifier of the Result is determined in the same way as for a <<Property>> Property

(see clause 7.13.3). The aggregation property maps to the Result-aggregation of a Result. If the

aggregation is of AggregationKind none, the Aggregation-kind is REF. Otherwise, if the aggregation

is of AggregationKind composite, the Aggregation-kind is PART.

NOTE 1 – The aggregation kind 'PART' is a feature of Basic SDL-2010 (see clause 12.3.1 of [ITU-T Z.101]),

whereas the aggregation kind 'REF' is introduced in [ITU-T Z.107] in order to support object-oriented data.

 Agent formal parameters of an agent type definition

The ownedParameter set of a <<CompositeStateTypeDefinition>> StateMachine that specifies the

classifierBehavior of an <<ActiveClass>> Class maps to the Agent-formal-parameter list of the

Agent-type-definition. Each of these formal parameters is a Parameter and detailed mappings are

defined below.

 Mapping to a parameter

An ownedParameter of an <<Operation>> Operation or <<ActiveClass>> Class representing a

Parameter is mapped as described below.

The name and type (including the multiplicity) of the ownedParameter define, respectively, the

Variable-name and the Sort-reference-identifier of the Parameter. The Sort-reference-identifier is

determined in the same way as for a <<Property>> Property (see clause 7.13.3). The aggregation

property of an ownedParameter maps to the Parameter-aggregation of a Procedure-formal-

parameter. If the aggregation is of AggregationKind none, the Aggregation-kind is REF. Otherwise,

if the aggregation is of AggregationKind composite, the Aggregation-kind is PART.

 Formal arguments and result of an operation signature

The ownedParameter set of an <<Operation>> Operation that defines an Operation-signature is

mapped as follows:

For each ownedParameter that does not have a return direction, the type and multiplicity together

define (in order of the parameters) a Formal-argument of the Operation-signature with a type

determined in the same way as for a <<Property>> Property (see clause 7.13.3). The type of the

<<Operation>> Operation defines the Operation-result of the Operation-signature.

NOTE 2 – For the mapping to an Operation-signature, the aggregation property is ignored.

 Transformation of anchored parameters

Before an inherited Operation of a <<DataTypeDefinition>> Class that is a subtype of a supertype

(its general property is not empty) is mapped to an Operation-signature, the transformation as

specified in clause 12.1.9 of [ITU-T Z.104] has to be applied on each ownedParameter that has an

anchored property.

7.11.4 References

UML-SS [OMG UML]:

 7.3.42 Parameter (from Kernel)

 Rec. ITU-T Z.109 (10/2016) 31

SDL-2010 [ITU-T Z.101]:

 8.1.1.1 Agent types

 9.4 Procedure

 12.1.3 Operation signature

SDL-2010 [ITU-T Z.104]:

 12.1.3 Operation signature

 12.1.9 Specialization of data types

SDL-2010 [ITU-T Z.107]:

 12.3.1 Variable definition

7.12 Port

The stereotype Port extends the metaclass Port with multiplicity [1..1]. The metamodel diagram for

the stereotype is defined in Figure 7-1.

An SDL-UML port defines an SDL-2010 Gate. The required interfaces characterize the requests from

the classifier to its environment through the port and therefore define the outgoing signals for the

Gate. The provided interfaces of a port characterize requests to the classifier that are permitted

through the port and therefore define the incoming signals for the Gate.

7.12.1 Attributes

No additional attributes.

7.12.2 Constraints

[1] The redefinedPort property shall be empty.

[2] The aggregationKind shall be composite.

[3] The isDerived and isDerivedUnion properties shall be false.

[4] The isReadOnly property shall be true.

[5] The defaultValue property shall be empty.

[6] The subsettedProperty property shall be empty.

[7] The qualifier property shall be empty.

[8] The isStatic property shall be false.

[9] The lowerValue and upperValue properties shall be ValueSpecification items that evaluate

to 1.

[10] The isService property shall be false.

7.12.3 Semantics

A <<Port>> Port maps to a Gate-definition.

The name defines the Gate-name.

The list of required interfaces maps to the Out-signal-identifier-set. The set is computed according to

the rules given in clause 12.1.2 of [ITU-T Z.101].

The list of provided interfaces defines the In-signal-identifier-set. The set is computed according to

the rules given in clause 12.1.2 of [ITU-T Z.101].

If isBehavior is true, a channel is constructed in the SDL-2010 abstract syntax that connects the gate

and the state machine of the containing agent.

32 Rec. ITU-T Z.109 (10/2016)

7.12.4 References

SDL-2010 [ITU-T Z.101]:

 8.1.4 Gate

 12.1.2 Interface definition

UML-SS [OMG UML]:

 9.3.12 Port (from Ports)

7.13 Property

The Property extends the metaclass Property with multiplicity [1..1]. The metamodel diagram for the

stereotype is defined in Figure 7-1.

A property is an attribute that corresponds to a variable definition, an agent instance, or a field of a

structure type, or a literal signature of a literal type or a variant of a choice type in SDL-2010.

NOTE – The mappings of properties (ownedAttribute) owned by data type definition are specified in the

context of the specific stereotypes.

7.13.1 Attributes

• initialNumber: UnlimitedNatural [0..1]

 defines the initial number of instances created when an instance of the containing

classifier is created.

• literalValue: UnlimitedNatural [0..1]

 defines the literal number of an attribute owned by a literal type.

7.13.2 Constraints

[1] The type shall not be omitted.

[2] An unbound parameterized type shall not be used as the type of a <<Property>> Property.

[3] If the upperValue is omitted, the lowerValue shall also be omitted.

[4] If the upperValue is included, the lowerValue shall also be included.

 NOTE 1 – The upper and lower bounds of multiplicity are optional in UML-SS.

[5] If the upperValue value is greater than 1 and isOrdered is true, isUnique shall be false,

 NOTE 2 – That is because there is not a predefined SDL-2010 data type that is ordered and requires

each of its elements to have unique values.

[6] The initialNumber shall be included only if the type is an <<ActiveClass>> Class.

[7] The value of the initialNumber shall not be less than the lowerValue.

[8] The value of the initialNumber shall not be greater than the upperValue.

[9] The literalValue shall be included only if the type is a <<LiteralType>> Class.

[10] The isDerived shall be false.

[11] The isDerivedUnion shall be false.

[12] If isReadOnly is true, the type shall be a <<DataTypeDefinition>> Class.

 NOTE 3 – A Property with isReadOnly is true corresponds to a synonym definition in the concrete

grammar of SDL-2010.

[13] The defaultValue shall be an SdlExpression with isConstant true.

[14] The redefinedProperty shall be empty.

 Rec. ITU-T Z.109 (10/2016) 33

 NOTE 4 – Since <<Property>> Property maps to variable definition or an identifier of an agent or

data type in SDL-2010, the feature of redefinition is not applicable. That is because these kinds of

SDL-2010 elements cannot be redefined.

[15] The aggregation shall not be of AggregationKind shared.

7.13.3 Semantics

 Mapping to Variable-definition

A <<Property>> Property owned by an <<ActiveClass>> Class or <<StateMachine>> StateMachine

maps to Variable-definition, if its type is a <<DataTypeDefinition>> Class (or an <<Interface>>

Interface) and its isReadOnly property is false.

The aggregation property maps to the Aggregation-kind of a Variable-definition. If the aggregation

is of AggregationKind none, the Aggregation-kind is REF. Otherwise, if the aggregation is of

AggregationKind composite, the Aggregation-kind is PART.

NOTE 1 – The aggregation kind 'PART' is a feature of Basic SDL-2010 (see clause 12.3.1 of [ITU-T Z.101]),

whereas the aggregation kind 'REF' is introduced in [ITU-T Z.107] in order to support object-oriented data.

The name defines the Variable-name. The defaultValue defines the Constant-expression. The Sort-

reference-identifier is the Sort-identifier of the sort derived from the type property. The Sort-identifier

is determined as follows:

• If there is no upperValue and no lowerValue, the name of the type maps to the Sort-identifier.

• Otherwise, the Sort-identifier identifies an anonymous sort formed from the SDL-2010

predefined Bag (if isOrdered is false and isUnique is false) or Powerset (if isOrdered is false

and isUnique is true) or String (if isOrdered is true) datatype instantiated with the sort given

by the type as the ItemSort. The anonymous sort is a Value-data-type-definition or Syntype-

definition in the same context as the Variable-definition. If the upperValue value is omitted

or the lowerValue value is zero and the upperValue value is unlimited (* value in UML),

there are no size constraints and the anonymous sort is a Value-data-type-definition with its

components derived from the instantiated predefined data type. Otherwise, the lowerValue

value and upperValue value map (as described below) to a Range-condition of the

anonymous sort, which is a Syntype-definition. The Parent-sort-identifier of this Syntype-

definition is a reference to another anonymous sort that is the Value-data-type-definition

derived in the same way as the case with no size constraints.

• The mapping of lowerValue value and upperValue value to a Range-condition (see above) is

to a Condition-item-set consisting of one Condition-item. If the upperValue value is

unlimited, the Condition-item is an Open-range where the Operator-identifier identifies the

">=" (greater than or equal to) operator for the parent sort, and the lowerValue value maps

to the Constant-expression of this Open-range. Otherwise (when upperValue value is not

unlimited), the Condition-item is a Closed-range, and the lowerValue value maps to the first

Constant-expression of the Closed–range and the upperValue value maps to the second

Constant-expression of the Closed–range.

NOTE 2 – In UML the multiplicity of a property is separate from the type of the property; whereas in

SDL-2010, the bounds, uniqueness of values and ordering of elements are considered to be part of a data type

and, if these differ, two types are considered to be different and incompatible. If two properties have the same

type but have different bounds and both map to Bags, Powersets or Strings, the bounds are treated as size

constraints, so in these special cases two types could be compatible if they both had the same kind and item

sort. The mappings defined above result in anonymous data types for each property, which has multiple values,

with the consequence that such properties cannot be compatible even for the special cases. In SDL-2010 it is

possible to define a type that has a specific name and item sort (and in the case of a Vector the upper bound)

and to use this for different variable definitions so that the value of one variable is assignable to another using

the same type.

34 Rec. ITU-T Z.109 (10/2016)

 Mapping to Constant-expression

If isReadOnly is true, the type is required to be a <<DataTypeDefinition>> Class. In this case, the

<<Property>> Property maps to a Variable-definition as described above. The <<Property>>

Property maps to a Variable-access each time the <<Property>> Property is used in an expression.

 Mapping to Agent-definition

If the type is an <<ActiveClass>> Class, the <<Property>> Property maps to an Agent-definition. The

name defines the Agent-name. The type property defines the Agent-type-identifier that represents the

type in the SDL-2010 abstract syntax. The initialNumber defines the Initial-number. The upperValue

defines the Maximum-number. If the initialNumber is omitted, the lowerValue defines the Initial-

number. If both the initialNumber and lowerValue are omitted, the Initial-number is 1. The

lowerValue defines the Lower-bound.

NOTE 3 – It is possible for the number of agent instances to go below the Initial-number.

7.13.4 References

SDL-2010 [ITU-T Z.101]:

 9 Agents

 12.3.1 Variable definition

SDL-2010 [ITU-T Z.104]:

 14.3 String sort

 14.9 Vector sort

 14.10 Powerset sort

 14.13 Bag sort

SDL-2010 [ITU-T Z.107]:

 12.3.1 Variable definition

UML-SS [OMG UML]:

 7.3.33 MultiplicityElement (from Kernel)

 7.3.45 Property (from Kernel, Association Classes, Interfaces)

 7.3.50 StructuralFeature (from Kernel)

 7.3.53 TypedElement (from Kernel)

7.14 Signal

The stereotype Signal extends the metaclass Signal with multiplicity [1..1]. The metamodel diagram

for the stereotype is defined in Figure 7-1.

A signal represents the type for communication message instances and maps to a Signal-definition.

Specialization: A specializing signal is allowed to append additional attributes to those inherited from

its supertype (see clause 8.4.1 in [ITU-T Z.102]).

Redefinition: If an enclosing agent A2 (an active class) specializes a more general agent A1, an

enclosed signal ES of A2 is able to redefine a signal ES that is specified in A1. This corresponds to the

redefinition of virtual signal types (see clause 8.4.2 in [ITU-T Z.102]).

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the

common constraints and semantics see clause 7.4.

 Rec. ITU-T Z.109 (10/2016) 35

7.14.1 Attributes

No additional attributes.

7.14.2 Constraints

[1] The aggregation of an ownedAttribute shall not be of AggregationKind shared.

[2] If present, the formalContextParameterList shall only contain items that are of kind

SortContextParameter.

7.14.3 Semantics

A <<Signal>> Signal maps to a Signal-definition. The name defines the Signal-name and the general

property maps to the optional Signal-identifier.

If the redefinedClassifier property is not empty, this is an implicit generalization of another

<<Signal>> Signal. In this case, the qualifiedName of the redefinedClassifier maps to the Signal-

identifier.

Each ownedAttribute maps to an item in the Signal-parameter list. The type of an ownedAttribute

defines the Sort-reference-identifier and its aggregation property defines the Aggregation-kind. If the

aggregation is of AggregationKind none, the Aggregation-kind is REF. Otherwise, if the aggregation

is of AggregationKind composite, the Aggregation-kind is PART.

NOTE 1 – The aggregation kind 'PART' is a feature of Basic SDL-2010 (see clause 12.3.1 of [ITU-T Z.101]),

whereas the aggregation kind 'REF' is introduced in [ITU-T Z.107] in order to support object-oriented data.

If the isAbstract property is true, the optional Abstract node in the abstract syntax of a Signal-

definition is present.

7.14.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.3 Abstract type

 8.4.1 Adding properties

 10.3 Signal

SDL-2010 [ITU-T Z.107]:

 12.3.1 Variable definition

UML-SS [OMG UML]:

 13.3.24 Signal (from Communications)

7.15 Specification

The stereotype Specification extends the metaclass Model with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 7-1.

7.15.1 Attributes

No additional attributes are defined.

7.15.2 Constraints

[1] All ownedMember elements of the Model shall be a <<Package>> Package or an

<<ActiveClass>> Class.

[2] At least one ownedMember shall be of type <<ActiveClass>> Class.

[3] The packageMerge composition shall be empty.

[4] The name of the Package shall not be empty.

36 Rec. ITU-T Z.109 (10/2016)

7.15.3 Semantics

A <<Specification>> Model maps to an SDL-specification.

Each nestedPackage maps to the Package-definition-set. An ownedMember that is an

<<ActiveClass>> Class maps to the optional Agent-definition and the name maps to the Agent-name.

The Initial-number of the Agent-definition is 1. The qualifiedName of <<ActiveClass>> forms the

Agent-type-identifier of the Agent-definition.

7.15.4 References

SDL-2010 [ITU-T Z.101]:

 7.1 Framework

UML-SS [OMG UML]:

 17.3.1 Model (from Models)

7.16 StructureType

The stereotype StructureType is a subtype of the <<DataTypeDefinition>> Class. The metamodel

diagram for the stereotype is defined in Figure 7-2.

The <<StructureType>> Class represents an SDL-2010 structure data type and it maps to a Value-

data-type-definition. A structure data type consists of a set of mandatory or optional fields that are

allowed to have different types. It is allowed to omit optional fields in a value for a structure type,

whereas mandatory fields always have to be present.

Specialization: When a structure type is specialized, its subtypes are able to add additional fields (in

terms of ownedAttribute items) and operations.

7.16.1 Attributes

No additional attributes.

7.16.2 Constraints

[1] The ownedAttribute property shall not be empty.

[2] An ownedAttribute shall have a type that is a <<DataTypeDefinition>> Class (or one of its

subtypes) or <<Interface>> Interface.

7.16.3 Semantics

A <<StructureType>> Class maps to a Value-data-type-definition. Depending on the multiplicity of

the Property that is an ownedAttribute item, a distinction is made between the following three cases:

• A multiplicity of [0..1] is an optional data field.

• A multiplicity of [1..1] is a mandatory data field.

• In all other cases, an anonymous data type has to be derived from the multiplicity and the

type of an ownedAttribute as specified in clause 7.13.3.

Each ownedAttribute implies a set of implicit defined operations as specified in clause 12.1.6.2 of

[ITU-T Z.104]. During the computation of these operations, also the defaultValue of an

ownedAttribute is evaluated.

NOTE – The defaultValue of an ownedProperty corresponds to the default initialization of a data field.

In addition, the mappings specified in the context of the <<DataTypeDefinition>> Class (see

clause 7.6) apply.

7.16.4 Notation

UML standard syntax is used.

 Rec. ITU-T Z.109 (10/2016) 37

7.16.5 References

SDL-2010 [ITU-T Z.104]:

 12.1 Data definitions

 12.1.1 Data type definition

 12.1.6.2 Structure data types

UML-SS [OMG UML]:

 13.3.8 Class (from Communications)

7.17 Syntype

The Syntype stereotype is a subtype of the <<DataTypeDefinition>> Class. The metamodel diagram

for the stereotype is defined in Figure 7-2.

The Syntype stereotype represents an SDL-2010 syntype and it maps to a Syntype-definition. The

Syntype stereotype constrains a predefined or user-defined data type in order to restrict the usable set

of valid values.

7.17.1 Attributes

• constraint: RangeCondition

 The range condition that defines the constraint.

• parentSortIdentifier: Classifier

 The data type definition to be constrained by a syntype.

7.17.2 Constraints

[1] The parentSortIdentifier property shall reference a <<DataTypeDefinition>> Class or one of

its subtypes, e.g. <<LiteralType>>.

[2] The ownedAttribute and ownedOperation properties shall be empty.

[3] The general and redefinedClassifier properties shall be empty.

 NOTE – An SDL-2010 syntype cannot be generalized or redefined.

7.17.3 Semantics

The name property of a <<Syntype>> Class maps to the Name and the constraint maps to the Range-

condition of a Syntype-definition. In addition, the qualifiedName of the parentSortIdentifier maps to

the Parent-sort-identifier.

The optional defaultValue maps to the Default-initialization of a Syntype-definition.

7.17.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.1 Syntypes

 12.1.8.2 Constraint

UML-SS [OMG UML]:

 13.3.8 Class (from Communications)

7.18 Timer

The Timer stereotype is a subtype of the stereotype Signal (see clause 7.14). The metamodel diagram

for the stereotype is defined in Figure 7-1.

38 Rec. ITU-T Z.109 (10/2016)

7.18.1 Attributes

• defaultValue: SdlExpression [0..1]

 The optional default value for timer initialization.

7.18.2 Constraints

[1] The defaultValue shall be an SdlExpression with isConstant true.

[2] The general and redefinedClassifier properties shall be empty.

 NOTE – In contrast to a <<Signal>> Signal, neither redefinition nor generalization is allowed for a

<<Timer>> Signal. That is because these features are not applicable to an SDL-2010 timer definition.

7.18.3 Semantics

A <<Timer>> Signal maps to a Timer-definition. The name attribute defines the Timer-name. The

type of each ownedAttribute defines a corresponding item in the list of Sort-reference-identifiers. If

present, the defaultValue maps to the optional Timer-default-initialization.

7.18.4 References

SDL-2010 [ITU-T Z.101]:

 11.15 Timer

UML-SS [OMG UML]:

 13.3.24 Signal (from Communications)

8 State machines

The finite state machine models of SDL-UML provide details of how a model behaves in terms of

state transitions for the protocol part of a system.

The following metaclasses from the UML package BehaviorStateMachines are included:

– FinalState

– Pseudostate

– Region

– State

– StateMachine

– Transition.

 Rec. ITU-T Z.109 (10/2016) 39

8.1 State machine metamodel diagrams

Figure 8-1 – State machine stereotypes

8.2 DashNextstate

The stereotype DashNextstate is a subtype of the stereotype Pseudostate. The metamodel diagram for

the stereotype is defined in Figure 8-1.

A <<DashNextstate>> Pseudostate maps to a SDL-2010 dash next state node (with history).

8.2.1 Attributes

No additional attributes.

8.2.2 Constraints

[1] The kind property of a <<DashNextstate>> Pseudostate shall have a value of deepHistory or

shallowHistory.

40 Rec. ITU-T Z.109 (10/2016)

8.2.3 Semantics

 Mapping of a deep history node

A << DashNextstate>> Pseudostate with kind deepHistory maps to a Nextstate-node that is a Dash-

nextstate with HISTORY.

 Mapping of a shallow history node

A <<DashNextstate>> Pseudostate with kind shallowHistory maps to a Nextstate-node that is a Dash-

nextstate without HISTORY.

8.2.4 References

SDL-2010 [ITU-T Z.101]:

 11.12.2.1 Nextstate

UML-SS [OMG UML]:

 15.3.8 Pseudostate (from BehaviorStateMachines)

 15.3.9 PseudostateKind (from BehaviorStateMachines)

8.3 CompositeStateGraph

The stereotype CompositeStateGraph is a subtype of the stereotype Region (see clause 8.11). The

metamodel diagram for the stereotype is defined in Figure 8-1.

A composite state graph defines the behaviour of a <<CompositeStateTypeDefinition>>

StateMachine.

8.3.1 Attributes

No additional attributes.

8.3.2 Constraints

No additional constraints.

8.3.3 Semantics

A <<CompositeStateGraph>> Region maps to a Composite-state-graph, and its subvertex set

consisting of State, Pseudostate, or FinalState elements together with the transition elements, define

the Composite-state-graph of a Composite-state-type-definition.

Each State-node or Free-action derived from these Vertex elements are elements of the State-node-

set and Free-node-set, respectively, of the State-transition-graph of the Composite-state-graph.

8.3.4 References

SDL-2010 [ITU-T Z.101]:

 8.1.1.5 Composite state type

UML-SS [OMG UML]:

 13.3.2 Behavior (from BasicBehaviors)

 15.3.10 Region (from BehaviorStateMachines)

8.4 CompositeStateTypeDefinition

The stereotype CompositeStateTypeDefinition is a subtype of the stereotype StateMachine (see

clause 8.16). The metamodel diagram for the stereotype is defined in Figure 8-1.

 Rec. ITU-T Z.109 (10/2016) 41

A <<CompositeStateTypeDefinition>> StateMachine defines a SDL-2010 composite state type

definition and therefore it maps to a Composite-state-type-definition. According to the semantics

defined by SDL-2010, a << CompositeStateTypeDefinition >> StateMachine is used to define the

behaviour of an agent type definition (the classifierBehavior of an <<ActiveClass>> Class) or of a

composite state type (the submachine of a <<State>> State).

The semantic for specialization and redefinition is defined by clause 8.16.

8.4.1 Attributes

No additional attributes.

8.4.2 Constraints

[1] No ownedParameter property shall have a direction=return (so that StateMachine does not

return a result).

[2] The specification property shall be empty.

8.4.3 Semantics

The name defines the State-type-name. If the region contains only one item, the content of the region

maps to a Composite-state-graph of the Composite-state-type-definition; otherwise the region maps

to a State-aggregation-node of the Composite-state-type-definition with one State-partition for each

contained Region.

Each connectionPoint with kind entryPoint defines an element of the State-entry-point-definition-set

and each connectionPoint with kind exitPoint defines an element of State-exit-point-definition-set.

The name property of a connectionPoint with kind entryPoint or exitPoint maps to the Name of a

State-entry-point-definition or State-exit-point-definition, respectively.

The ownedParameter property defines the Composite-state-formal-parameters.

The nestedClassifier and ownedAttribute associations define the rest of the contents of the state

machine according to the following paragraphs.

A nestedClassifier that is a <<DataTypeDefinition>> Class defines a Value-data-type-definition that

is an element of the Data-type-definition-set.

A nestedClassifier that is an Interface defines an Interface-definition that is an element of the Data-

type-definition-set.

A nestedClassifier that is a <<CompositeStateTypeDefinition>> StateMachine defines a Composite-

state-type-definition that is an element of the Composite-state-type-definition-set.

A nestedClassifier that is a <<ProcedureDefinition>> StateMachine defines a Procedure-definition

that is an element of the Procedure-definition-set.

An ownedAttribute maps to a Variable-definition in the Variable-definition-set (see clause 7.13).

If the isAbstract property of a <<CompositeStateTypeDefinition>> StateMachine is true, the optional

Abstract node in the abstract syntax of a Composite-state-type-definition is present.

The general property (derived from generalization) maps to the optional Composite-state-type-

identifier.

If the redefinedClassifier property is not empty, this is an implicit generalization of another

StateMachine. In this case, the qualifiedName of the redefinedClassifier maps to the Composite-state-

type-identifier.

NOTE 1 – If a StateMachine is a classifierBehavior and it has an ownedParameter set, these parameters are

used as parameters when creating instances of the containing Class. See clause 7.2.3.

42 Rec. ITU-T Z.109 (10/2016)

8.4.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.1.5 Composite state type

 8.1.3 Abstract type

UML-SS [OMG UML]:

 15.3.12 StateMachine (from BehaviorStateMachines)

8.5 DecisionNode

The stereotype DecisionNode is a subtype of the stereotype Pseudostate. The metamodel diagram for

the stereotype is defined in Figure 8-1.

A <<DecisionNode>> Pseudostate maps to decision node in a SDL-2010 state transition graph.

8.5.1 Attributes

• decisionQuestion: SdlExpression [0..1]

 An optional expression that defines the question for a choice Pseudostate.

8.5.2 Constraints

[1] The kind property of a <<DecisionNode>> Pseudostate shall have a value of choice.

[2] An outgoing Transition shall have a non-empty guard property Constraint (a RangeCondition

or the predefined "else" guard) and an empty trigger property.

[3] The Boolean guard of an outgoing Transition, except the predefined "else" guard, shall be a

RangeCondition.

[4] At most one outgoing Transition with an empty trigger and an "else" guard shall be present.

The Constraint representing this guard shall have a specification property that is a

RangeCondition that always evaluates to true.

8.5.3 Semantics

A <<DecisionNode>> Pseudostate maps to a Decision-node. The decisionQuestion maps to the

Decision-question and the outgoing Transition items map to the Decision-answer-set. The Boolean

guard of each outgoing Transition maps to the Range-condition of the corresponding Decision-

answer. The effect of this outgoing Transition maps to the Graph-node list of the Transition of the

same Decision-answer.

The target property of each outgoing Transition maps to the last item of the Transition (a Terminator

or Decision-node) of the same Decision-answer in the same way as the target is mapped in clause 8.18

for a Transition. An outgoing property with an "else" guard property maps to an Else-answer where

the Transition is mapped in the same way as for a Boolean guard property.

8.5.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.5 Decision

UML-SS [OMG UML]:

 15.3.8 Pseudostate (from BehaviorStateMachines)

 15.3.9 PseudostateKind (from BehaviorStateMachines)

 Rec. ITU-T Z.109 (10/2016) 43

8.6 FinalState

The stereotype FinalState extends the metaclass FinalState with multiplicity [1..1]. The metamodel

diagram of the stereotype is defined in Figure 8-1.

When a FinalState is reached the containing graph completes. In SDL-UML a graph for a procedure

will complete with a <<Return>> ActivityFinalNode. In this case, there is no mapping to the

SDL-2010 abstract syntax for FinalState because the return node terminates the graph. A FinalState

that is not in a procedure graph maps to an Action-return-node or Named-return-node for the

enclosing composite state.

8.6.1 Attributes

No additional attributes.

8.6.2 Constraints

[1] If the <<FinalState>> FinalState is part of a <<ProcedureGraph>> Region, any Transition

that has the <<FinalState>> FinalState as its target shall end in a <<Return>>

ActivityFinalNode.

 NOTE – The Action-return-node or Value-return-node of the procedure is defined by the <<Return>>

ActivityFinalNode.

8.6.3 Semantics

If a <<FinalState>> FinalState is not part of a <<ProcedureGraph>> Region, this FinalState maps to

a Stop-node or an Action-return-node. It maps to a Stop-node if (and only if) it is part of the region

of a <<CompositeStateTypeDefinition>> StateMachine that is the classifierBehavior of an

<<ActiveClass>> Class.

8.6.4 References

SDL-2010 [ITU-T Z.101]:

 11.12.2.4 Return

UML-SS [OMG UML]:

 15.3.2 FinalState (from BehaviorStateMachines)

8.7 JoinNode

The stereotype JoinNode is a subtype of the stereotype Pseudostate. The metamodel diagram for the

stereotype is defined in Figure 8-1.

A <<JoinNode>> Pseudostate map to one or more SDL-2010 join nodes and an associated free action.

8.7.1 Attributes

No additional attributes.

8.7.2 Constraints

[1] The kind property of a <<JoinNode>> Pseudostate shall have a value of junction.

8.7.3 Semantics

A <<JoinNode>> Pseudostate with kind junction maps to a Free-action and one or more Join-node

elements. The name property defines the Connector-name in the Free-action and each Join-node. The

effect of the outgoing property maps to the Graph-node list of the Transition of the Free-action. The

target property of this outgoing property Transition maps to the last item of the Transition (a

Terminator or Decision-node) of the Free-action in the same way as the target is mapped in clause

8.18 for a Transition. There is a Join-node for each Transition that has a target property that is a

44 Rec. ITU-T Z.109 (10/2016)

<<JoinNode>> Pseudostate with kind junction and the Join-node is the Terminator of the Transition

with its Graph-node list derived from the effect of the Transition.

NOTE 1 – UML-SS has a constraint "a junction vertex must have at least one incoming and one outgoing

transition". Pseudostate maps to both the Join-node elements and the Free-action labels, so the possibility

(allowed in SDL-2010) to have a Free-action without a corresponding Join-node is not allowed.

8.7.4 References

SDL-2010 [ITU-T Z.101]:

 11.10 Label (connector name)

 11.12.2.2 Join

UML-SS [OMG UML]:

 15.3.8 Pseudostate (from BehaviorStateMachines)

 15.3.9 PseudostateKind (from BehaviorStateMachines)

8.8 ProcedureDefinition

The stereotype ProcedureDefinition is a subtype of the stereotype StateMachine (see clause 8.16).

The metamodel diagram for the stereotype is defined in Figure 8-1.

A <<ProcedureDefinition>> StateMachine defines a SDL-2010 procedure definition and therefore it

maps to a Procedure-definition.

Specialization: The semantic for specialization and redefinition is defined by clause 8.16.

Furthermore, when a state machine maps to a procedure, a subtype is not allowed to add additional

regions. That is because a state machine that is the specification of an operation shall consist of one

region only.

8.8.1 Attributes

No additional attributes.

8.8.2 Constraints

[1] The specification property shall be an Operation.

 NOTE – The other possibility, Reception, is not allowed.

[2] The region shall only contain a <<ProcedureGraph>> Region.

[3] The connectionPoint property shall be empty.

[4] The ownedPort shall be empty.

[5] The specification shall not be an Operation contained in an Interface.

[6] The ownedParameter list of the StateMachine shall be the same as the ownedParameter list

of the Operation that is the specification property.

8.8.3 Semantics

A <<ProcedureDefinition>> StateMachine maps to a Procedure-definition (named or anonymous),

each ownedParameter defines a Procedure-formal-parameter or the Result of the Procedure-

definition. The detailed mappings to Procedure-formal-parameter are specified in clause 7.11.

The name defines the Procedure-name.

The region property defines the Procedure-graph through the subvertex set of Vertex elements (State,

Pseudostate, or FinalState) of the region together with the transition elements of the region that

reference these Vertex elements. Each State-node or Free-action derived from these Vertex elements

are elements of the State-node-set and Free-node-set, respectively, of the Procedure-graph.

 Rec. ITU-T Z.109 (10/2016) 45

NOTE 1 – A Pseudostate with kind initial defines the Procedure-start-node.

The nestedClassifier and ownedAttribute associations define the rest of the contents of the state

machine according to the following paragraphs.

A nestedClassifier that is a <<DataTypeDefinition>> Class defines a Value-data-type-definition that

is an element of the Data-type-definition-set of the Procedure-definition.

A nestedClassifier that is an Interface defines an Interface-definition that is an element of the Data-

type-definition-set of the Procedure-definition.

A nestedClassifier that is a <<CompositeStateTypeDefinition>> StateMachine defines a Composite-

state-type-definition that is an element of the Composite-state-type-definition-set of the Procedure-

definition.

A nestedClassifier that is a <<ProcedureDefinition>> StateMachine defines a Procedure-definition

that is an element of the Procedure-definition-set of the Procedure-definition.

An ownedAttribute maps to a Variable-definition in the Variable-definition-set of the Procedure-

definition (see clause 7.13).

If the isAbstract property is true, the optional Abstract node in the abstract syntax of a Procedure-

definition is present.

If the general property is not empty, this refers to the specialization of a procedure definition. In this

case, the qualifiedName of the generalized StateMachine maps to the Procedure-identifier of the

Procedure-definition.

If the redefinedClassifier property is not empty, this is an implicit generalization of another

StateMachine. In this case, the qualifiedName of the redefinedClassifier maps to the Procedure-

identifier of the Procedure-definition.

8.8.4 References

SDL-2010 [ITU-T Z.101]:

 9.4 Procedure

SDL-2010 [ITU-T Z.102]:

 8.1.3 Abstract type

UML-SS [OMG UML]:

 15.3.12 StateMachine (from BehaviorStateMachines)

8.9 ProcedureGraph

The stereotype ProcedureGraph is a subtype of the stereotype Region (see clause 8.11). The

metamodel diagram for the stereotype is defined in Figure 8-1.

A <<ProcedureGraph>> Region defines the behaviour of a procedure (as represented by

<<ProcedureDefinition>> Statemachine) and is mapped to a Procedure-graph.

8.9.1 Attributes

No additional attributes.

8.9.2 Constraints

[1] The subvertex set of a <<ProcedureGraph>> Region of a non-abstract

<<ProcedureDefinition>> shall contain a <<StartNode>> Pseudostate with kind initial.

NOTE 1 – In an Sdl-specification, all potentially instantiated procedures shall have a Procedure-start-node.

46 Rec. ITU-T Z.109 (10/2016)

8.9.3 Semantics

A <<ProcedureGraph>> Region maps to a Procedure-graph, and its subvertex set consisting of State,

Pseudostate or FinalState elements together with its transition elements define the Procedure-graph

of a Procedure-definition.

8.9.4 References

SDL-2010 [ITU-T Z.101]:

 9.4 Procedure

UML-SS [OMG UML]:

 15.3.10 Region (from BehaviorStateMachines)

8.10 Pseudostate

The abstract stereotype Pseudostate extends the metaclass Pseudostate with multiplicity [1..1]. The

metamodel diagram for the stereotype is defined in Figure 8-1.

A Pseudostate is used instead of a state before initial or state entry point transitions, when there is a

junction of transitions, when there is a decision to make a choice of transitions, when the transition

leads to a history nextstate, or after a transition to lead to a state exit point or terminate the state graph.

They allow more complex transitions between states to be built from simpler, shorter transitions that

end or start (or start and end) in a Pseudostate. They map to start, next state (with history), decision,

join and free action, return and stop nodes in the SDL-2010 state transition graph.

Subtypes: The following subtypes are specified for the <<Pseudostate>> Pseudostate:

• <<StartNode>> Pseudostate that represents a state start or procedure start node,

• <<DashNextstate>> Pseudostate representing a dash next state (with history),

• <<JoinNode>> Pseudostate representing a SDL-2010 join node,

• <<DecisionNode>> Pseudostate representing a SDL-2010 decision node,

• <<ReturnNode>> Pseudostate representing a SDL-2010 named return node and

• <<StopNode>> Pseudostate that represents a SDL-2010 stop node.

8.10.1 Attributes

No additional attributes.

8.10.2 Constraints

[1] The kind property of <<Pseudostate>> Pseudostate shall not be join or fork.

8.10.3 Semantics

The mapping of a <<Pseudostate>> Pseudostate depends on the value of its kind property. The

particular mappings are defined by the subtypes of <<Pseudostate>> Pseudostate.

8.10.4 References

SDL-2010 [ITU-T Z.101]:

 11.1 Start

 11.10 Label (connector name)

 11.12.2.2 Join

 11.12.2.3 Stop

 11.13.5 Decision

 Rec. ITU-T Z.109 (10/2016) 47

SDL-2010 [ITU-T Z.102]:

 8.4.3 Virtual transition/save

 9.4 Procedure

 11.1 Start

UML-SS [OMG UML]:

 15.3.8 Pseudostate (from BehaviorStateMachines)

 15.3.9 PseudostateKind (from BehaviorStateMachines)

8.11 Region

The abstract stereotype Region extends the metaclass Region with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 8-1.

A region contains states and transitions and maps to the definition of how a procedure or a composite

state behaves. For the composite state mapping of a <<CompositeStateTypeDefinition>>

StateMachine, a single <<CompositeStateGraph>> Region maps to a Composite-state-graph,

whereas two or more <<StateAggregationArea>> Region items map to a State-aggregation-node (see

clause 8.15). In contrast, a <<ProcedureGraph>> Region that is owned by <<ProcedureDefinition>>

Statemachine defines the behaviour of a procedure and is mapped to a Procedure-graph.

A region in SDL-UML is always part of a StateMachine and is never part of a State, because the

region of a State is constrained to be empty.

8.11.1 Attributes

No additional attributes.

8.11.2 Constraints

[1] The triggers in the different orthogonal regions shall refer to disjoint sets of signals.

[2] The extendedRegion property of a Region shall be empty.

 NOTE – The redefinition of a procedure or composite state type is determined by the StateMachine

that contains a Region.

8.11.3 Semantics

The mapping of a Region depends on the kind of the applied subtype of the <<Region>> stereotype.

If the <<ProcedureGraph>> stereotype is applied to a Region that is owned by a

<<ProcedureDefinition>> StateMachine, it maps to a Procedure-graph as specified in clause 8.9. A

single <<CompositeStateGraph>> Region owned by a <<CompositeStateTypeDefinition>>

StateMachine maps to a Composite-state-graph as specified in clause 8.3. Whereas two or more

<<StateAggregationArea>> Region elements owned by <<CompositeStateTypeDefinition>>

StateMachine maps to a State-aggregation-node as specified in clause 8.15.

8.11.4 References

SDL-2010 [ITU-T Z.101]:

 8.1.1.5 Composite state type

SDL-2010 [ITU-T Z.102]:

 11.11.2 State aggregation

UML-SS [OMG UML]:

 15.3.10 Region (from BehaviorStateMachines)

48 Rec. ITU-T Z.109 (10/2016)

8.12 ReturnNode

The stereotype ReturnNode is a subtype of the stereotype Pseudostate. The metamodel diagram for

the stereotype is defined in Figure 8-1.

A <<ReturnNode>> Pseudostate corresponds to a named return node in a SDL-2010 state transition

graph.

8.12.1 Attributes

No additional attributes.

8.12.2 Constraints

[1] The kind property of a <<ReturnNode>> Pseudostate shall have a value of exitPoint.

[2] A <<ReturnNode>> Pseudostate shall not be contained in a <<ProcedureGraph>> Region.

8.12.3 Semantics

A <<ReturnNode>> Pseudostate with kind exitPoint maps to a Named-return-node. The name

property defines the State-exit-point-name.

8.12.4 References

SDL-2010 [ITU-T Z.102]:

 11.12.2.4 Return

UML-SS [OMG UML]:

 15.3.8 Pseudostate (from BehaviorStateMachines)

 15.3.9 PseudostateKind (from BehaviorStateMachines)

8.13 State

The stereotype State extends the metaclass State with multiplicity [1..1]. The metamodel diagram for

the stereotype is defined in Figure 8-1.

A state represents a condition where an object is waiting for some condition to be fulfilled: usually

for an event to occur. A state in SDL-UML maps to an SDL-2010 state.

8.13.1 Attributes

• timeExpression: SdlExpression [0..1]

 A value used to initialize the optional state timer.

• timerIdentifier: Signal [0..1]

 A reference to a timer definition, which is used as state timer.

• timerExpressionList: SdlExpression [0..*]

 A list of actual parameters for the state timer.

• timerTransition: Transition [0..1]

 A transition to be invoked when the state timer expires.

8.13.2 Constraints

[1] The doActivity property shall be empty.

[2] If the submachine property is empty, the entry and exit properties shall be empty.

 NOTE 1 – In SDL-2010, the definition of entry and exit procedures is only possible for composite

states.

 Rec. ITU-T Z.109 (10/2016) 49

[3] If present, the entry and exit properties shall refer to a <<ProcedureDefinition>>

StateMachine.

[4] The isComposite property shall be false.

 NOTE 2 – Only decomposition using submachine properties is allowed and a State shall have an

empty region property.

[5] If a trigger of an outgoing Transition has an omitted port property, the associated signal shall

only be used in another outgoing Transition or deferrableTrigger when the corresponding

port property is not empty.

 NOTE 3 – This constraint specifies that signal without via gate shall only be used for another input

or save with a gate.

[6] If a trigger of an outgoing Transition has a port property, the associated signal shall not be

used in another outgoing Transition or deferrableTrigger with a port that has the same name.

 NOTE 4 – This constraint specifies the rule for a signal with via gate.

[7] The event property of the deferrableTrigger property of a State shall be a SignalEvent.

 NOTE 5 – A SignalEvent is used to represents events for received signals or expired timers, which

are declared in terms of <<Timer>> Signal items.

[8] The timerIdentifier, timeExpression and timerTransition properties shall only be present

together.

[9] The timerExpressionList property shall only be present, if the timerIdentifier, timeExpression

and timerTransition properties are not empty.

[10] If present, the timerIdentifier property shall reference a <<Timer>> Signal.

8.13.3 Semantics

A <<State>> State maps to a State-node. The name maps to the State-name.

A ConnectionPointReference that is part of the connection property and corresponds to an

Exit-Connection-Point (a <<ReturnNode>> Pseudostate in the connectionPoint property of the

containing StateMachine) maps to a member of the Connect-node-set.

The submachine property maps to Composite-state-type-identifier. If present, the StateMachine

identified by the entry property maps to a Procedure-definition that defines the Entry-procedure-

definition of a Composite-state-graph or a State-aggregation-node of the Composite-state-type-

definition that is identified by the submachine property. If present, the StateMachine identified by the

exit property maps to a Procedure-definition that defines the Exit-procedure-definition of a

Composite-state-graph or a State-aggregation-node of the Composite-state-type-definition that is

identified by the submachine property.

Each item in the deferrableTrigger list maps to a Save-item in the Save-item-set of the Save-signalset.

The qualifiedName of a Signal that is the event of a deferrableTrigger maps to the Signal-identifier

of a Save-item. The qualifiedName of the port property of a deferrableTrigger maps to the optional

Gate-identifier of a Save-item.

The outgoing property (inherited from Vertex) maps to the Input-node-set, Spontaneous-transition-

set and Continuous-signal-set. See clause 8.18 on Transition for more details on the mapping to the

Input-node-set, Spontaneous-transition-set and Continuous-signal-set.

NOTE – The semantics for parameters for state types is defined in clause 8.4.

If present, the timerIdentifier property maps to Timer-identifier, the timeExpression property maps to

Time-expression, the timerExpressionList maps to the Expression list and the timerTransition

property maps to the Transition of the optional State-timer of a State-node.

50 Rec. ITU-T Z.109 (10/2016)

8.13.4 References

SDL-2010 [ITU-T Z.102]:

 8.4.3 Virtual transition/save

 11.2 State

 11.7 Save

UML-SS [OMG UML]:

 15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines)

 15.3.16 Vertex (from BehaviorStateMachines)

8.14 StartNode

The stereotype StartNode is a subtype of the stereotype Pseudostate (see clause 8.10). The metamodel

diagram for the stereotype is defined in Figure 8-1.

A <<StartNode>> Pseudostate maps to a state start or procedure start node in a SDL-2010 state

transition graph.

8.14.1 Attributes

No additional attributes.

8.14.2 Constraints

[1] The kind property of a <<StartNode>> Pseudostate shall have a value of initial or entryPoint.

[2] An outgoing Transition of a <<StartNode>> Pseudostate shall have an empty guard and an

empty trigger.

[3] The classifierBehavior of a <<ActiveClass>> Class with isAbstract false shall have a

<<StartNode>> Pseudostate with a kind that is initial.

[4] A <<StartNode>> Pseudostate with kind that is entryPoint shall not be contained in a

<<ProcedureGraph>> Region.

8.14.3 Semantics

 Mapping of an initial node

A <<StartNode>> Pseudostate with kind = initial is mapped to a Procedure-start-node in a region

that defines a Procedure-graph and State-start-node in a region that defines a Composite-state-graph.

The outgoing Transition maps to the Graph-node list of the Transition of the Procedure-start-node

or State-start-node. The target property of this outgoing Transition maps to the last item of the

Transition (a Terminator or Decision-node) of the Procedure-start-node or State-start-node in the

same way as the target is mapped in clause 8.18 for a Transition.

If the outgoing Transition of a <<StartNode>> Pseudostate with kind initial is redefining (the

redefinedTransition property is not empty) another transition, the redefining Transition specifies the

Transition of a Procedure-start-node or State-start-node.

NOTE 1 – When the outgoing transition of an initial node is redefined this corresponds to a virtual procedure

start (see clause 9.4 in [ITU-T Z.102]) or a virtual process start (see clause 11.1 in [ITU-T Z.102]).

NOTE 2 – A Pseudostate cannot be redefined, so that an outgoing Transition of the Pseudostate has to be used

for the purpose of redefinition.

 Mapping of an entry point

A <<StartNode>> Pseudostate with kind entryPoint maps to a State-start-node. The name property

defines the State-entry-point-name. The effect of the outgoing Transition defines the Graph-node list

 Rec. ITU-T Z.109 (10/2016) 51

of the Transition. The target property of this outgoing Transition maps to the last item of the

Transition (a Terminator or Decision-node) of the State-start-node in the same way as the target is

mapped in clause 8.18 for a Transition.

If the outgoing Transition of a <<StartNode>> Pseudostate with kind entryPoint is redefining (the

redefinedTransition property is not empty) another transition, the redefining Transition specifies the

Transition of the State-start-node.

8.14.4 References

SDL-2010 [ITU-T Z.102]:

 9.4 Procedure

 11.1 Start

UML-SS [OMG UML]:

 15.3.8 Pseudostate (from BehaviorStateMachines)

 15.3.9 PseudostateKind (from BehaviorStateMachines)

8.15 StateAggregationArea

The stereotype StateAggregationArea is a subtype of the stereotype Region (see clause 8.11). The

metamodel diagram for the stereotype is defined in Figure 8-1.

In SDL-UML, a SDL-2010 state aggregation node is represented by the set of all

<<StateAggregationArea>> Region elements that are owned by a

<<CompositeStateTypeDefinition>> StateMachine.

8.15.1 Attributes

No additional attributes.

8.15.2 Constraints

No additional constraints.

8.15.3 Semantics

A <<StateAggregationArea>> Region of a <<CompositeStateTypeDefinition>> StateMachine (the

outer Composite-state-type-definition) maps to a State-partition and to an inner Composite-state-type-

definition with a unique State-type-name. Each State-partition is an element of the State-partition-set

of the State-aggregation-node of the outer Composite-state-type-definition of the StateMachine

mapping. The mapping to a State-partition and the corresponding inner Composite-state-type-

definition is described in more detail in the following paragraphs.

Each <<StartNode>> Pseudostate with kind entryPoint (in the connectionPoint property of the

containing StateMachine) maps to a distinct State-entry-point-definition of the inner Composite-state-

type-definition.

Because a Pseudostate of kind entryPoint is directly owned by a StateMachine and not by one of its

region items, the association between a State-entry-point-definition and its containing Composite-

state-type-definition has to be determined. For this purpose, the container property (which refers to

the containing Region) of the outgoing Transition of a <<StartNode>> Pseudostate with kind

entryPoint is used to determine the containing Composite-state-type-definition. The result of

determination is mapped so that the Connection-definition-set of the State-partition contains an

Entry-connection-definition that connects the State-entry-point-definition of the outer Composite-

state-type-definition to the corresponding State-entry-point-definition of the inner Composite-state-

type-definition.

52 Rec. ITU-T Z.109 (10/2016)

NOTE 1 – The State-entry-point-names of the Outer-entry-point and Inner-entry-point of an Entry-

connection-definition are equal. That is because a <<StartNode>> Pseudostate with kind entryPoint maps to a

State-entry-point-definition of the outer as well as of the inner Composite-state-type-definition.

Each <<ReturnNode>> Pseudostate with kind exitPoint in the connectionPoint property of the

containing StateMachine maps to a distinct State-exit-point-definition of the Composite-state-type-

definition.

Because a <<ReturnNode>> Pseudostate of kind exitPoint is directly owned by a StateMachine and

not by one of its region items, the association between a State-exit-point-definition and its containing

Composite-state-type-definition has to be determined. For this purpose, the container property (which

refers to the containing Region) of the incoming Transition of a <<ReturnNode>> Pseudostate with

kind exitPoint is used to determine the containing Composite-state-type-definition. The result of

determination is mapped so that the Connection-definition-set of the State-partition contains an Exit-

connection-definition that connects the State-exit-point-definition of the outer Composite-state-type-

definition to the corresponding State-exit-point-definition of the inner Composite-state-type-

definition.

NOTE 2 – The State-exit-point-names of the Outer-exit-point and Inner-exit-point of an Exit-connection-

definition are equal. That is because a Pseudostate with kind exitPoint maps to a State-entry-point-definition

of the outer as well as of the inner Composite-state-type-definition.

The name maps to the Name of the State-partition.

The Composite-state-type-identifier of the State-partition identifies the inner Composite-state-type-

definition.

The subvertex and transition properties of the Region map to the Composite-state-graph of the inner

Composite-state-type-definition in the same way that a Composite-state-graph is derived for only one

region in a StateMachine.

8.15.4 References

SDL-2010 [ITU-T Z.101]:

 8.1.1.5 Composite state type

SDL-2010 [ITU-T Z.102]:

 11.11.2 State aggregation

UML-SS [OMG UML]:

 15.3.10 Region (from BehaviorStateMachines)

8.16 StateMachine

The abstract stereotype StateMachine extends the metaclass StateMachine with multiplicity [1..1].

The metamodel diagram for the stereotype is defined in Figure 8-1.

An SDL-UML StateMachine either maps to the graph of a SDL-2010 procedure or a SDL-2010

composite state type. The two cases are distinguished by two particular subtypes of the

<<StateMachine>> StateMachine. If a StateMachnie has a specification, then it represents a

procedure definition and the <<ProcedureDefinition>> stereotype is present; otherwise, it is a

composite state type and the <<CompositeStateTypeDefinition>> stereotype is present.

Specialization: A state machine S2 (subtype) is allowed to specialize from a more general state

machine S1 (supertype). In general, the subtype state machine is allowed to add additional states,

transitions, regions and parameters to those elements inherited from the supertype state machine (see

clause 8.4.1 in [ITU-T Z.102]). When a subtype StateMachine adds additional parameters, they have

to be added after those parameters inherited from the supertype. When a state machine maps to a

 Rec. ITU-T Z.109 (10/2016) 53

procedure, a subtype is not allowed to add additional regions. That is because a state machine that is

the specification of an operation shall consist of one region only.

Redefinition: The redefinition of a state machine ES is only possible if an enclosing classifier C1 is

specialized by a classifier C2 that contains a state machine ES (the redefining state machine) (see

clause 8.4.2 in [ITU-T Z.102]).

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the

common constraints and semantics see clause 7.4.

Subtypes: The following subtypes are specified for the <<StateMachine>> StateMachine:

• <<CompositeStateTypeDefinition>> StateMachine that represents a Composite-state-type-

definition.

• <<ProcedureDefinition>> StateMachine that represents a Procedure-graph.

8.16.1 Attributes

No additional attributes.

8.16.2 Constraints

[1] The isReentrant property shall be false.

[2] The ownedConnector shall be empty.

[3] If the redefinedClassifier is not empty, the redefining and the redefined StateMachine shall

each have the same ownedParameter list.

[4] The classifierBehavior shall be empty.

8.16.3 Semantics

A <<StateMachine>> StateMachine maps to a Composite-state-type-definition or a Procedure-graph.

If a StateMachine is stereotyped by <<ProcedureDefinition>> and the specification property is not

empty, the StateMachine maps to a Procedure-definition as specified in clause 8.8. If a StateMachine

is stereotyped by <<CompositeStateTypeDefinition>> and it does not have a specification, the

StateMachine maps to a Composite-state-type-definition as specified in clause 8.4.

8.16.4 References

SDL-2010 [ITU-T Z.101]:

 9.4 Procedure

SDL-2010 [ITU-T Z.102]:

 8.1.1.5 Composite state type

 8.1.3 Abstract type

UML-SS [OMG UML]:

 15.3.12 StateMachine (from BehaviorStateMachines)

8.17 StopNode

The stereotype StopNode is a subtype of the stereotype Pseudostate (see clause 8.10). The metamodel

diagram for the stereotype is defined in Figure 8-1.

A <<StopNode>> Pseudostate is used to represent a stop node in the SDL-2010 state transition graph.

8.17.1 Attributes

No additional attributes.

54 Rec. ITU-T Z.109 (10/2016)

8.17.2 Constraints

[1] The kind property of a <<StopNode>> Pseudostate shall have a value of terminate.

8.17.3 Semantics

A <<StopNode>> Pseudostate with kind terminate maps to a Stop-node.

8.17.4 References

SDL-2010 [ITU-T Z.101]:

 11.12.2.3 Stop

UML-SS [OMG UML]:

 15.3.8 Pseudostate (from BehaviorStateMachines)

 15.3.9 PseudostateKind (from BehaviorStateMachines)

8.18 Transition

The stereotype Transition extends the metaclass Transition with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 8-1.

A transition is the part of a state transition graph that defines what happens when the object goes from

one vertex in the graph to another vertex. Each vertex is usually a state, but may be a pseudostate.

Signals (including timer signals) timers are used to trigger transitions. Standard UML notation and

semantics are used.

8.18.1 Attributes

• priority: UnlimitedNatural [0..1]

 The priority determines the order of interpretation of a received signal.

• variableList: TypedElement [0..*] {ordered}

 Reference to owned attributes or parameters of a StateMachine used to store submitted

values of a received Event.

 NOTE – Omitted variables shall be represented by the "UndefinedVariable" element (see

clause 12.4).

8.18.2 Constraints

[1] The port of a Trigger that is the trigger property of a Transition shall at most refer to one Port.

[2] The event property of the trigger property of a <<Transition>> Transition shall be an

AnyReceiveEvent, SignalEvent, CallEvent or ChangeEvent.

 NOTE 1 – A SignalEvent is used to represents events for received signals or expired timers, which

are declared in terms of <<Timer>> Signal items.

[3] The effect property shall reference an Activity.

 NOTE 2 – There is a constraint on states that signals for each transition have to be distinct, so that a

given signal is not allowed to trigger more than one transition.

[4] The elements referenced by the variableList shall only be of kind Property, Parameter or

LiteralNull.

8.18.3 Semantics

A <<Transition>> Transition that is the outgoing property of a <<DecisionNode>> Pseudostate is

mapped as defined in clause 8.5.

NOTE 1 – In this clause the term 'trigger event of a <<Transition>> Transition' means the Event that is the

event property of the Trigger that is the trigger property of the Transition. The Event is a MessageEvent (an

AnyReceiveEvent, a SignalEvent, or a CallEvent) or ChangeEvent.

 Rec. ITU-T Z.109 (10/2016) 55

 Transformation of an asterisk input list

If the trigger event of a <<Transition>> Transition is an AnyReceiveEvent, the transition is expanded

as specified in clause 11.3 of [ITU-T Z.103] before applying any expansions or mappings below.

 Transformation of a remote procedure call

If the trigger event of a <<Transition>> Transition is a CallEvent, the transition is expanded as

specified in clause 10.5 of [ITU-T Z.102] before any expansions or mappings below.

 Mapping to a Spontaneous-transition

If the trigger event of a <<Transition>> Transition is a SignalEvent and the name of the Signal is

"none" or "NONE" (case sensitive therefore excludes "None", etc.), the Transition maps to a

Spontaneous-transition. The effect property maps to the Graph-node list of the Transition of the

Spontaneous-transition.

If a Transition that maps to a Spontaneous-transition is redefining another transition (the

redefinedTransition property is not empty), the redefining Transition specifies the Spontaneous-

transition.

NOTE 2 – A redefining transition that maps to a Spontanous-transition corresponds to a virtual continuous

signal in SDL-2010 (see clause 11.5 in [ITU-T Z.102]).

 Mapping to an Input-node

If the trigger event of a <<Transition>> Transition is a SignalEvent (a received signal or an expired

timer) and the name of the Signal is neither "none" nor "NONE" (so it does not map to Spontaneous-

transition), the Transition maps to an Input-node.

If present, the priority maps to the optional Priority-name of an Input-node.

The qualifiedName of the Signal maps to the Signal-identifier of the Input-node. The qualifiedName

of the port property of the trigger of a Transition maps to the optional Gate-identifier of the Input-

node.

The qualifiedName of each item in the variableList (by order) maps to a Variable-identifier of the

Input-node. The effect property maps to the Graph-node list of the Transition of the Input-node.

NOTE 3 – Because UML provides no concrete mechanisms for storing submitted values of received events,

the variableList property of a Transition is used for this purpose.

If a Transition that maps to an Input-node is redefining another transition (the redefinedTransition

property is not empty), the redefining Transition specifies the Input-node.

NOTE 4 – A redefining transition that maps to an Input-node corresponds to a virtual input (see clause 11.3 in

[ITU-T Z.102]) or virtual priority input (see clause 11.4 in [ITU-T Z.102]) in SDL-2010.

 Mapping to a Continuous-signal

If the trigger event of a <<Transition>> Transition is a ChangeEvent, the transition maps to a

Continuous-signal.

The changeExpression maps to the Continuous-expression of the Continuous-signal. The effect

property maps to the Graph-node list of the Transition of the Continuous-signal. The priority maps

to the Priority-name.

If the <<Transition>> Transition has an empty trigger property and a non-empty guard property, the

Transition maps to a Continuous-signal. The guard maps to the Continuous-expression of the

Continuous-signal. The effect property maps to the Graph-node list of the Transition of the

Continuous-signal. The priority maps to the Priority-name.

NOTE 5 – It is a consequence of the SDL-2010 semantics that in the Transition set defined by the outgoing

properties of a State, when evaluating the guard of each Continuous-signal (each Transition with only a guard

56 Rec. ITU-T Z.109 (10/2016)

and an empty trigger), an unevaluated guard of a Transition with a lowest priority attribute is evaluated before

any unevaluated guard of a Transition with a higher priority attribute.

If a Transition that maps to a Continuous-signal is redefining another transition (the

redefinedTransition property is not empty), the redefining Transition specifies the Continuous-signal.

NOTE 6 – A redefining transition that maps to a Continuous-signal corresponds to a virtual continuous signal

in SDL-2010 (see clause 11.5 in [ITU-T Z.102]).

 Mapping to a Connect-node

If the <<Transition>> Transition has an empty trigger property and an empty guard property, the

Transition maps to a Connect-node. The effect property maps to the Graph-node list of the Transition

of the Connect-node.

If the source of the Transition is a ConnectionPointReference, the qualifiedName of the exit property

Pseudostate of the ConnectionPointReference maps to State-exit-point-name. If the source is a State,

the State-exit-point-name is empty.

If a Transition that maps to a Connect-node is redefining another transition (the redefinedTransition

property is not empty), the redefining Transition specifies the Connect-node.

NOTE 7 – A redefining transition that maps to a Connect-node corresponds to a virtual connect in SDL-2010

(see clause 11.11.4 in [ITU-T Z.102]).

 Mapping to a Decision-node

If a <<Transition>> Transition has a non-empty trigger property and non-empty guard property and

is not the outgoing property of a <<DecisionNode>> Pseudostate, the guard maps to the Transition

as follows:

• A Decision-node is inserted first in the Transition with a Decision-answer with a Boolean

Range-condition that is the Constant-expression true and another Decision-answer for false.

• The specification property of the guard property of the Transition maps to Decision-question

of the Decision-node.

• The false Decision-answer has a Transition that is a Dash-nextstate without HISTORY.

• The effect property of the Transition maps to the Graph-node list of the Transition of the true

Decision-answer.

NOTE 8 – The mapping to a Decision-node instead of mapping to an enabling condition (a Provided-

expression) makes it possible to access the signal parameters from the expression in the guard and also means

that the signal is consumed even if guard is false, whereas if an enabling condition is false the signal is not

consumed.

NOTE 9 – The mapping to a Decision-node works because entry/exit actions are not allowed on states. If such

actions were allowed, the exit and entry actions of the states would be incorrectly invoked even when taking

the false branch through the decision.

 Mappings of the target property

A target property that is a State maps to a Terminator of the Transition (mapped from the effect)

where this Terminator is a Nextstate-node that is a Named-nextstate without Nextstate-parameters,

and where the qualifiedName of the State maps to the State-name of the Named-nextstate.

A target property that is a ConnectionPointReference maps to a Terminator of the Transition (mapped

from the effect) where this Terminator is a Nextstate-node that is a Named-nextstate with Nextstate-

parameters, and where the qualifiedName of the state property of the ConnectionPointReference

maps to the State-name of the Named-nextstate, and the qualifiedName of the entry property

Pseudostate of the ConnectionPointReference maps to State-entry-point-name of the Nextstate-

parameters.

 Rec. ITU-T Z.109 (10/2016) 57

A target property that is a Pseudostate maps to the last item of the Transition (a Terminator or

Decision-node) as defined in clause 8.10.

8.18.4 References

SDL-2010 [ITU-T Z.102]:

 8.4.3 Virtual transition/save

 10.5 Remote procedure

 11.3 Input

 11.4 Priority Input

 11.5 Continuous signal

 11.8 Spontaneous transition

 11.11.4 Connect

SDL-2010 [ITU-T Z.103]:

 11.2 State

 11.3 Input

UML-SS [OMG UML]:

 13.3.25 SignalEvent (from Communications)

 13.3.31 Trigger (from Communications)

 15.3.1 ConnectionPointReference (from BehaviorStateMachines)

 15.3.14 Transition (from BehaviorStateMachines)

9 Actions and activities

An activity is used to describe how the model behaves, for example, the control flow of actions in an

operation body or a transition. When invoked, each action takes zero or more inputs, usually modifies

the state of the system in some way such as a change of the values of an instance, and produces zero

or more outputs. The values that are used by an action are described by value specifications (see

clause 10), obtained from the output of actions or in ways specific to the action.

The following packages from UML are included either explicitly or because elements of the packages

are generalizations that are specialized as the elements that are used:

– BasicActions

– BasicActivities

– BasicBehaviors

– CompleteActivities

– CompleteStructuredActivities

– FundamentalActivities

– IntermediateActivities

– IntermediateActions

– Kernel

– StructuredActions

– StructuredActivities.

The following metaclasses from UML are included:

58 Rec. ITU-T Z.109 (10/2016)

– Activity

– ActivityFinalNode

– CallOperationAction

– CreateObjectAction

– ConditionalNode

– LoopNode

– OpaqueAction

– SendSignalAction

– SequenceNode.

9.1 Action and activity metamodel diagrams

Z.109(13)_F9-1

«Metaclass»

Activity

«Metaclass»

SequenceNode

«Metaclass»
ConditionalNode

«Metaclass»

LoopNode

{required} {required}

{required}

{required}

«stereotype»

Activity

«stereotype»

SequenceNode

«stereotype»
ConditionalNode

«stereotype»

LoopNode

+stepGraphPart

+finalizationNode

{ordered} 0..*

0..1

«Metaclass»

ExecutableNode

«Metaclass»
ActivityFinalNode

«stereotype»
Stop

«stereotype»
Return

+value

+decisionQuestion

0..1

«Metaclass»

SdlExpression

«Metaclass»

SdlExpression

Figure 9-1 – Activity stereotypes

 Rec. ITU-T Z.109 (10/2016) 59

Z.109(13)_F9-2

«Metaclass»

ValueSpecificationAction

«Metaclass»
OpaqueAction

«Metaclass»

CreateObjectAction

{required} {required}

{required}

«stereotype»

ExpressionAction

«stereotype»
Break

«stereotype»

CreateObjectAction
+actualParameterList

{ordered} 0..*

«Metaclass»
SendSignalAction

«stereotype»
AssignValueAction

«stereotype»
SetAction

+timeExpression

+value

«Metaclass»
SdlExpression

«Metaclass»

SdlExpression

+isThis : Boolean = false

«stereotype»
ResetAction

+signalPriority :
+activationDelay :

SdlExpression [0..1]
sdlExpression [0.. 1]

«Metaclass»

SdlExpression

«stereotype»
Continue

«stereotype»
SendSignalAction

+variable : TypedElement

«Metaclass»
CallOperationAction

«stereotype»
CallOperationAction

+connect

+variableList

0..1

{ordered} 0..*

«Metaclass»

NamedElement

«Metaclass»
Property

«Metaclass»
Signal

+timer

0..1

Figure 9-2 – Action stereotypes

«Metaclass»

Variable

{required}

«stereotype»

Variable
+defaultValue

0..1

«Metaclass»

SdlExpression

+aggregation : AggregationKind = none
Z.109(13)_F9-3

Figure 9-3 – Auxiliary stereotypes

9.2 Activity

The stereotype Activity extends the metaclass Activity with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 9-1.

An activity defines the effect of a transition or the body of an operation of a data type definition.

60 Rec. ITU-T Z.109 (10/2016)

9.2.1 Attributes

No additional attributes.

9.2.2 Constraints

[1] Each node of an <<Activity>> Activity shall be an Action or a StructuredActivityNode that

is defined in this profile.

[2] The variable property of an <<Activity>> Activity shall be empty.

[3] The redefinedClassifier and general properties shall be empty.

 NOTE 1 – Neither a procedure graph nor the graph node list of a transition in SDL-2010 is

redefinable.

[4] The redefinedElement property of each node and edge of an <<Activity>> Activity shall be

empty.

[5] The isAbstract property shall be false.

[6] The ownedPort and ownedConnector properties shall be empty.

If an <<Activity>> Activity maps to the Graph-node list of a Transition:

[7] The ownedAttribute and variable properties shall be empty.

[8] The nestedClassifier property shall be empty.

If an <<Activity>> Activity maps to the Procedure-graph of a Procedure-definition:

[9] A nestedClassifer shall be a <<DataTypeDefinition>> Class (including its subtypes).

[10] The specification property shall be an <<Operation>> Operation.

9.2.3 Semantics

 Mapping to a Graph-node

An <<Activity>> Activity that is the effect of a Transition maps to the Graph-node list of the

Transition for the effect. Each node of the Activity maps to an item in the Graph-node list of the

Transition.

 Mapping to a Procedure-definition

An <<Activity>> Activity that has a specification (that is, the Activity is the method of an Operation)

maps to a Procedure-graph containing only a Procedure-start-node consisting of a Transition. Each

Action or ActivityNode of an Activity maps to the Graph-node list of the Transition.

An ownedAttribute maps to a Variable-definition in the Variable-definition-set of the Procedure-

definition (see clause 7.13).

A nestedClassifier that is a <<DataTypeDefinition>> Class maps to a Value-data-type-definition that

is an element of the Data-type-definition-set of the Procedure-definition.

A nestedClassifier that is an Interface maps to an Interface-definition that is an element of the Data-

type-definition-set of the Procedure-definition.

In addition, the mapping rules specified in point [8] above and clause 7.11.3 apply.

9.2.4 References

SDL-2010 [ITU-T Z.101]:

 11.12 Transition

UML-SS [OMG UML]:

 12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,

StructuredActivities)

 Rec. ITU-T Z.109 (10/2016) 61

9.3 AssignValueAction

The stereotype AssignValueAction extends the metaclass OpaqueAction with multiplicity [0..1]. The

metamodel diagram for the stereotype is defined in Figure 9-2.

An <<AssignValueAction>> OpaqueAction is used to specify a value assignment to local variables

of compound statements, attributes of active classes or parameters of operations.

9.3.1 Attributes

• variable: TypedElement

 variable, attribute or parameter that is the target for the value assignment.

• value: SdlExpression

 the value specification to be used for the assignment.

9.3.2 Constraints

[1] The variable property shall be a Variable, Property or Parameter.

[2] If the variable property is a Parameter, it shall not have a direction kind of in.

[3] The type of the value and of the variable property shall refer to a <<DataTypeDefinition>>

Class (which includes its subtypes) or <<Interface>> Interface.

[4] The type of the value and type of the variable shall be compatible.

9.3.3 Semantics

An <<AssignValueAction>> OpaqueAction maps to an Assignment.

The value property maps to the Expression of the Assignment and the qualifiedName of the variable

property maps to the Variable-identifier.

NOTE – In a notation for SDL-UML that supports extended variables, they are transformed as specified in

clause 12.3.3.1 of [ITU-T Z.101] before the mapping to an Assignment.

9.3.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.3 Assignment

UML-SS [OMG UML]:

 11.3.26 OpaqueAction (from BasicActions)

9.4 Break

The stereotype Break extends the metaclass OpaqueAction with multiplicity [0..1]. The metamodel

diagram for the stereotype is defined in Figure 9-2.

A <<Break>> OpaqueAction represents a break action that causes termination of an enclosing

statement labelled by the name given. The enclosing statement is a loop node, a sequence node or a

conditional node. A break action causes interpretation to be transferred to the point following the

enclosing node with the matching connector name.

9.4.1 Attributes

No additional attributes.

9.4.2 Constraints

[1] A <<Break>> OpaqueAction shall have an empty input property.

[2] A <<Break>> OpaqueAction shall only be used inside of a LoopNode, ConditionalNode or

SequenceNode that has a name that is the same as the name of the <<Break>> OpaqueAction.

62 Rec. ITU-T Z.109 (10/2016)

 NOTE – According to this constraint, the specification of a <<Break>> OpaqueAction is allowed

within a nested StructuredActivityNode that is enclosed by a <<LoopNode>> LoopNode.

9.4.3 Semantics

A <<Break>> OpaqueAction maps to a Break-node and its name property maps to the Connector-

name.

9.4.4 References

SDL-2010 [ITU-T Z.101]:

 11.10 Label (connector name)

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

UML-SS [OMG UML]:

 11.3.26 OpaqueAction (from BasicActions)

9.5 CallOperationAction

The stereotype CallOperationAction extends the metaclass CallOperationAction with multiplicity

[1..1]. The metamodel diagram for the stereotype is defined in Figure 9-2.

Depending on the context, a call operation action maps to the call of a procedure (Call-node) in the

SDL-2010 abstract grammar or it is transformed to an implicit exchange of signals (remote procedure

invocation). For the description in this clause, the following terminology is used:

• The operation-owner is the <<ActiveClass>> Class that has (as an ownedOperation property)

the Operation identified by the operation property of the <<CallOperationAction>>

CallOperationAction.

• The active-container is the closest containing <<ActiveClass>> Class of the

CallOperationAction.

9.5.1 Attributes

• timer: Signal [0..1]

 A reference to the timer that shall be monitored for expiry.

• variableList: TypedElement [0..*] {ordered}

 References to the variables that shall receive values of the timer signal.

• connect: NamedElement [0..1]

 An optional reference to a labelled element that specifies where interpretation shall

continue when the timer expires before the remote procedure call is finished.

9.5.2 Constraints

[1] The target property shall be a ValuePin.

[2] If the CallOperationAction maps to a Call-node, the target, the onPort, the timer, the

variableList and the connect properties shall be empty.

[3] If the CallOperationAction does not map to a Call-node, the value of the target property shall

be an SdlExpression that conforms to the type of Predefined::Pid.

[4] If not empty, the argument list shall only contain ValuePin elements with a value property

that is of kind SdlExpression.

[5] If not empty, the number of elements in the argument list shall be equal to the number of

ownedParameters of the associated operation.

 Rec. ITU-T Z.109 (10/2016) 63

[6] If the argument list is not empty, the type of each value, which is not of kind Undefined, shall

be type compatible by order with its corresponding ownedParameter of the associated

operation.

9.5.3 Semantics

 Mapping to a Call-node

A <<CallOperationAction>> CallOperationAction maps to a Call-node if the active-container is the

same as the operation-owner or is a generalization of the operation-owner.

For mapping to a Call-node, the qualifiedName of the operation property maps to the Procedure-

identifier of the Call-node. The argument property list maps to the Actual-parameters list of the Call-

node.

 Mapping to a remote procedure call

If the criteria for mapping to a Call-node are not satisfied, the <<CallOperationAction>>

CallOperationAction is transformed to a signal exchange as specified in clause 10.5 of [ITU-T Z.102]

for a remote procedure call, including transformation of the optional timer, variableList and connect

properties.

9.5.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.3 Procedure call

SDL-2010 [ITU-T Z.102]:

 10.5 Remote procedure

 11.13.3 Procedure call

UML-SS [OMG UML]:

 11.3.10 CallOperationAction (from BasicActions)

9.6 ConditionalNode

The stereotype ConditionalNode extends the metaclass ConditionalNode with multiplicity [1..1]. The

metamodel diagram for the stereotype is defined in Figure 9-1.

A <<ConditionalNode>> ConditionalNode is used to define textual switch statements and maps to a

Decision-node in SDL-2010. A Pseudostate with kind choice also maps to a Decision-node.

9.6.1 Attributes

• decisionQuestion: SdlExpression

 An expression that defines the question for a ConditionalNode.

9.6.2 Constraints

[1] Each item in the body of each Clause shall be an Action or a StructuredActivityNode that is

defined in this profile.

[2] Each Clause of a <<ConditionalNode>> ConditionalNode shall have a test part that is an

<<ExpressionAction>> ValueSpecificationAction representing an SDL-2010 range

condition.

[3] A <<ConditionalNode>> ConditionalNode shall have at most one "else" Clause.

 NOTE 1 – It is assumed that the <<ExpressionAction>> ValueSpecificationAction of the test part

always returns true.

64 Rec. ITU-T Z.109 (10/2016)

[4] For every Clause except the "else" Clause, the predecessorClause set shall be empty, so that

there is no requirement that any Clause is evaluated before any other Clause (except the "else"

Clause).

[5] The predecessorClause set for an "else" Clause shall include every other Clause, so that they

all have to be evaluated before the "else" Clause.

[6] For every Clause except the "else" Clause, the successorClause set shall contain only the

"else" Clause if there is one; otherwise the successorClause set shall be empty, because the

order of evaluation is never enforced in SDL-2010.

[7] The successorClause set of the "else" Clause shall be empty.

 NOTE 2 – The "else" Clause is a Clause that is a successor to all others and whose test part always

returns true, so that it is only invoked if all others are false (see UML-SS 12.3.18 ConditionalNode).

[8] The isAssured property shall be true. Therefore either there shall be an "else" Clause, or there

shall be at least one test that succeeds.

[9] The variable property shall be empty.

 NOTE 3 – For a SDL-2010 Decision-node it is not possible to specify local variable definitions.

9.6.3 Semantics

A <<ConditionalNode>> ConditionalNode maps to a Decision-node. The decisionQuestion property

maps to the common Decision-question. The Clause set (excluding the "else" Clause) defines the

Decision-answer-set of the Decision-body. The test of each Clause is an <<ExpressionAction>>

ValueSpecificationAction that maps to the Range-condition (see clause 9.11) in each Decision-

answer. The body of the Clause maps to Transition in the corresponding Decision-answer. The "else"

Clause (if present) defines the Else-answer; otherwise there is no Else-answer.

NOTE – The decider property of a Clause, owned by an <<ConditionalNode>> ConditionalNode, references

the same OutputPin as the output property of the <<ExpressionAction>> ValueSpecificationAction used as

the test of that Clause.

9.6.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.5 Decision

UML-SS [OMG UML]:

 12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities)

 12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities)

9.7 Continue

The stereotype Continue extends the metaclass OpaqueAction with multiplicity [0..1]. The

metamodel diagram for the stereotype is defined in Figure 9-2.

A <<Continue>> OpaqueAction represents a continue action within a loop that causes a jump to the

next iteration of the loop or termination of the loop if already in the last iteration.

9.7.1 Attributes

No additional attributes.

9.7.2 Constraints

[1] A <<Continue>> OpaqueAction shall have an empty input property.

[2] A <<Continue>> OpaqueAction shall only be used inside of a LoopNode that has a name

with a value equal to the name of the <<Continue>> OpaqueAction.

 Rec. ITU-T Z.109 (10/2016) 65

 NOTE – According to this constraint, specification of a <<Continue>> OpaqueAction is allowed

within a nested StructuredActivityNode that is enclosed by a <<LoopNode>> LoopNode.

9.7.3 Semantics

A <<Continue>> OpaqueAction maps to a Continue-node and its name property maps to the

Connector-name.

9.7.4 References

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

UML-SS [OMG UML]:

 11.3.26 OpaqueAction (from BasicActions)

9.8 CreateObjectAction

The stereotype CreateObjectAction extends the metaclass CreateObjectAction with

multiplicity [1..1]. The metamodel diagram for the stereotype is defined in Figure 9-2.

A create object action is used to create instances of agents.

9.8.1 Attributes

• actualParameterList: SdlExpression [0..*] {ordered}

 The list of expressions representing the actual parameters of the agent to be created.

• isThis: Boolean

 if true, an instance of the enclosing active class is created. Default value is false.

9.8.2 Constraints

[1] The classifier property shall refer to an <<ActiveClass>> Class.

[2] If isThis is true, the classifier shall refer to the enclosing <<ActiveClass>> Class.

9.8.3 Semantics

The <<CreateObjectAction>> CreateObjectAction maps to a Create-request-node. If the isThis

property is empty, the classifier maps to the Agent-identifier. Otherwise, the THIS element is present

in the Create-request-node. Each SdlExpression in actualParameterList maps to an Expression of the

Actual-parameters list.

NOTE – According to the semantics of SDL-2010 for a Create-request-note (see clause 11.13.2 of

[ITU-T Z.101]), the Pid value for a created agent is stored in its 'self' variable and in the 'offspring' variable

of the creating agent. A variable access expression is used to retrieve the Pid value of the 'offspring' variable,

for instance, in order to send a signal to a newly created agent.

9.8.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.2 Create

UML-SS [OMG UML]:

 11.3.16 CreateObjectAction (from IntermediateActions)

9.9 ExpressionAction

The stereotype ExpressionAction extends the metaclass ValueSpecificationAction with

multiplicity [1..1]. The metamodel diagram for the stereotype is defined in Figure 9-2.

66 Rec. ITU-T Z.109 (10/2016)

An <<ExpressionAction>> ValueSpecificationAction represents an action that only contains an

expression. This is a utility to simplify the modeling of a <<ConditionalNode>> ConditionalNode or

<<LoopNode>> LoopNode.

9.9.1 Attributes

No additional attributes.

9.9.2 Constraints

[1] The value property of an <<ExpressionAction>> shall be a RangeCondition or an

SdlExpression.

 NOTE – The result property of an <<ExpressionAction>> ValueSpecificationAction is only used to

be compliant with the UML-SS in the context of a <<ConditionalNode>> ConditionalNode.

9.9.3 Semantics

If an <<ExpressionAction>> ValueSpecificationAction is used in the context of an

<<ConditionalNode>> ConditionalNode, it maps to a Range-condition (see clause 9.8). Otherwise,

if an <<ExpressionAction>> ValueSpecificationAction is used in the context of a <<LoopNode>>

LoopNode, it maps to an Expression (see see clause 9.12).

9.9.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.1 Expressions and expressions as actual parameters

UML-SS [OMG UML]:

 11.3.52 ValueSpecificationAction (from IntermediateActions)

9.10 LoopNode

The stereotype LoopNode extends the metaclass LoopNode with multiplicity [1..1]. The metamodel

diagram for the stereotype is defined in Figure 9-1.

A LoopNode represents a Compound-node in the SDL-2010 abstract syntax. It is equivalent to loop

constructs (such as "for" or "while") of traditional programming languages.

9.10.1 Attributes

• stepGraphPart: ExecutableNode [0..*] {ordered}

 The ExecutableNode items to be execute after the body of the loop, normally to carry out

such actions as stepping the loop variables.

• finalizationNode: ExecutableNode [0..1]

 an optional ExecutableNode to be execute if one of the checks contained in the test part

fails.

9.10.2 Constraints

[1] A LoopNode shall have a name.

[2] The isTestedFirst attribute shall be true.

[3] Each item in the bodyPart shall be an Action or a StructuredActivityNode that is defined in

this profile.

[4] The test part shall only consist of <<ExpressionAction>> ValueSpecificationAction items

that represent an expression of the Predefined::Boolean type.

[5] The result property shall be empty.

[6] The bodyOutput property shall be empty.

 Rec. ITU-T Z.109 (10/2016) 67

[7] The loopVariableInput property shall be empty.

[8] Each item in the setupPart shall be an AssignValueAction node (to initialize variables

including loop variables).

[9] The stepGraphPart shall only contain AssignValueAction actions or CallOperationAction

actions.

9.10.3 Semantics

A LoopNode maps to a Compound-node. The name of the LoopNode maps to the Connector-name

of the Compound-node.

The variable property maps to the Variable-definition-set of the Compound-node (see clause 9.21).

The setupPart maps to the Init-graph-node list of the Compound-node, defining the initialization of

the loop.

Each <<ExpressionAction>> ValueSpecificationAction contained in the test part maps to an

Expression of the While-graph-node.

The bodyPart maps to the Transition of the Compound-node.

If present, the ExecutableNode items of the stepGraphPart map to the Step-graph-node list.

If present, the ExecutableNode of the finalizationNode property maps to the Finalization-node

element of the While-graph-node.

9.10.4 References

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

UML-SS [OMG UML]:

 12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities)

9.11 ResetAction

The stereotype ResetAction extends the metaclass SendSignalAction with multiplicity [0..1]. The

metamodel diagram for the stereotype is defined in Figure 9-2.

A timer is cancelled with a reset action represented by a ResetAction stereotype. The reset action

cancels a timer and removes any corresponding timer signals that are queued for the agent instance

executing the timer.

9.11.1 Attributes

No additional attributes.

9.11.2 Constraints

[1] The signal property shall refer to a <<Timer>> Signal.

[2] The onPort property shall be empty.

[3] If not empty, the argument list shall only contain ValuePin elements with a value property

that is of kind SdlExpression.

[4] If argument list is not empty, the number of ownedAttribute items of the referenced signal

shall be equal to the number of argument items of the <<ResetAction>> SendSignalAction.

[5] If argument list is not empty, the type of each argument shall be the same as the type of the

corresponding ownedAttribute of the referenced signal.

[6] If present, the argument list shall not contain a value that is of kind Undefined.

68 Rec. ITU-T Z.109 (10/2016)

 NOTE – In SDL-2010, the optional expression list of a reset clause cannot contain omitted values.

9.11.3 Semantics

A <<ResetAction>> SendSignalAction maps to a Reset-node. The signal maps to the Timer-Identifier

and the argument list maps to the Expression list.

9.11.4 References

SDL-2010 [ITU-T Z.101]:

 11.15 Timer

UML-SS [OMG UML]:

 11.3.45 SendSignalAction (from BasicActions)

9.12 Return

The stereotype Return extends the metaclass ActivityFinalNode with multiplicity [0..1]. The

metamodel diagram for the stereotype is defined in Figure 9-1.

A <<Return>> ActivityFinalNode represents the action to return from a procedure (in the SDL-2010

abstract grammar) to the point where the procedure was called.

9.12.1 Attributes

• value: SdlExpression [0..1]

 An expression that represents the return value of the operation.

9.12.2 Constraints

[1] The <<Return>> ActivityFinalNode shall be part of an <<Activity>> Activity that is used to

define the behaviour associated with an <<Operation>> Operation.

[2] The value shall be empty if the <<Operation>> Operation does not return a value. Otherwise,

the value shall match the return type of the <<Operation>> Operation.

9.12.3 Semantics

A <<Return>> ActivityFinalNode maps to an Action-return-node if the value property is empty,

otherwise to a Value-return-node. If it maps to a Value-return-node, the value property defines the

Expression in the Value-return-node.

9.12.4 References

SDL-2010 [ITU-T Z.101]:

 11.12.2.4 Return

UML-SS [OMG UML]:

 12.3.6 ActivityFinalNode (from BasicActivities, IntermediateActivities)

9.13 SequenceNode

The stereotype SequenceNode extends the metaclass SequenceNode with multiplicity [1..1]. The

metamodel diagram for the stereotype is defined in Figure 9-1.

A sequence node is a sequence of actions and describes the body of a compound node.

9.13.1 Attributes

No additional attributes.

 Rec. ITU-T Z.109 (10/2016) 69

9.13.2 Constraints

[1] Each executableNode of a SequenceNode shall be an Action or a StructuredActivityNode

that is defined in this profile.

9.13.3 Semantics

 Mapping to a Compound-node

A <<SequenceNode>> SequenceNode maps to a Compound-node.

The name of the <<SequenceNode>> SequenceNode defines the Connector-name of the Compound-

node.

The variable definitions contained in the variable property of the SequenceNode map to the Variable-

definition-set of the Compound-node (see clause 9.21).

The actions contained in the executableNode property of the SequenceNode map to the various

Graph-nodes in the Transition that are contained in the Compound-node.

9.13.4 References

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

UML-SS [OMG UML]:

 12.3.47 SequenceNode (from StructuredActivities)

9.14 SendSignalAction

The stereotype SendSignalAction extends the metaclass SendSignalAction with multiplicity [0..1].

The metamodel diagram for the stereotype is defined in Figure 9-2.

A send signal action outputs a signal from the executing agent, optionally specifying the target agent

and the port used to send the signal.

9.14.1 Attributes

• signalPriority: SdlExpression [0..1]

 a Predefined::Natural expression that specifies the priority of the signal to be send.

• activationDelay: SdlExpression [0..1]

 a Predefined::Duration expression that determines the time after which the signal is

 made available in the input port of the destination.

9.14.2 Constraints

[1] The target property shall reference a ValuePin.

[2] The value of the target property shall consist of a ValueSpecification that represents a type

that conforms to the type Predefined::Pid.

[3] The onPort property shall reference a Port of the container <<ActiveClass>> Class of the

<<SendSignalAction>> SendSignalAction.

[4] If present, the type of the signalPriority property shall be Predefined::Natural.

[5] If present, the type of the activationDelay property shall be Predefined::Duration.

[6] If not empty, the argument list shall only contain ValuePin elements with a value property

that is of kind SdlExpression.

[7] If not empty, the argument list shall only contain ValuePin elements with a value property

that is of kind SdlExpression.

70 Rec. ITU-T Z.109 (10/2016)

[8] If not empty, the number of elements in the argument list shall be equal to the number of

owned Attributes of the associated signal.

[9] If the argument list is not empty, the type of each value, which is not of kind Undefined, shall

be type compatible by order with its corresponding ownedAttribute of the associated signal.

9.14.3 Semantics

A <<SendSignalAction>> SendSignalAction maps to an Output-node. The qualifiedName of signal

property maps to the Signal-identifier. The target property maps to the Signal-destination. The onPort

property maps to the Direct-via. The argument property maps to the Actual-parameters list.

The signalPriority property maps to the Signal-priority of an Output-node. If signalPriority is omitted,

the Signal-priority is zero.

The activationDelay property maps to the Activation-delay of an Output-node. If activationDelay is

omitted, the Activation-delay is zero.

9.14.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.4 Output

UML-SS [OMG UML]:

 11.3.45 SendSignalAction (from BasicActions)

9.15 SetAction

The stereotype SetAction extends the metaclass SendSignalAction with multiplicity [0..1]. The

metamodel diagram for the stereotype is defined in Figure 9-2.

The set action gives a timer an expiry time.

9.15.1 Attributes

• timeExpression: SdlExpression

 The time when the timer will expire.

9.15.2 Constraints

[1] The signal property shall refer to a <<Timer>> Signal.

[2] The onPort property shall be empty.

[3] If not empty, the argument list shall only contain ValuePin elements with a value property

that is of kind SdlExpression.

[4] If argument list is not empty, the number of ownedAttribute items of the referenced signal

shall be equal to the number of argument items of the <<SetAction>> SendSignalAction.

[5] If argument list is not empty, the type of each argument shall be the same as the type of the

corresponding ownedAttribute of the referenced signal.

[6] If present, the argument list shall not contain a value that is of kind Undefined.

 NOTE – In SDL-2010, the optional expression list of a reset clause cannot contain omitted values.

[7] The type property of the timeExpression shall refer to the type Predefined::Time.

9.15.3 Semantics

A <<SetAction>> SendSignalAction maps to a Set-node. The signal maps to the Timer-Identifier.

The argument list maps to the Expression list and timeExpression maps to Time-expression.

 Rec. ITU-T Z.109 (10/2016) 71

9.15.4 References

SDL-2010 [ITU-T Z.101]:

 11.15 Timer

UML-SS [OMG UML]:

 11.3.45 SendSignalAction (from BasicActions)

9.16 Stop

The stereotype Stop extends the metaclass ActivityFinalNode with multiplicity [0..1]. The metamodel

diagram for the stereotype is defined in Figure 9-1.

A stop represents the action to terminate the enclosing <<ActiveClass>> Class instance (the enclosing

agent).

9.16.1 Attributes

No additional attributes.

9.16.2 Constraints

No additional constraints.

9.16.3 Semantics

A <<Stop>> ActivityFinalNode maps to a Stop-node.

9.16.4 References

SDL-2010 [ITU-T Z.101]:

 11.12.2.3 Stop

UML-SS [OMG UML]:

 12.3.6 ActivityFinalNode (from BasicActivities, IntermediateActivities)

9.17 Variable

The stereotype Variable extends the metaclass Variable with a multiplicity of [1]. The metamodel

diagram for the stereotype is defined in Figure 9-3.

A Variable represents an SDL-2010 local variable definition within a loop or compound statement,

which is only locally accessible. In SDL-UML, a Variable is usable only in the context of a LoopNode

(see clause 9.12) or SequenceNode (see clause 9.16).

NOTE 1 – The stereotype Variable introduces the missing attribute aggregation, which is not supported by the

UML metaclass Variable.

NOTE 2 – In contrast to the Property stereotype, the Variable stereotype cannot be used to specify SDL-2010

synonyms because this stereotype represents only local variable definitions (see clause 11.14.1 in

[ITU-T Z.102]).

9.17.1 Attributes

• aggregation: AggregationKind [1]

 The aggregation kind of the variable. The default value is none.

• defaultValue: SdlExpression [0..1]

 a constant expression that defines the optional default initialization of a data type

definition.

72 Rec. ITU-T Z.109 (10/2016)

9.17.2 Constraints

[1] The type shall be a <<DataTypeDefinition>> Class or an <<Interface>> Interface.

[2] If the upperValue is omitted, the lowerValue shall also be omitted.

[3] If the upperValue is included, the lowerValue shall also be included.

 NOTE 1 – The upper and lower bounds of multiplicity are optional in UML-SS.

[4] If the upperValue value is greater than 1 and isOrdered is true, isUnique shall be false.

 NOTE 2 – That is because there is not a predefined SDL-2010 data type that is ordered and requires

each of its elements to have unique values.

[5] The aggregation of a Variable shall not be of kind shared.

9.17.3 Semantics

A <<Variable>> Variable maps to Variable-definition. The aggregation property maps to the

Aggregation-kind of a Variable-definition. If the aggregation is of AggregationKind none, the

Aggregation-kind is REF; otherwise, if the aggregation is of kind composite, the Aggregation-kind

is PART.

NOTE – The aggregation kind 'PART' is a feature of Basic SDL-2010 (see clause 12.3.1 of [ITU-T Z.101]),

whereas the aggregation kind 'REF' is introduced in [ITU-T Z.107] in order to support object-oriented data.

The name defines the Variable-name. The Sort-reference-identifier is the Sort-identifier of the sort

derived from the type property. The Sort-identifier is determined as specified in clause 7.13.

The optional defaultValue maps to the Default-initialization of a Value-data-type-definition.

9.17.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.1 Variable definition

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

SDL-2010 [ITU-T Z.107]:

 12.3.1 Variable definition

UML-SS [OMG UML]:

 12.3.52 Variable (from StructuredActivities)

10 ValueSpecification

A value specification in SDL-UML is specified as a non-terminal expression or a literal value. An

expression is a node in an expression tree that has a number (possibly zero) of operands that

themselves specify values and therefore is expressions or literals. A value is represented textually and

the syntax shall be a textual notation based on the concrete syntax of SDL-2010 or a notation provided

by a tool supplier. Consequently, the components of an expression in SDL-UML usually have a

one-to-one correspondence with respective SDL-2010 abstract syntax items that would result from

analysing the text as SDL-2010.

In contrast to other parts of SDL-UML, value specification items are defined in terms of metaclasses

that are direct or indirect subtypes of the UML ValueSpecification metaclass.

 Rec. ITU-T Z.109 (10/2016) 73

10.1 ValueSpecification metamodel diagrams

«Metaclass»

ImperativeExpression

Z.109(13)_F10-1

«Metaclass»
LiteralValue

«Metaclass»
SdlExpression

«Metaclass»
VariableAccess

+value : String

+isConstant : Boolean

+variable : TypedElement

«Metaclass»

ValueSpecification

«Metaclass»

TypedElement
«Metaclass»

PackageableElement

Figure 10-1 – SdlExpression

Z.109(13)_F10-2

«Metaclass»

EqualityExpression

+isNegativeExpression : Boolean = false

«Metaclass»

SdlExpression

+secondOperand+firstOperand

{subsets ownedElement}{subsets ownedElement}

Figure 10-2 – EqualityExpression

Z.109(13)_F10-3

«Metaclass»

ValueReturningCallNode

+isThis : Boolean = false

«Metaclass»

SdlExpression

+operationIdentifier

+actualParameterList

{subsets ownedElement} 0..*

«Metaclass»
Operation

Figure 10-3 – ValueReturningCallNode

Z.109(13)_F10-4

«Metaclass»

OperationApplication

«Metaclass»

SdlExpression

+operationIdentifier

+actualParameterList

{subsets ownedElement} 0..*

«Metaclass»

Operation

Figure 10-4 – OperationApplication

74 Rec. ITU-T Z.109 (10/2016)

Z.109(13)_F10-5

«Metaclass»

RangeCheckExpression

«Metaclass»

SdlExpression

+parentSortIdentifier

+rangeCondition

+expression

{subsets ownedElement}

«Metaclass»

Classifier

«Metaclass»

RangeCondition{subsets ownedElement}

Figure 10-5 – RangeCheckExpression

Z.109(13)_F10-6

«Metaclass»

TypeCheckExpression

«Metaclass»

SdlExpression

+parentSortIdentifier

+expression

{subsets ownedElement}

«Metaclass»

Class

Figure 10-6 – TypeCheckExpression

Z.109(13)_F10-7

«Metaclass»

TypeCoercion

«Metaclass»

SdlExpression

+sortReferenceIdentifier

+expression

{subsets ownedElement}

«Metaclass»

Class

Figure 10-7 – TypeCoercion

Z.109(13)_F10-8

«Metaclass»
ConditionalExpression

«Metaclass»

SdlExpression
+alternativeExpression

+consequenceExpression

{subsets ownedElement}

{subsets ownedElement}
+booleanExpression

{subsets ownedElement}

Figure 10-8 – ConditionalExpression

Z.109(13)_F10-9

«Metaclass»

PidExpression

«Metaclass»

ImperativeExpression

+expressionKind : PidExpressionKind

«Metaclass»

AnyExpression

«Metaclass»

StateExpression

«Metaclass»

NowExpression

«enumeration»

PidExpressionKind

self

parent
offspring

sender

Figure 10-9 – ImperativeExpression

 Rec. ITU-T Z.109 (10/2016) 75

Z.109(13)_F10-10

«Metaclass»

Signal

«Metaclass»

SdlExpression

+expression+expression

«Metaclass»

TimerRemainingDuration

«Metaclass»

TimerActiveExpression

0..* {subsets ownedElement, ordered}{subsets ownedElement, ordered} 0..*

+timerIdentifier+timerIdentifier

«Metaclass»

ImperativeExpression
«Metaclass»

ImperativeExpression

Figure 10-10 – TimerExpression

Z.109(13)_F10-11

«Metaclass»

ActiveAgentsExpression

+isThis : Boolean = false

«Metaclass»

ImperativeExpression

+agentIdentifier «Metaclass»
Property0..1

Figure 10-11 – ActiveAgentsExpression

Z.109(13)_F10-12

«Metaclass»

ValueSpecification

«Metaclass»
ConditionItem

«Metaclass»

RangeCondition

+conditionItemSet

0..* {subsets ownedElement, ordered}

Figure 10-12 – RangeCondition

Z.109(13)_F10-13

«Metaclass»

OpenRange

«Metaclass»

ConditionItem

+constantExpression+operationIdentifier «Metaclass»

SdlExpression
«Metaclass»

Operation {subsets ownedElement}

Figure 10-13 – OpenRange

Z.109(13)_F10-14

«Metaclass»

ClosedRange

«Metaclass»

ConditionItem

+secondConstant

+firstConstant

«Metaclass»

SdlExpression

{subsets ownedElement}

{subsets ownedElement}

Figure 10-14 – ClosedRange

76 Rec. ITU-T Z.109 (10/2016)

Z.109(13)_F10-15

«Metaclass»

SizeConstraint

«Metaclass»

ConditionItem

+operationIdentifier

+conditionItemSet

{subsets ownedElement} 0..*

«Metaclass»

Operation

Figure 10-15 – SizeConstraint

Z.109(13)_F10-16

«Metaclass»

Undefined

«Metaclass»

SdlExpression

Figure 10-16 – Undefined

10.2 ActiveAgentsExpression

The metaclass ActiveAgentsExpression is a specialization of the metaclass ImperativeExpression

(see clause 10.8). The metamodel diagram for the metaclass is defined in Figure 10-11.

The ActiveAgentsExpression metaclass represents an Active-agents-expression of the abstract

grammar of SDL-2010. Because an Active-agents-expression is one alternative of an Imperative-

expression, it is also an active expression.

10.2.1 Attributes

• agentIdentifier: Property [0..1] {subsets Element::ownedElement}

 the agent instance set, for which the number of active agents is determined.

• isThis: Boolean

 if true, the number of active agents is determined for the enclosing active agent.

10.2.2 Constraints

[1] The type property shall reference the type Predefined::Natural.

[2] If isThis is true, the agentIdentifier shall be empty.

10.2.3 Semantics

The ActiveAgentsExpression metaclass maps to an Active-agents-expression. If isThis is false, the

agentIdentifier property maps to the Agent-identifier of the Active-agents-expression. Otherwise, the

optional THIS element is present in the Active-agent-expression.

10.2.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.4 Active agents expression

10.3 AnyExpression

The metaclass AnyExpression is a specialization of the metaclass ImperativeExpression (see

clause 10.8). The metamodel diagram for the metaclass is defined in Figure 10-9.

The AnyExpression metaclass represents an Any-expression of the abstract grammar of SDL-2010.

Because an Any-expression is one alternative of an Imperative-expression, it is also an active

expression.

 Rec. ITU-T Z.109 (10/2016) 77

10.3.1 Attributes

No additional attributes.

10.3.2 Constraints

[1] The type property shall reference a <<DataTypeDefinition>> Class or <<Interface>>

Interface.

10.3.3 Semantics

The AnyExpression metaclass maps to an Any-expression. The type property maps to the Sort-

reference-identifier of the Any-expression.

10.3.4 References

SDL-2010 [ITU-T Z.104]:

 12.3.4.6 Any Expression

10.4 ClosedRange

The metaclass ClosedRange is a specialization of the metaclass ConditionItem (see clause 10.6). The

metamodel diagram for the metaclass is defined in Figure 10-14.

A closed range condition constrains a data type with a lower and upper bound. Only if a value for

such a constrained data type is within the specified boundaries, is the closed range condition fulfilled.

The ClosedRange maps to the Closed-range alternative of a Condition-item node in the SDL-2010

abstract syntax.

10.4.1 Attributes

• firstConstant: SdlExpression {subsets Element::ownedElement}

 the lower bound value of a closed range.

• secondConstant: SdlExpression {subsets Element::ownedElement}

 the upper bound value of a closed range.

10.4.2 Constraints

[1] There shall be an Operation defined for the contrained data type with isOperator = true, and

with the following SDL-2010 signature:

 "<="(P, P): Predefined::Boolean

 where the P in the operation signature is the type of the contrained data type.

[2] The type properties of the firstConstant and secondConstant shall reference the constrained

data type.

10.4.3 Semantics

The metaclass ClosedRange maps to a Closed-range. The firstConstant property maps to the first

Constant-expression and the secondConstant maps to the second Constant-expression of a Closed-

range.

10.4.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

78 Rec. ITU-T Z.109 (10/2016)

10.5 ConditionalExpression

The metaclass ConditionalExpression is a specialization of the metaclass SdlExpression and its

metamodel diagram is defined in Figure 10-8.

The ConditionalExpression metaclass represents a Conditional-expression in the SDL-2010 abstract

syntax. A conditional expression consists of a Boolean expression, a consequence expression and an

alternative expression. If the Boolean expression returns the value true, than the consequence

expression is invoked. Otherwise, the alternative expression is invoked.

10.5.1 Attributes

• booleanExpression: SdlExpression (subsets Element::ownedElement)

 the Boolean expression for the decision.

• alternativeExpression: SdlExpression (subsets Element::ownedElement)

 the expression that is evaluated when the result of the decision is false.

• consequenceExpression: SdlExpression (subsets Element::ownedElement)

 the expression that is evaluated when the result of the decision is true.

10.5.2 Constraints

[1] The type of the booleanExpression shall be the type Predefined::Boolean.

[2] The alternativeExpression and the consequenceExpression shall have the same type.

[3] The type property of a ConditionalExpression shall be the type Predefined::Boolean.

10.5.3 Semantics

A ConditionalExpression maps to a Conditional-expression. The booleanExpression maps to the

Boolean-expression, the consequenceExpression to the Consequence-expression, and the

alternativeExpression to the Alternative-expression of a Conditional-expression. If one of the

properties of a ConditionalExpression references SdlExpression with isConstant is false, the

ConditionalExpression represents an Active-expression; otherwise it is a Constant-Expression.

10.5.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.5 Conditional expression

10.6 ConditionItem

The metaclass ConditionItem is a specialization of the UML metaclass ValueSpecification. This

metaclass is abstract and the metamodel diagram for the metaclass is defined in Figure 10-12.

Subtypes of this metaclass are the ClosedRange (see clause 10.4), OpenRange (see clause 10.11) and

SizeConstraint (see clause 10.18) metaclasses. A ConditionItem is only usable in combination with a

RangeCondition.

The ConditionItem metaclass represents a Condition-item in the SDL-2010 abstract syntax. The

subtypes of this metaclass are mapped to the alternatives Open-range, Closed-range or Size-

constraint.

10.6.1 Attributes

No additional attributes.

10.6.2 Constraints

[1] The type property of a ConditionItem shall be the type Predefined::Boolean.

[2] The owner of a ConditionItem shall be a RangeCondition.

 Rec. ITU-T Z.109 (10/2016) 79

10.6.3 Semantics

The subtypes of the ConditionItem metaclass define the semantics.

10.6.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

UML-SS [OMG UML]:

 7.3.55 ValueSpecification (from Kernel)

10.7 EqualityExpression

The metaclass EqualityExpression is a specialization of the metaclass SdlExpression. The metamodel

diagram for the metaclass is defined in Figure 10-2.

The EqualityExpression metaclass represents an Equality-expression in the SDL-2010 abstract

syntax. An equality expression consists of two operands, which are compared. If the result of both

operands is equal, than the result of the equality expression is a Boolean value of true; otherwise, the

result is a Boolean value of false.

10.7.1 Attributes

• firstOperand: SdlExpression {subsets Element::ownedElement}

 The left-hand expression to be compared for equality.

• secondOperand: SdlExpression {subsets Element::ownedElement}

 The right-hand expression to be compared for equality.

• isNegativeExpression: Boolean

 If true, the equality expression represents a negative equality expression. Default value

 is false.

 NOTE – In SDL-2010, a negative equality expression only returns a result of true, if both operands

evalute to a value false.

10.7.2 Constraints

[1] The type property of an EqualityExpression Expression shall be of the type

Predefined::Boolean.

[2] The type of the firstOperand shall conform to the type of the secondOperand or vice versa.

10.7.3 Semantics

If isNegativeExpression is false, an EqualityExpression maps to a Positive-equality-expression,

otherwise it maps to a Negative-equality-expression. The firstOperand maps to the First-operand and

the secondOperand maps to the Second-operand of a Conditional-expression. If one of the properties

of an EqualityExpression references an SdlExpression with isConstant is true, the EqualityExpression

represents a Constant-expression; otherwise it is an Active-Expression.

10.7.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.4 Equality expression

10.8 ImperativeExpression

The metaclass ImperativeExpression is specialization of the metaclass SdlExpression. This metaclass

is abstract, and the metamodel diagram for the metaclass is defined in Figure 10-9. Subtypes of

80 Rec. ITU-T Z.109 (10/2016)

ImperativeExpression are the metaclasses StateExpression (see clause 10.19), AnyExpression (see

clause 10.3), PidExpression (see clause 10.13), NowExpression (see clause 10.10),

TimerRemainingDuration (see clause 10.21), TimerActiveExpression (see clause 10.20) and

ActiveAgentsExpression (see clause 10.2).

The ImperativeExpression metaclass represents an Imperative-expression of the abstract grammar of

SDL-2010. In addition, an Imperative-expression is also an Active-expression. An imperative

expression is used to access the system clock, special agent variables, the Pid of an agent or the status

of timers.

10.8.1 Attributes

No additional attributes.

10.8.2 Constraints

[1] The isConstant property shall be true.

10.8.3 Semantics

A subtype of an ImperativeExpression is always mapped to the Active-Expression alternative of an

Expression. Further semantics and mapping rules are specified in the context of the subtypes of the

ImperativeExpression metaclass.

10.8.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4 Imperative expression

10.9 LiteralValue

The metaclass LiteralValue is a subtype of the metaclass SdlExpression. The metamodel diagram for

the metaclass is defined in Figure 10-1.

The metaclass LiteralValue represents a Literal in the SDL-2010 abstract syntax. A literal represents

a concrete value for a particular data type. In addition, a Literal is always a Constant expression in

the SDL-2010 abstract syntax.

10.9.1 Attributes

• value: String

 This represents the concrete value for a data type.

10.9.2 Constraints

[1] The type property shall reference a <<DataTypeDefinition>> Class.

[2] The isConstant property shall be true.

10.9.3 Semantics

The LiteralValue maps to a Literal (a Constant-expression) in the SDL-2010 abstract syntax. The

qualifiedName of the type property of a LiteralValue maps to the Qualifier part of the Literal-

identifier. In addition, the value property of a LiteralValue maps to the Name part of the Literal-

identifier.

10.9.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.2 Literal

 Rec. ITU-T Z.109 (10/2016) 81

10.10 NowExpression

The metaclass NowExpression is a subtype of the metaclass ImperativeExpression (see clause 10.8).

The metamodel diagram for the metaclass is defined in Figure 10-9.

The NowExpression metaclass represents a Now-expression of the abstract grammar of SDL-2010.

With a now expression the current value of the system clock is obtained. In consequence, the type of

the result value is always the predefined Time type.

10.10.1 Attributes

No additional attributes.

10.10.2 Constraints

[1] The type property shall be the type Predefined::Time.

10.10.3 Semantics

The NowExpression metaclass maps to a Now-expression.

10.10.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.1 Now expression

10.11 OpenRange

The metaclass OpenRange is a subtype of the metaclass ConditionItem (see clause 10.6). The

metamodel diagram for the metaclass is defined in Figure 10-13.

An open range condition constrains a data type only with one boundary value (a constant expression)

and an associated range operator (an infix operator). The OpenRange metaclass represents the Open-

range alternative of a Condition-item node in the SDL-2010 abstract syntax.

10.11.1 Attributes

• operationIdentifier: Operation

 the operation (infix operator) for the range operator.

• constantExpression: SdlExpression {subsets Element::ownedElement}

 the boundary value of an open range.

10.11.2 Constraints

[1] The operationIdentifier property shall reference an <<Operation>> Operation with a result

type of Predefined::Boolean.

[2] Each parameter of the referenced operationIdentifier shall the same type as the constrained

data type.

[3] The constantExpression property shall only consist of an SdlExpression with isConstant =

true.

[4] The type property of the OpenRange shall be the type Predefined::Boolean.

10.11.3 Semantics

The OpenRange metaclass maps to an Open-range. The operationIdentifier property maps to the

Operation-identifier and the constantExpression maps to the Constant-expression of the Open-range.

Further semantics is specified in clause 12.1.8.2 of [ITU-T Z.101]

82 Rec. ITU-T Z.109 (10/2016)

10.11.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

10.12 OperationApplication

The metaclass OperationApplication is a subtype of the metaclass SdlExpression. The metamodel

diagram for the metaclass is defined in Figure 10-4.

An operation application represents the invocation of an operation of a <<DataTypeDefinition>>

Class and maps to an Operation-application.

10.12.1 Attributes

• operationIdentifier: Operation

 Identifies the operation to be invoked.

• actualParameterList: SdlExpression [0..*] {subsets Element::ownedElement, ordered}

 the list of actual parameters for the operation application.

10.12.2 Constraints

[1] If actualParameterList is not empty, the type of each item in the actualParameterList shall

conform to the type of the corresponding parameter of the operation.

[2] If not empty, the actualParameterList shall not contain a SdlExpression that is of kind

Undefined.

 NOTE – That is because an Operation-application shall not contain UNDEFINED values.

[3] The operationIdentifier property shall identify an <<Operation>> Operation that is owned by

a <<DataTypeDefinition>> Class.

[4] The type property of an OperationApplication shall be compatible to the type of the operation

referenced by the operationIdentifier property.

[5] The isConstant property shall be true only if each element in the expression list has an

isConstant property of true.

10.12.3 Semantics

The OperationApplication metaclass maps to an Expression that is an Operation-application. The

qualifiedName property of the operationIdentifier maps to the Operator-identifier, and each

SdlExpression in the actualParameterList maps to an Expression of the Actual-parameters list of the

Operation-application.

If all elements in the actualParameterList are expressions with isConstant true, the

OperationApplication represents a Constant-expression; otherwise, it represents an Active-

expression.

10.12.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.6 Operation application

10.13 PidExpression

The metaclass PidExpression is a subtype of the metaclass ImperativeExpression (see clause 10.8).

The metamodel diagram for the metaclass is defined in Figure 10-9.

The PidExpression metaclass represents a Pid-expression of the abstract grammar of SDL-2010. A

pid expression accesses one out of four anonymous variables of an agent and returns the associated

 Rec. ITU-T Z.109 (10/2016) 83

pid value. A pid expression is always an active expression because it is one alternative of the

imperative expression.

10.13.1 Attributes

• expressionKind: PidExpressionKind

 Defines the kind of the pid expression

10.13.2 Constraints

[1] The type property of a PidExpression shall conform to the type Predefined::Pid.

10.13.3 Semantics

The PidExpression metaclass maps to one out of four alternatives of a Pid-expression. Depending on

the value of the expressionKind property, a PidExpression maps to a Self-expression, a Parent-

expression, an Offspring-expression or a Sender-expression.

10.13.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.2 Pid expression

10.14 PidExpressionKind

The enumeration type PidExpressionKind determines the kind of a PidExpression. The metamodel

diagram is defined in Figure 10-9.

10.14.1 Attributes

No additional attributes.

10.14.2 Constraints

No additional constraints.

10.14.3 Semantics

For the enumeration type PidExpressionKind the following enumeration literals and mappings are

defined:

• self representing the Self-expression;

• parent representing the Parent-expression;

• offspring representing the Offspring-expression;

• sender representing the Sender-expression.

10.14.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.2 Pid expression

10.15 RangeCheckExpression

The metaclass RangeCheckExpression is a specialization of the metaclass SdlExpression (see

clause 10.17). The metamodel diagram for the metaclass is defined in Figure 10-5.

A range check expression is used in order to check if a given value or expression meets the range

conditions criteria.

84 Rec. ITU-T Z.109 (10/2016)

10.15.1 Attributes

• rangeCondition: RangeCondition {subsets Element::ownedElement}

 the range condition to be verified.

• expression: SdlExpression {subsets Element::ownedElement }

 the value to be verified.

• parentSortIdentifier: Classifier

 a reference to a <<DataTypeDefinition>> Class that defines the parent sort.

10.15.2 Constraints

[1] The type property of a RangeCheckExpression shall be the type Predefined::Boolean.

[2] The parentSortIdentifier shall reference a <<DataTypeDefinition>> Class.

[3] The type of the expression shall conform to type identified by the parentSortIdentifier.

10.15.3 Semantics

A RangeCheckExpression maps to a Range-check-expression. The rangeCondition property maps to

the Range-condition and the expression property maps to the Expression of a Range-check-

expression. If the expression property references an SdlExpression with isConstant true, the

RangeCheckExpression represents a Constant-expression; otherwise it is an Active-Expression.

10.15.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.7 Range check expression

10.16 RangeCondition

The metaclass RangeCondition is a specialization of the UML metaclass ValueSpecification. The

metamodel diagram for the metaclass is defined in Figure 10-12.

A range condition defines a set of values for a range check. A RangeCondition is used in the context

of a RangeCheckExpression, a <<Syntype>> Class, a <<Property>> Property, a <<Decision>>

ConditionalNode, an <<If>> ConditionalNode or a <<DecisionNode>> Pseudostate with kind choice.

10.16.1 Attributes

• conditionItemSet: ConditionItem [*] {subsets Element::ownedElement}

 References all condition items specified for a range condition.

10.16.2 Constraints

[1] The type property of a RangeCondition shall be the type Predefined::Boolean.

10.16.3 Semantics

A RangeCondition maps to a Range-condition. The conditionItemSet property maps to the Condition-

item-set of the Range-condition.

10.16.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

UML-SS [OMG UML]:

 7.3.55 ValueSpecification (from Kernel)

 Rec. ITU-T Z.109 (10/2016) 85

10.17 SdlExpression

The metaclass SdlExpression is a specialization of the UML metaclass ValueSpecification. This

metaclass is abstract, and the metamodel diagram for the metaclass is defined in Figure 10-1.

Subtypes of the metaclass are the metaclasses RangeCheckExpression (see clause 10.15),

ConditionalExpression (see clause 10.5), OperationApplication (see clause 10.12),

ValueReturningCallNode (see clause 10.24), ImperativeExpression (see clause 10.8) and

EqualityExpression (see clause 10.7).

Depending on the isConstant property, the SdlExpression metaclass represents a Constant-expression

or an Active-expression alternative of an Expression. For both alternatives of an Expression in the

SDL-2010 abstract syntax further alternatives exist. The semantics and mapping rules for the different

alternatives of an Expression depends on the above listed subtypes of the SdlExpression metaclass.

10.17.1 Attributes

• isConstant: Boolean

 True if the expression is a constant expression, otherwise it is an active expression.

10.17.2 Constraints

[1] The type property of an SdlExpression shall not be empty.

10.17.3 Semantics

Its subtypes specify the semantics and mapping rules of an SdlExpression.

10.17.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.1 Expressions and expressions as actual parameters

UML-SS [OMG UML]:

 7.3.55 ValueSpecification (from Kernel)

10.18 SizeConstraint

The metaclass SizeConstraint is a subtype of the metaclass ConditionItem (see clause 10.6). The

metamodel diagram for the metaclass is defined in Figure 10-15. A size constraint is usable only to

constrain multi-value data types that own a length() operator, e.g., the SDL-UML predefined

String data type. The SizeConstraint metaclass maps to the Size-constraint alternative of the

Condition-item node in the SDL-2010 abstract syntax.

10.18.1 Attributes

• operationIdentifier: Operation

 the length() operator for the verification of the size.

• conditionItemSet: ConditionItem [0..*] {subsets Element::ownedElement}

 references all condition items specified for a size range.

10.18.2 Constraints

[1] The operationIdentifier property shall reference an <<Operation>> Operation with a

signature as follows: length(P): Predefined::Integer

 where the P in the operation signature is the type of the constrained data type.

[2] The type property of a SizeConstraint shall be the type Predefined::Boolean.

86 Rec. ITU-T Z.109 (10/2016)

10.18.3 Semantics

A SizeConstraint maps to a Size-constraint in the SDL-2010 abstract syntax. The operationIdentifier

property maps to the Operation-identifier and the conditionItemSet maps to the Condition-item-set

of the Size-constraint.

10.18.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

10.19 StateExpression

The metaclass StateExpression is a subtype of the metaclass ImperativeExpression (see clause 10.8).

The metamodel diagram for the metaclass is defined in Figure 10-9.

The StateExpression metaclass represents a State-expression of the abstract grammar of SDL-2010.

A state expression returns the name of the most recently entered state in terms of a Charstring.

Because a State-expression is one alternative of an Imperative-expression, it is also an active

expression.

10.19.1 Attributes

No additional attributes.

10.19.2 Constraints

[1] The type property shall be the type Predefined::Charstring.

10.19.3 Semantics

A StateExpression maps to a State-expression.

10.19.4 References

SDL-2010 [ITU-T Z.104]:

 12.3.4.7 State expression

10.20 TimerActiveExpression

The metaclass TimerActiveExpression is a subtype of the metaclass ImperativeExpression (see clause

10.8). The metamodel diagram for the metaclass is defined in Figure 10-10.

The TimerActiveExpression metaclass represents a Timer-active-expression of the abstract grammar

of SDL-2010. A timer active expression returns the Boolean value true, if the associated timer is

active. Otherwise, a Boolean value of false is returned. A timer active expression is always an active

expression, because it is one alternative of the imperative expression.

10.20.1 Attributes

• timerIdentifier: Signal

 Reference to the associated timer

• expression: SdlExpression [0..*] {subsets Element::ownedElement}

 Expression list containing the actual parameters of the associated timer.

10.20.2 Constraints

[1] The type property shall be the type Predefined::Boolean.

[2] The type, the order and the number of items in the expression list shall match with the

ownedAttribute items of the associated timer.

 Rec. ITU-T Z.109 (10/2016) 87

[3] If present, the expression list shall not contain a SdlExpression that is of kind Undefined.

 NOTE – In SDL-2010, the optional expression list of a timer active expression cannot contain omitted

values.

10.20.3 Semantics

A TimerActiveExpression maps to a Timer-active-expression. The timerIdentifier maps to Timer-

identifier and the expression list maps to the Expression-list.

10.20.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.3 Timer active expression and timer remaining duration

10.21 TimerRemainingDuration

The metaclass TimerRemainingDuration is a subtype of the metaclass ImperativeExpression (see

clause 10.8). The metamodel diagram for the metaclass is defined in Figure 10-10.

The TimerRemainingDuration metaclass represents a Timer-remaining-duration of the abstract

grammar of SDL-2010. A timer remaining duration returns a value of the predefined type Duration.

The value is the time until the timer will expire. A timer remaining duration is always an active

expression because it is one alternative of the imperative expression.

10.21.1 Attributes

• timerIdentifier: Signal

 Reference to the associated timer.

• expression: ValueSpecification [0..*] {subsets Element::ownedElement}

 Expression list containing the actual parameters of the associated timer.

10.21.2 Constraints

[1] The type property shall be of predefined Duration type.

[2] The type, the order and the number of items in the expression list shall match with the

ownedAttribute items of the associated timer.

[3] If present, the expression list shall not contain a SdlExpression that is of kind Undefined.

 NOTE – In SDL-2010, the optional expression list of a timer remaining duration cannot contain

omitted values.

10.21.3 Semantics

A TimerRemainingDuration maps to a Timer-remaining-duration. The timerIdentifier maps to

Timer-identifier and the expression list maps to the Expression-list of the Timer-remaining-duration.

10.21.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.3 Timer active expression and timer remaining duration

10.22 TypeCheckExpression

The metaclass TypeCheckExpression is a specialization of the metaclass SdlExpression (see clause

10.17). The metamodel diagram for the metaclass is defined in Figure 10-6.

A type check expression is used to check if the dynamic sort of an expression is sort compatible with

the sort introduced by a referenced data type definition.

88 Rec. ITU-T Z.109 (10/2016)

10.22.1 Attributes

• expression: SdlExpression {subsets Element::ownedElement}

 The expression whose dynamic sort shall be evaluated.

• parentSortIdentifier: Class

 the data type definition that shall be used for a type check.

10.22.2 Constraints

[1] The type property of a RangeCheckExpression shall be of the predefined Boolean type.

[2] The parentSortIdentifier shall reference a <<DataTypeDefinition>> Class or <<Interface>>

Interface.

[3] The type of the expression shall conform to the type identified by the parentSortIdentifier.

10.22.3 Semantics

A TypeCheckExpression maps to a Type-check-expression. The parentSortIdentifier property maps

to the Parent-sort-identifier and the expression property maps to the Expression of a Type-check-

expression. If the expression property is an SdlExpression with isConstant true, the

TypeCheckExpression represents a Constant-expression; otherwise it is an Active-Expression.

10.22.4 References

SDL-2010 [ITU-T Z.107]:

 12.2.8 Range check expression

10.23 TypeCoercion

The metaclass TypeCoercion is a specialization of the metaclass SdlExpression (see clause 10.17).

The metamodel diagram for the metaclass is defined in Figure 10-7.

Type coercion is used in order to change the dynamic sort of an expression.

10.23.1 Attributes

• expression: SdlExpression {subsets Element::ownedElement}

 The expression whose dynamic sort shall be changed.

• sortReferenceIdentifier: Class

 A reference to the data type definition that shall be used as the new dynamic sort.

10.23.2 Constraints

[1] The type and sortReferenceIdentifier properties shall reference the same data type definition.

[2] The sortReferenceIdentifier shall reference a <<DataTypeDefinition>> Class.

[3] The type property of the expression shall refer to the same data type definition as identified

by the sortReferenceIdentifier, or it shall be a subtype of that data type definition.

10.23.3 Semantics

A TypeCoercion maps to a Type-coercion. The sortReferenceIdentifier property maps to the Sort-

reference-identifier and the expression property maps to the Expression of a Type-coercion. If the

expression property is an SdlExpression with isConstant true, the TypeCoercion represents a

Constant-expression; otherwise it is an Active-Expression.

10.23.4 References

SDL-2010 [ITU-T Z.107]:

 12.2.8.1 Type coercion

 Rec. ITU-T Z.109 (10/2016) 89

10.24 Undefined

The metaclass Undefined is a specialization of the metaclass SdlExpression (see clause 10.17). The

metamodel diagram for the metaclass is defined in Figure 10-16.

An instance of the metaclass Undefined is used to represent an omitted parameter in a list of actual

parameters.

10.24.1 Attributes

No additional attributes.

10.24.2 Constraints

No additional constraints.

10.24.3 Semantics

An instance of Undefined maps to an UNDEFINED element in a list of Actual-parameters.

10.24.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.1 Expressions and expressions as actual parameters

10.25 ValueReturningCallNode

The metaclass ValueReturningCallNode is a specialization of the metaclass SdlExpression (see clause

10.17). The metamodel diagram for the metaclass is defined in Figure 10-3.

A value returning procedure call is used to call a procedure that returns a value. The procedure has to

be owned by an agent. Hence, in SDL-UML, a value returning procedure call is only used to invoke

an <<Operation>> Operation that is owned by an <<ActiveClass>> Class.

10.25.1 Attributes

• operationIdentifier: Operation

 Identifies the procedure to be invoked.

• actualParameterList: SdlExpression [0..*]{subsets Element::ownedElement, ordered}

 the list of actual parameters for the procedure call.

• isThis: Boolean

 if true, this indicates that for a specialized procedure the specialized procedure shall be

 called rather than the unspecialized procedure. Default value is false.

10.25.2 Constraints

[1] The isConstant property shall be false.

[2] If not empty, the number of elements in the actualParameterList shall be equal to the number

of ownedParameters of the operation referenced by operationIdentifier.

[3] If actualParameterList is not empty, the type of each SdlExpression, which is not of kind

Undefined, shall be type compatible by order with its corresponding ownedParameter of the

operation referenced by operationIdentifier.

[4] The operationIdentifier property shall identify an <<Operation>> Operation that is owned by

an <<ActiveClass>> Class.

[5] The type property of a ValueReturningCallNode shall be of the same type as the operation

referenced by the operationIdentifier property.

[6] The isThis property shall only be true, if the operation referenced by operationIdentifier

specializes another operation.

90 Rec. ITU-T Z.109 (10/2016)

10.25.3 Semantics

A ValueReturningCallNode maps to a Value-returning-call-node. The operationIdentifier property

maps to the Procedure-identifier and each SdlExpression in the actualParameterList maps to an

Expression of the Actual-parameters list of the Value-returning-call-node.

If the isThis property is true, the optional THIS element of a Value-returning-call-node is present,

otherwise it is absent.

10.25.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.5 Value returning procedure call

SDL-2010 [ITU-T Z.102]:

 11.13.3 Procedure call

10.26 VariableAccess

The metaclass VariableAccess specializes the metaclass SdlExpression. The metamodel diagram for

the metaclass is defined in Figure 10-1.

The metaclass VariableAccess maps to a Variable-access in the SDL-2010 abstract syntax. The result

of a variable access is the current value of a variable. A Variable-access is always an Active

expression in the SDL-2010 abstract syntax.

10.26.1 Attributes

• variable : TypedElement

 References the Variable or Property that shall be accessed.

10.26.2 Constraints

[1] The variable property shall reference a Variable or a Property.

[2] The type of a VariableAccess shall conform to the type of the referenced Variable or

Property.

[3] The isConstant property shall be false.

10.26.3 Semantics

A VariableAccess maps to a Variable-access (an Active-expression) and the variable property maps

to the Variable-identifier.

10.26.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.2 Variable access

11 Context parameters

Context parameters enable the parameterization of definitions. While context parameters are similar

to UML template parameters, their semantics in SDL-UML is aligned to SDL-2010. The metamodel

for context parameters of SDL-UML is specified in terms of metaclasses that extend the UML

metaclass Element.

NOTE – Remote variable context parameters and remote procedure context parameters are not supported

because remote variables and remote procedures are not represented by particular SDL-UML elements.

 Rec. ITU-T Z.109 (10/2016) 91

11.1 Context parameter metamodel diagrams

Z.109(13)_F11-1

«Metaclass»
FormalContextParameter

«Metaclass»

Element

+/signature

+contextParameter

+atLeastClause

«Metaclass»

NamedElement

«Metaclass»

NamedElement
«Metaclass»

NamedElement

0..1

0..* {union, subsets ownedElement}

{subsets ownedElement}

Figure 11-1 – FormalContextParameter

Z.109(13)_F11-2

«Metaclass»
ActualContextParameter

«Metaclass»
Element

+synonymContextParameter

+correspondingParameter

+contextParameter

«Metaclass»
SdlExpression

«Metaclass»

NamedElement

«Metaclass»

FormalContextParameter

0..1

{subsets ownedElement} 0..1

Figure 11-2 – ActualContextParameters

Z.109(13)_F11-3

«Metaclass»

AgentTypeContextParameter

«Metaclass»

FormalContextParameter

+agentSignature«Metaclass»

Parameter 0..* {subsets signature, ordered}

Figure 11-3 – AgentTypeContextParameter

Z.109(13)_F11-4

«Metaclass»

AgentContextParameter

«Metaclass»
FormalContextParameter

+agentSignature«Metaclass»

Parameter 0..1 {subsets signature, ordered} +isExact : Boolean

Figure 11-4 – AgentContextParameter

Z.109(13)_F11-5

«Metaclass»

ProcedureContextParameter

«Metaclass»

FormalContextParameter

+procedureSignature«Metaclass»

Operation 0..1 {subsets signature, ordered}

Figure 11-5 – ProcedureContextParameter

92 Rec. ITU-T Z.109 (10/2016)

Z.109(13)_F11-6

«Metaclass»

SignalContextParameter

«Metaclass»

FormalContextParameter

+signalSignature«Metaclass»

Property 0..* {subsets signature, ordered}

Figure 11-6 – SignalContextParameter

Z.109(13)_F11-7

«Metaclass»

VariableContextParameter

«Metaclass»

FormalContextParameter

Figure 11-7 – VariableContextParameter

Z.109(13)_F11-8

«Metaclass»

TimerContextParameter

«Metaclass»

FormalContextParameter

+sortList«Metaclass»

Classifier 0..* {subsets signature, ordered}

Figure 11-8 – TimerContextParameter

Z.109(13)_F11-9

«Metaclass»

SynonymContextParameter

«Metaclass»

FormalContextParameter

+sort«Metaclass»

Classifier {subsets signature}

Figure 11-9 – SynonymContextParameter

Z.109(13)_F11-10

«Metaclass»
SortContextParameter

«Metaclass»

FormatContextParameter

+operatorSignature

+methodSignature

+literalSignature«Metaclass»

Property
«Metaclass»
Operation

0..* {subsets signature, ordered}

0..* {subsets signature}

{subsets signature} 0..*
«Metaclass»
Operation

Figure 11-10 – SortContextParameter

 Rec. ITU-T Z.109 (10/2016) 93

Z.109(13)_F11-11

«Metaclass»

CompositeStateTypeContextParameter

«Metaclass»

FormalContextParameter

+compositeStateTypeSignature«Metaclass»

Parameter 0..* {subsets signature, ordered}

Figure 11-11 – CompositeStateTypeContextParameter

Z.109(13)_F11-12

«Metaclass»

GateConstraint

«Metaclass»

NamedElement
«Metaclass»

FormalContextParameter

+outGate +endpointConstraint

+signalSet+inGate

«Metaclass»
GateContextParameter

«Metaclass»
Class

«Metaclass»

Classifier

 {subsets signature}0..1

 {subsets signature}0..1

0..1

0..*

Figure 11-12 – GateContextParameter and GateConstraint

Z.109(13)_F11-13

«Metaclass»

FormalContextParameter

«Metaclass»

InterfaceContextParameter

Figure 11-13 – InterfaceContextParameter

11.2 ActualContextParameter

The metaclass ActualContextParameter is a specialization of the UML metaclass Element. The

metamodel diagram for the metaclass is defined in Figure 11-2.

The ActualContextParameter metaclass represents an actual context parameter of a parameterized

type.

11.2.1 Attributes

• contextParameter: NamedElement [0..1]

 an actual context parameter corresponding to a formal context parameter that is not a

SynonymContextParameter.

• synonymContextParameter: SdlExpression [0..1] {subsets Element::ownedElement}

 an actual context parameter corresponding to a formal context parameter that is

SynonymContextParameter.

• correspondingParameter: FormalContextParameter

 a reference to the corresponding formal context parameter.

11.2.2 Constraints

[1] If the contextParameter is present, the synonymContextParameter shall be absent.

[2] A contextParameter shall satisfy the constraints for for an actual context parameter

introduced by the different kinds of FormalContextParameter.

[3] If the synonymContextParameter is present, the contextParameter shall be absent.

94 Rec. ITU-T Z.109 (10/2016)

[4] If the synonymContextParameter is present, its isConstant property shall be true.

[5] The synonymContextParameter shall conform to the type identified by the sort of the

corresponding formal context parameter (see clause 8.3.9 of [ITU-T Z.102]).

 NOTE 2 – An actual context parameter shall be of the same type or a subtype of the type identified

by the atleast clause of the corresponding formal context parameter (see clause 8.3 of [ITU-T Z.102]).

11.2.3 Semantics

An ActualContextParameter is part of the context parameter concept that is described in clauses 8.1.2

and 8.3 of [ITU-T Z.102]. Before an SDL-UML element with context parameters is mapped to the

SDL-2010 abstract syntax, a non-parameterized anonymous type definition is generated by expanding

a parameterized type as specified in clause 8.1.2 of [ITU-T Z.102].

An omitted actual context parameter is represented by an instance of ActualContextParameter with

omitted contextParameter and synonymContextParameter properties.

11.2.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.2 Type expression

 8.3 Context parameters

 8.3.9 Synonym context parameter

 8.3.10 Sort context parameter

UML-SS [OMG UML]:

 7.3.34 NamedElement (from Kernel, Dependencies)

11.3 AgentContextParameter

The metaclass AgentContextParameter is a subtype of the metaclass FormalContextParameter. The

metamodel diagram for the metaclass is defined in Figure 11-4.

The metaclass AgentContextParameter represents an agent context parameter. An agent context

parameter specifies parameterization by a process or block agent.

11.3.1 Attributes

• isExact: Boolean

 if true, the contextParameter of the corresponding actual context parameter shall be the

type identified by the atLeastClause.

• agentSignature: Parameter [0..*]

 {subsets FormalContextParameter::signature, ordered}

 a <<Parameter>> Parameter list that defines the agent signature constraint.

11.3.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall reference an

<<ActiveClass>> Class.

[2] If present, the atLeastClause shall refer to an <<ActiveClass>> Class that does not represent

a system type (see clause 7.2.3).

 NOTE – The atLeastClause property represents an agent type identifier in the concrete syntax of

SDL-2010.

[3] If the isExact property is true, the type property of the corresponding actual context parameter

and the atLeastClause shall refer to the same <<ActiveClass>> Class.

 Rec. ITU-T Z.109 (10/2016) 95

[4] If the isExact property is false, the type of the corresponding actual context parameter shall

conform to the <<ActiveClass>> Class that is referenced by the atLeastClause.

[5] If agentSignature is not empty, the formal parameters of the <<ActiveClass>> Class

identified by the type of the actual context parameter shall be compatible with the

agentSignature.

11.3.3 Semantics

No additional semantics.

11.3.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.2 Agent context parameter

11.4 AgentTypeContextParameter

The metaclass AgentTypeContextParameter is a subtype of the metaclass FormalContextParameter.

The metamodel diagram for the metaclass is defined in Figure 11-3.

The metaclass AgentTypeContextParameter represents an agent type context parameter. An agent

type context parameter specifies parameterization by a process or block type.

11.4.1 Attributes

• agentSignature: Parameter [0..*]

 {subsets FormalContextParameter:: signature, ordered}

 a <<Parameter>> Parameter list that defines the agent signature constraint.

11.4.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to an

<<ActiveClass>> Class.

[2] If present, the atLeastClause shall refer to an <<ActiveClass>> Class that does not represent

a system type (see clause 7.2.3).

[3] If agentSignature is not empty, the formal parameters of the actual context parameter shall

be compatible with the agentSignature.

11.4.3 Semantics

No additional semantics.

11.4.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.1 Agent type context parameter

11.5 CompositeStateTypeContextParameter

The metaclass CompositeStateTypeContextParameter is a subtype of the metaclass

FormalContextParameter. The metamodel diagram for the metaclass is defined in Figure 11-11.

The metaclass CompositeStateTypeContextParameter represents a composite state type context

parameter. A composite state type context parameter specifies parameterization by a composite state

type.

96 Rec. ITU-T Z.109 (10/2016)

11.5.1 Attributes

• compositeStateTypeSignature: Parameter [0..*]

 {subsets FormalContextParameter:: signature, ordered}

 a <<Parameter>> Parameter list that defines the composite state type signature

constraint.

11.5.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to a

<<StateMachine>> StateMachine.

[2] If present, the atLeastClause shall refer to a <<StateMachine>> StateMachine.

[3] If compositeStateTypeSignature is present, the ownedParameter list of the

<<StateMachine>> StateMachine referenced by the corresponding actual context parameter

shall conform to the compositeStateTypeSignature.

11.5.3 Semantics

No additional semantics.

11.5.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.11 Composite state type context parameter

11.6 FormalContextParameter

The metaclass FormalContextParameter is a specialization of the UML metaclass Element. This

metaclass is abstract, and the metamodel diagram for the metaclass is defined in Figure 11–1.

The FormalContextParameter metaclass is the superClass of all metaclasses representing a specific

formal context parameter kind.

When a FormalContextParameter is present in the definition of a Classifier, this Classifier is a

parameterized type. A non-parameterized type is obtained as an expansion of a parameterized type

by providing corresponding (in order of occurrence) actual context parameters to replace the use of

each formal context parameter in the parameterized type.

11.6.1 Attributes

• contextParameter: NamedElement {subsets Element::ownedElement}

 specifies the element that is used as the formal context parameter.

• atLeastClause: NamedElement [0..1]

 constrains the corresponding actual context parameter for the current formal context

parameter.

• /signature: NamedElement [0..*] {union, subsets ::ownedElement}

 constrains the corresponding actual context parameter. This is a derived union.

NOTE – A formal context parameter in the concrete syntax of SDL-2010 optionally has a constraint, which is

either an atleast constraint or a signature constraint. The atLeastClause represents an atleast constraint and

the signature defines a signature constraint.

11.6.2 Constraints

[1] If the atLeastClause is present, the signature shall be absent.

 Rec. ITU-T Z.109 (10/2016) 97

[2] The contextParameter of the corresponding actual context parameter shall conform to the

type identified by the atLeastClause (see clause 8.3 of [ITU-T Z.102]).

[3] If the signature is present, the atLeastClause shall be absent.

[4] The contextParameter of the corresponding actual context parameter shall be of a type that

contains elements that meet the constraints for the elements identified in the signature.

 NOTE 1 – An actual context parameter shall be of the same type or a subtype of the type identified

by the atleast clause of the corresponding formal context parameter (see clause 8.3 of [ITU-T Z.102])

[5] A FormalContextParameter shall not be used as a supertype in a generalization and it shall

not be used as an atLeastClause of another FormalContextParameter.

 NOTE 2 – It is not allowed to use a formal context parameter as the base type in a type expression or

in an atleast constraint of a formal context parameter (see clause 8.3 of [ITU-T Z.102]).

11.6.3 Semantics

Before an SDL-UML element having defined context parameters is mapped to the SDL-2010 abstract

syntax, all formal context parameters have to be replaced by the corresponding actual context

parameters as defined in clause 8.1.2 of [ITU-T Z.102].

11.6.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.2 Type expression

 8.3 Context parameters

 8.3.10 Sort context parameter

 8.3.9 Synonym context parameter

UML-SS [OMG UML]:

 7.3.34 NamedElement (from Kernel, Dependencies)

11.7 GateContextParameter

The metaclass GateContextParameter is a subtype of the metaclass FormalContextParameter. The

metamodel diagram for the metaclass is defined in Figure 11-12.

The metaclass GateContextParameter represents a gate context parameter. A gate context parameter

specifies parameterization by a gate.

11.7.1 Attributes

• inGate: GateConstraint[0..1] {subsets FormalContextParameter::signature}

 defines a list of signals that are receivable by a specific agent type.

• outGate: GateConstraint[0..1] {subsets FormalContextParameter::signature}

 defines a list of signals that a specific agent type is capable of sending.

11.7.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall reference a

<<Port>> Port.

[2] The atLeastClause shall be empty.

[3] It is allowed to omit at most only one of the inGate or outGate properties.

[4] If inGate and outGate are present, both shall have the same endpointConstraint.

98 Rec. ITU-T Z.109 (10/2016)

[5] If the inGate GateConstraint is present, the signals defined by its signalList (if present) shall

contain all those signals defined by the required <<Interface>> Interface of the <<Port>>

Port of the corresponding actual context parameter.

[6] If the outGate GateConstraint is present, the signals defined by its signalList shall be included

in the set of signals defined by the provided <<Interface>> Interface of the <<Port>> Port

that is the corresponding actual context parameter.

11.7.3 Semantics

No additional semantics.

11.7.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.12 Gate context parameter

11.8 GateConstraint

The metaclass GateConstraint is a subtype of the metaclass Element. The metamodel diagram for the

metaclass is defined in Figure 11-12.

The metaclass GateConstraint represents a gate constraint of a gate context parameter.

11.8.1 Attributes

• signalSet: Classifier[0..*]

 defines a list of signals that are used to constrain the set of input or output signals of a

port.

• endpointConstraint: Class[0..1]

 the source or destination for specified signals of a port.

11.8.2 Constraints

[1] Each item referenced in the signalSet shall be a <<Signal>> Signal or <<Interface>>

Interface.

[2] The endpointConstraint property shall reference an <<ActiveClass>> Class.

11.8.3 Semantics

No additional semantics.

11.8.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.12 Gate context parameter

11.9 InterfaceContextParameter

The metaclass InterfaceContextParameter is a subtype of the metaclass FormalContextParameter.

The metamodel diagram for the metaclass is defined in Figure 11-13.

The metaclass InterfaceContextParameter represents an interface context parameter. An interface

context parameter specifies parameterization by an interface.

 Rec. ITU-T Z.109 (10/2016) 99

11.9.1 Attributes

No additional attributes.

11.9.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to an

<<Interface>>Interface.

[2] The signature shall be empty.

[3] If present, the atLeastClause shall refer to an <<Interface>> Interface.

[4] If the atLeastClause is present, the <<Interface>>Interface referenced by the corresponding

actual context parameter shall conform to the <<Interface>> Interface of the atLeastClause.

11.9.3 Semantics

No additional semantics.

11.9.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.13 Interface context parameter

11.10 ProcedureContextParameter

The metaclass ProcedureContextParameter is a subtype of the metaclass FormalContextParameter.

The metamodel diagram for the metaclass is defined in Figure 11-5.

The metaclass ProcedureContextParameter represents a procedure context parameter. A procedure

context parameter specifies parameterization by a procedure.

11.10.1 Attributes

• procedureSignature: Operation[0..1]

 {subsets FormalContextParameter::signature, ordered}

 the <<Operation>> Operation that defines the procedure signature constraint.

11.10.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to an

<<Operation>> Operation.

[2] If present, the atLeastClause shall refer to an <<Operation>> Operation.

[3] Each ownedParameter of the <<Operation>> Operation that is the actual context parameter

shall have the same type and the same aggregation as the corresponding ownedParameter of

the procedureSignature, and (if present) both shall have the same type.

[4] Each ownedParameter that has a direction of out or inout of the <<Operation>> Operation

that is the actual context parameter shall have the same type as the corresponding

ownedParameter of the procedureSignature.

11.10.3 Semantics

No additional semantics.

11.10.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

100 Rec. ITU-T Z.109 (10/2016)

 8.3.3 Procedure context parameter

11.11 SignalContextParameter

The metaclass SignalContextParameter is a subtype of the metaclass FormalContextParameter. The

metamodel diagram for the metaclass is defined in Figure 11-6.

The metaclass SignalContextParameter represents a signal context parameter. A signal context

parameter specifies parameterization by a signal.

11.11.1 Attributes

• signalSignature [0..*] {subsets FormalContextParameter::signature, ordered}

 a list of items that define the signal signature constraint.

11.11.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to a

<<Signal>>Signal.

[2] If present, the atLeastClause shall refer to a <<Signal>> Signal.

[3] Each item of the signalSignature shall be a <<Property>> Property.

[4] If signalSignature is present, each ownedProperty of the <<Signal>> Signal that is the actual

context parameter shall have the same type and the same aggregation as the corresponding

<<Property>> Property of the signalSignature.

11.11.3 Semantics

No additional semantics.

11.11.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.5 Signal context parameter

11.12 SortContextParameter

The metaclass SortContextParameter is a subtype of the metaclass FormalContextParameter. The

metamodel diagram for the metaclass is defined in Figure 11-10.

The metaclass SortContextParameter represents a sort context parameter. A sort context parameter

specifies parameterization by a type.

11.12.1 Attributes

• literalSignature: Property[0..*]

 {subsets FormalContextParameter::signature, ordered}

 a list of literals that are a part of the sort signature.

• operatorSignature: Operation[0..*]

 {subsets FormalContextParameter::signature }

 a set of operation signatures for operators and that are a part of the sort signature.

• methodSignature: Operation[0..*]

 {subsets FormalContextParameter::signature }

 a set of operation signatures for methods and that are a part of the sort signature.

 Rec. ITU-T Z.109 (10/2016) 101

11.12.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall reference a

<<DataTypeDefinition>> Class or <<Interface>> Interface.

[2] If present, the atLeastClause shall refer to a <<DataTypeDefinition>> Class or <<Interface>>

Interface.

[3] If the signature is not empty, each item defined by the literalSignature, operatorSignature and

methodSignature shall match with a corresponding item of the current actual context

parameter.

11.12.3 Semantics

No additional semantics.

11.12.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.10 Sort context parameter

11.13 SynonymContextParameter

The metaclass SynonymContextParameter is a subtype of the metaclass FormalContextParameter.

The metamodel diagram for the metaclass is defined in Figure 11-9.

The metaclass SynonymContextParameter represents a synonym context parameter. A synonym

context parameter specifies parameterization by a constant value.

11.13.1 Attributes

• sort: Classifier {subsets FormalContextParameter::signature}

11.13.2 Constraints

[1] The corresponding actual context parameter shall be a synonymContextParameter.

[2] The atLeastClause shall be empty.

[3] The sort shall refer to a <<DataTypeDefinition>> Class or <<Interface>> Interface.

[4] The type property of an SdlExpression that is the actual context parameter and the sort

property of a SynonymContextParameter shall reference the same type definition.

11.13.3 Semantics

No additional semantics.

11.13.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.9 Synonym context parameter

11.14 TimerContextParameter

The metaclass TimerContextParameter is a subtype of the metaclass FormalContextParameter. The

metamodel diagram for the metaclass is defined in Figure 11-8.

The metaclass TimerContextParameter represents a timer context parameter. A timer context

parameter specifies parameterization by a timer.

102 Rec. ITU-T Z.109 (10/2016)

11.14.1 Attributes

• sortList: Classifier[0..*] {subsets FormalContextParameter::signature, ordered}

 a list of references to data type or interface definitions that constrain the timer used as

the actual context parameter.

11.14.2 Constraints

[1] The contextParameter shall be a <<Timer>> Signal.

[2] The contextParameter of the corresponding actual context parameter shall refer to a

<<Timer>> Signal.

[3] The atLeastClause shall be empty.

[4] If sortList is present, each item of the sortList shall refer to a <<DataTypeDefinition>> Class

or <<Interface>> Interface.

[5] If sortList is present, each ownedProperty of the <<Timer>> Signal that is the actual context

parameter shall have a type that is equal to the corresponding item of the sortList.

11.14.3 Semantics

No additional semantics.

11.14.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.8 Timer context parameter

11.15 VariableContextParameter

The metaclass VariableContextParameter is a subtype of the metaclass FormalContextParameter. The

metamodel diagram for the metaclass is defined in Figure 11-7.

The metaclass VariableContextParameter represents a variable context parameter. A variable context

parameter specifies parameterization by a variable.

11.15.1 Attributes

No additional attributes.

11.15.2 Constraints

[1] The contextParameter shall be a <<Property>> Property that represents a variable definition

(see clause 7.13.3).

[2] The contextParameter of the corresponding actual context parameter shall refer to a

<<Property>> Property that represents a variable definition (see clause 7.13.3).

[3] The atLeastClause and the signature shall be empty.

11.15.3 Semantics

No additional semantics.

11.15.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.6 Variable context parameter

 Rec. ITU-T Z.109 (10/2016) 103

12 Predefined data

This clause defines a set of predefined data types as a UML model library for SDL-UML. The data

types are contained in a <<Package>> Package named Predefined and they are implicitly available in

models with applied SDL-UML profile. In order to mark a data type definition as predefined, all

<<DataTypeDefinition>> Classes specified in this clause have an isPredefined property of true.

The predefined data types are divided into non-parameterized types, which are used directly, and

parameterized types, which need to have all their context parameters bound before they are usable.

The semantics of the data types and their provided operations are defined in clause 14 of

[ITU-T Z.104]), except if a different semantics is explicitly mentioned below.

12.1 Non-parameterized data types

The non-parameterized data types of SDL-2010 are the following types: Boolean, Integer, Natural,

Character, String, Real, Duration, Time, Bit, Bitstring, Octet and Octetstring. In

SDL-UML, these data types are represented as instances of <<DataTypeDefinition>> Class or

<<LiteralType>> Class or <<Syntype>> Class with names equal to those defined in SDL-2010.

12.1.1 Boolean

The predefined data type Boolean is represented as an instance of <<LiteralType>> Class. This

SDL-UML data type definition provides the same literals and operations as defined in clause 14.1 of

[ITU-T Z.104].

12.1.2 Character

The predefined data type Character is represented as an instance of <<LiteralType>> Class. This

SDL-UML data type definition provides the same literals and operations as defined in clause 14.2 of

[ITU-T Z.104].

12.1.3 Charstring

The predefined data type Charstring is represented as an instance of <<DataTypeDefinition>> Class

that is a subtype of the parameterized String <<DataTypeDefinition>> Class.

The formalContextParameterList is empty.

The actualContextParameterList consists of:

• An ActualContextParameter with an empty synonymContextParameter and a

contextParameter that refers to the Character <<DataTypeDefinition>> Class. This is a

concrete binding to the formal context parameter Itemsort of String.

The SDL-UML data type definition Charstring provides the same operations as defined in

clause 14.4 of [ITU-T Z.104].

12.1.4 Integer

The predefined data type Integer is represented as an instance of <<LiteralType>> Class. This

SDL-UML data type definition provides the same literals and operations as defined in clause 14.5 of

[ITU-T Z.104].

12.1.5 Natural syntype

The predefined syntype Natural is represented as an instance of <<Syntype>> Class, which has a

Dependency association to the constrained Integer <<LiteralType>> Class. The constant property

of the Natural <<Syntype>> Class consists of a RangeCheckExpression representing the concrete

syntax expression constants >= 0 as defined in clause 14.6 of [ITU-T Z.104].

104 Rec. ITU-T Z.109 (10/2016)

12.1.6 Real

The predefined data type Real is represented as an instance of <<LiteralType>> Class. This

SDL-UML data type definition provides the same literals and operations as defined in clause 14.7 of

[ITU-T Z.104].

12.1.7 Duration

The predefined data type Duration is represented as an instance of <<LiteralType>> Class. This

SDL-UML data type definition provides the same literals and operations as defined in clause 14.11

of [ITU-T Z.104].

12.1.8 Time

The predefined data type Time is represented as an instance of <<LiteralType>> Class. This

SDL-UML data type definition provides the same literals and operations as defined in clause 14.12

of [ITU-T Z.104].

12.1.9 Bit

The predefined data type Bit is represented as an instance of <<LiteralType>> Class that is a subtype

of Boolean <<LiteralType>> Class. The SDL-UML data type definition Bit provides the same

literals and operations as defined in clause 14.14 of [ITU-T Z.104].

12.1.10 Bitstring

The predefined data type Bitstring is represented as an instance of <<LiteralType>> Class. This

SDL-UML data type definition provides the same literals and operations as defined in clause 14.14

of [ITU-T Z.104].

12.1.11 Octet syntype

The predefined syntype Octet is represented as an instance of <<Syntype>> Class, which has a

Dependency association to the constrained Bitstring <<LiteralType>> Class. The constant property

of the Octet <<Syntype>> Class consists of a RangeCheckExpression representing the concrete

syntax expression size = 8 as defined in clause 14.15 of [ITU-T Z.104].

12.1.12 Octetstring

The predefined data type Octetstring is represented as an instance of <<DataTypeDefinition>>

Class that is a subtype of the parameterized String <<DataTypeDefinition>> Class.

The formalContextParameterList is empty.

The actualContextParameterList consists of:

• An ActualContextParameter with an empty synonymContextParameter and a

contextParameter that is a reference to the Octet <<DataTypeDefinition>> Class. This is a

concrete binding to the formal context parameter Itemsort of String.

The SDL-UML data type definition Octetstring provides the same operations as defined in

clause 14.15 of [ITU-T Z.104].

12.2 Parameterized data types

This clause provides parameterized data types for SDL-UML predefined types with context

parameters. Each of these parameterized data types is an instance of <<DataTypeDefinition>> Class

that provides a set of formal context parameters as required for the particular type represented.

12.2.1 Array

The predefined data type Array is represented as an instance of <<DataTypeDefinition>> Class.

 Rec. ITU-T Z.109 (10/2016) 105

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class

with the name Index.

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class

with the name Itemsort.

The actualContextParameterList is empty.

The SDL-UML data type definition Array provides the same operations as defined in clause 14.8 of

[ITU-T Z.104].

12.2.2 Bag

The predefined data type Bag is represented as an instance of <<DataTypeDefinition>> Class.

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class

with the name Itemsort.

The actualContextParameterList is empty.

The SDL-UML data type definition Bag provides the same operations as defined in clause 14.13 of

[ITU-T Z.104].

12.2.3 Powerset

The predefined data type Powerset is represented as an instance of <<DataTypeDefinition>> Class.

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class

with the name Itemsort.

The actualContextParameterList is empty.

The SDL-UML data type definition Powerset provides the same operations as defined in

clause 14.10 of [ITU-T Z.104].

12.2.4 String

The predefined data type String is represented as an instance of <<DataTypeDefinition>> Class.

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class

with the name Itemsort.

The actualContextParameterList is empty.

The SDL-UML data type definition String provides the same operations as defined in clause 14.3

of [ITU-T Z.104].

12.2.5 Vector

The predefined data type Vector is represented as an instance of <<DataTypeDefinition>> Class that

is a subtype of the parameterized Array <<DataTypeDefinition>> Class.

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class

with the name Itemsort.

• A SynonymContextParameter with a contextParameter that is a <<Property>> Property with

the name MaxIndex.

106 Rec. ITU-T Z.109 (10/2016)

The actualContextParameterList property consists of:

• An ActualContextParameter with an empty synonymContextParameter and a

sortContextParameter that is a reference to the Indexsort <<DataTypeDefinition>> Class.

This is a binding to the formal context parameter Index of Array.

• An ActualContextParameter with an empty synonymContextParameter and a

sortContextParameter that is a reference to the Itemsort <<DataTypeDefinition>> Class.

This is a binding to the formal context parameter Itemsort of Array.

In addition, the Vector <<DataTypeDefinition>> Class owns the Indexsort <<Syntype>> Class as

a nestedClassifier. The constant property of the Indexsort <<Syntype>> Class consists of a

RangeCheckExpression representing the concrete syntax expression constants 1:MaxIndex as

defined in clause 14.9 of [ITU-T Z.104].

12.3 Pid

The predefined data type Pid is represented as an instance of <<Interface>> Interface. This

SDL-UML data type definition is the supertype of all interface types (see clause 14.16 of

[ITU-T Z.104]).

12.4 UndefinedVariable

The predefined element UndefinedVariable is an instance of LiteralNull and shall be used in order

to represent omitted variables of a <<Transition>> Transition that maps to a Call-node. The

UndefinedVariable element maps to the UNDEFINED node in the abstract syntax of SDL-2010.

 Rec. ITU-T Z.109 (10/2016) 107

Appendix I

Example language specification

(This appendix does not form an integral part of this Recommendation.)

The main body of this Recommendation defines a UML profile for SDL-2010 for the purposes of

providing the semantics for formal design and specification languages. It is possible to define the

abstract grammar of the formal design and specification language in terms of a UML metamodel and

this language is given a precise dynamic semantics by the mapping defined by this Recommendation

to the SDL abstract syntax.

The UML profile presented in this Recommendation therefore supports the use of UML as a vehicle

for more formally specifying reactive systems than is usually the case with members of the UML

language family.

This appendix provides an example of the concrete grammar of a practical design and specification

language, and its mapping to the UML metamodel. The design and specification language illustrated

in this appendix is a language for unambiguous specification and description of the way reactive

systems (such as telecommunication systems, communication systems or information systems)

behave. By means of the profile given in this Recommendation, specifications constructed using this

practical language are formal in the sense that it is possible to analyse and interpret them

unambiguously.

This appendix therefore demonstrates how this Recommendation can be utilized to define the

semantics for a practical design and specification language.

The example language is presented in three parts: the Concrete grammar describes the syntax and

syntactic constraints a well-formed specification shall adhere to. The Model describes

transformations on the concrete syntax that are applied before the concrete syntax is mapped to the

UML metamodel. The Mapping describes the mapping of the concrete syntax to the UML metamodel

defined by the UML profile given in this Recommendation. The meaning of the language is then

determined as follows: the UML profile describes the mapping of the subset of the UML metamodel

supported to the abstract syntax of SDL, and finally, SDL describes how to interpret a resulting

specification.

While the example language represents a practical design and specification language which has been

used to specify a wide range of reactive systems in application areas ranging from telecommunication

network elements to enterprise information applications, the focus of this appendix is to serve as an

illustration of the definition of the semantics of a practical design and specification language using

the UML profile provided by this Recommendation. The techniques exhibited in this appendix can

be used to define other specification languages within the UML language family. A specification

language so defined can also take advantage of widely available tools based on UML metamodels.

I.1 Conventions

This clause defines the conventions used for describing the example language specification for this

Recommendation. The metalanguages and conventions introduced are solely introduced for the

purpose of describing the language unambiguously. The conventions of [b-ITU-T Z.111] apply

throughout this document.

In the following, other than this clause, each clause may contain the following subclauses:

– The subclause entitled "Concrete grammar" specifies the concrete syntax for each

non-terminal of the language.

– The subclause entitled "Model" specifies transformations on the concrete syntax that are

applied before the concrete syntax is mapped to the UML metamodel.

108 Rec. ITU-T Z.109 (10/2016)

– The subclause entitled "Mapping" provides the mapping of the concrete syntax to the UML

metamodel supported in this Recommendation.

I.1.1 Concrete grammar

The Concrete grammar is specified in the format defined in [b-ITU-T Z.111], clause 5.4.2, augmented

by the following additional conventions:

– Rather than using the lexical unit names <asterisk>, <plus sign>, <vertical line>, <left square

bracket>, <right square bracket>, <left curly bracket> and <right curly bracket> to

distinguish terminal symbols for characters from the symbols of the metalanguage, these

terminal symbols are denoted by the corresponding characters in bold Courier New font. For

example, <left curly bracket> and <right curly bracket> are denoted by { and }.

– The convention ~<xxx> denotes any token other than the token specified by <xxx>. This

notation is only used in the lexical rules, see clause I.2.1.

For an element <xxx> of the Concrete grammar, in the text the phrase "<xxx> list" refers to any list

of <xxx> items, whether possibly empty or not, or with separators or not.

To avoid cumbersome formulations, the convention is adopted that the name of the non-terminal or

terminal may be prefixed by the name of the production when no confusion is likely to arise. For

example, when referring to the <identifier> of a <signal definition>, instead of the cumbersome

phrase "the <identifier> of the <signal definition>" the phrase "the signal <identifier>" may be used.

Similarly, when referring to the definition that is referenced by an identifier indirectly contained in

another definition, instead of the cumbersome phrase "the <xxx> definition referenced by the

<identifier> of the <name> in <yyy>", it is convention to use the simpler phrase "the <xxx> referenced

by <yyy>". For example, instead of "the <class definition> referenced by the <identifier> of the <type

identifier> of the <stimulus definition item>" the simpler "the class referenced by the <stimulus

definition item>" is used.

Each syntax item in this appendix is contained or used by at least one other syntax item in this

appendix except:

<specification>

 which is the container for all other items and thus the starting rule for the concrete syntax.

<lexical unit>

 collects all lexical units.

The Concrete grammar defines the example language specification for this Recommendation and may

be supplemented by a set of syntactic constraints. The syntactic constraints apply to the immediately

preceding productions of the Concrete grammar. When no confusion is likely to arise, the phrase "of

the <xxx>", where <xxx> refers to the preceding production of the Concrete grammar, is omitted.

When a set of syntactic constraints apply to all syntax productions of a subclause, they follow the

productions.

The syntax of the Concrete grammar may be further supplemented by a Model (see clause I.1.2

below). A system specification conforms to the language if it conforms to the Concrete grammar and

the syntactic constraints (see [b-ITU-T Z.111], clause 5.1) after application of the Model, if present.

The grammar given in this appendix has been written to aid the presentation in this appendix so that

the rule names are meaningful in the context they are given and are readable in text. This means that

there are a number of apparent ambiguities that are easily resolved by systematic rewriting of the

syntax rules.

 Rec. ITU-T Z.109 (10/2016) 109

I.1.2 Model

Some constructs are considered to be shorthand notation for other equivalent concrete syntax

constructs. For example, omitting an input for a signal that could possibly be received in a state is

shorthand notation for an input for that signal followed by an empty transition back to the same state.

The order of application of such shorthand notations is from the outside of the specification in, unless

it is specifically stated otherwise. Shorthand notations may in turn introduce syntax to which further

shorthand notations can be applied. Shorthand notations are applied until further shorthand notations

can no longer be applied, unless it is explicitly stated otherwise.

These transformations often create entities with unique identifiers. The phrase "an anonymous

identifier" refers to such a newly created unique identifier. To avoid cumbersome formulations, the

phrase "the anonymous entity", where "entity" may be a more specific kind of entity, refers to "the

entity with the newly created anonymous identifier".

I.1.3 Mapping

The way a system specification behaves is defined by the mapping of the concrete syntax to a

metamodel conforming to the restrictions of this Recommendation. This representation of the

specification is then mapped to the abstract syntax of SDL by the mechanism defined in this

Recommendation. Finally, the meaning of a conforming specification is defined by interpretation of

the abstract syntax of SDL as defined in [ITU-T Z.100], [ITU-T Z.101], [ITU-T Z.102],

[ITU-T Z.103], [ITU-T Z.104] and [ITU-T Z.107].

If no explicit representation is given for an alternative in a production of the textual grammar that

contains a single non-terminal, then the production represents what that non-terminal represents if the

production reduces to this alternative. Only those attributes and associations of the abstract syntax

that are relevant for the mapping to the SDL abstract syntax are discussed. Additional attributes and

associations may be populated due to constraints of UML or this Recommendation.

NOTE 1 – For example, all <entities> inherited by an <agent definition>, <interface definition>, <signallist

definition> or <class definition> are contained in the inheritedMember property. As this property is not relevant

for the mapping to the SDL abstract syntax, it is omitted in this discussion.

NOTE 2 – As a further example, there are a number of associations and intervening model elements that

connect the model elements in sequential actions which do not have an impact on the mapping to the SDL

abstract syntax. Consider the relation between a SendSignalAction and the destination that is its target. In the

UML metamodel, the target is an ActionInputPin such that its fromAction is a ReadStructuralFeatureAction

where the object is an ActionInputPin that references in its fromAction a model element representing the

destination. Such intervening associations and model elements are omitted in this discussion but shall be

constructed when a UML model corresponding to the Concrete grammar is created.

This Recommendation introduces stereotyped metaclasses for all metaclasses used from the UML.

To simplify the presentation, when the name of the stereotyped metaclass is the same as the name of

the UML metaclass, the name of the stereotyped metaclass is used. For example, instead of

<<Signal>>Signal, the shorter designation Signal is used. In other words, all UML metaclasses used

are considered to be implicitly stereotyped by the stereotype introduced in this Recommendation and

these stereotypes are shown only when they differ from the name of the UML metaclass.

Items defined within definitions of other items are not specifically described as contained by the

definition as the ownership of such contained items is apparent from the grammar. For example, an

agent definition contains any agents or classes defined by enclosed agent definitions or class

definitions.

110 Rec. ITU-T Z.109 (10/2016)

I.1.4 Introductory text

Each clause or subclause may be preceded by introductory text which summarizes the purpose of the

clause or subclause or otherwise introduce the definitions that follow.

This appendix may further contain paragraphs labelled as "NOTE".

I.1.5 Environment

A specified system behaves according to the stimuli exchanged with the external world. This external

world is called the environment of the system being specified.

It is assumed that there are one or more computational entities in the environment, and that stimuli

flowing from the environment towards the specified system have associated identities of these

entities. These entities have identities that are distinguishable from any other entity identity within

the specified system.

Although no assumptions can be made about the coordination and sequential order of the behaviour

of the environment, the environment is assumed to obey the constraints given by the system

specification.

I.1.6 Validity and errors

A system specification is a valid specification if and only if it satisfies the syntactic rules and the

static conditions defined in this appendix and the abstract grammar defined by the main body of this

Recommendation.

If a valid specification is interpreted and a dynamic condition is violated, then an error occurs.

Predefined exceptions (see clause I.1.7) are thrown when an error is encountered during the

interpretation of a system. If an exception is thrown, the subsequent behaviour of the system cannot

be derived from the specification and is undetermined.

For most cases where an exception might be thrown (for example, a range check or the access of

undefined variables), it is possible to include checks that test for a possible erroneous situation and

perform actions that avoid behaviour that would otherwise cause an exception. Static analysis or

dynamic interpretation of a specification might also indicate when it is inevitable that an exception is

thrown.

I.1.7 Package Predefined

[ITU-T Z.104] defines a predefined set of data types in a package Predefined. The definitions in the

package Predefined are assumed to be available in this appendix.

I.2 Lexical rules and names

This clause covers lexical units, commonly used symbols, and the visibility, resolution and use of

names.

 Rec. ITU-T Z.109 (10/2016) 111

I.2.1 Lexical rules

Lexical rules define lexical units. Lexical units are terminals of the Concrete grammar.

Concrete grammar

<lexical unit> ::=

 <simple name>

 | <quoted name>

 | <integer name>

 | <real name>

 | <string name>

 | <keyword>

 | <special>

 | <comment>

NOTE 1 – <simple name>, <quoted name>, <integer name>, <real name> and <string name> are lexical

alternatives for a <name>. The letter sequences defined by <keyword> items are the keywords of the Concrete

grammar. The tokens defined by <special> represent character combinations that serve as separators, special

operation identifiers or other symbols in the Concrete grammar. A <comment> represents comment text. Other

lexical rules (such as <letter> or <decimal digit>) that are not alternatives of <lexical unit> are used only in

the lexical rules.

The characters in a <lexical unit> are defined by the International Reference Version (IRV) of the

International Reference Alphabet [b-ITU-T T.50]). A (non-space) control character is allowed

wherever a space is allowed, and has the same meaning as a space.

IRV delete characters are ignored.

The use of the extended character set of UCS (see [b-ISO/IEC 10646]) is allowed. UCS includes IRV

characters (see [b-ITU-T T.50]) as a subset. Non-printing UCS characters that do not correspond to

an IRV character are treated in the same way as a control character is treated.

If an extended character set is used, the printing characters that are not defined by IRV are permitted

to appear freely in a <character string> or in a <comment>. A printing character of an extended

character set that corresponds to an IRV <letter> is equivalent to the IRV <letter>. Similarly, a

printing character of an extended character set that corresponds to an IRV <decimal digit> or a

character in <other special> is equivalent to the IRV <decimal digit> or <other special>, respectively.

A printing character of an extended character set that represents a letter in some script and does not

correspond to an IRV <letter> is allowed to be used as a <letter>. Characters of an extended character

set are treated in the order they occur in the model source, which possibly does not correspond to the

apparent printing order depending on how characters in the script are printed (such as right to left,

left to right, or in combination).

It is allowed to insert any number of spaces before or after any <lexical unit>. Inserted spaces or

<comment> items have no syntactic relevance, but sometimes a space or a <comment> is needed to

separate one <lexical unit> from another.

All <lexical unit> items except <keyword> items, <uppercase letter> items and <lowercase letter>

items are distinct. Therefore AB, aB, Ab, and ab represent four different <name> items. An all-

uppercase <keyword> is treated the same as the all lowercase <keyword> with the same spelling

(ignoring case), but a mixed case letter sequence with the same spelling as a <keyword> represents a

<name>.

For conciseness, within the lexical rules and the Concrete grammar, the lowercase <keyword> as a

terminal denotes that the uppercase <keyword> with the same spelling is allowed in the same place.

For example, the keyword default represents the lexical alternatives { default | DEFAULT }

The first character that is not part of a <lexical unit> according to the syntax specified above

terminates a <lexical unit>.

112 Rec. ITU-T Z.109 (10/2016)

<simple name> ::=

 * { <letter> | { <decimal digit>}}{_ | <alphanumeric>}*

<quoted name> ::=

′{<simple name> | <prefix operation name> | <infix operation name> |

 <postfix operation name>}′

If a sequence of tokens recognized as a <name> matches a <keyword>, it is not allowed as a <name>.

For example, agent cannot be used as a <name>.

NOTE 2 – If a <lexical unit> is possibly either a <name> or a <keyword>, it is a <keyword>.

A <quoted name> resulting from attaching an apostrophe symbol ′ before and after a <name> may

be used instead of the <name> wherever a <name> may be used.

NOTE 3 – A token representing a <keyword> may be used in a <quoted name> and may be used wherever a

<name> may be used. For example, ′agent′() may be used to call an operation ′agent′, albeit it would not

be allowed to use the keyword agent as name.

If two <quoted name> items containing a <prefix operation name>, <infix operation name> or

<postfix operation name> item differ only in case, the semantics of the lowercase spelling applies, so

that (for example) the expression ′REM′(a, b) means the same as ′rem′(a, b), which means the

same as a rem b.

<integer name> ::=

 <decimal digit>+

<real name> ::=

 <integer name> . <integer name> [<exponent>]

<exponent> ::=

 {e | E } [- | +] <integer name>

<alphanumeric> ::=

 <letter> | <decimal digit>

<letter> ::=

 <uppercase letter> | <lowercase letter>

<uppercase letter> ::=

 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<lowercase letter> ::=

 a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

<decimal digit> ::=

 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<string name> ::=

 <character string>

 | <hex string>

 | <bit string>

<character string> ::=

 " { <string esc> | ˜{\ | "}}* "

Control characters and spaces in a <character string> are significant: a sequence of spaces is not

treated as one space in a <character string>.

<string esc> ::=

 \ {b | t| n | f | r | " | \}

 Rec. ITU-T Z.109 (10/2016) 113

<hex string> ::=

 ′ { <decimal digit> | <hex digit> }* ′ {H | h}

<hex digit> ::=

 a | b | c | d | e | f | A | B | C | D | E | F

<bit string> ::=

 ′ {0 | 1}* ′ {B | b }

<keyword> ::=

 agent | agentset | attribute | break | channel | class | const |

 constructor | continue | create | default | do | else | entry | exit |

 export | extends | for | from | goto | if | import | in | inout | input |

 interface | literals | mod | nextstate | none | now | null | offspring |

 operation | opt | out | output | parent | part | port | priority | ref |

 service | rem | required | reset | return | save | self | sender | set |

 signal | signallist | start | state | stereotype | stop | switch |

 syntype | template | then | this | timer | to | type | val | variable | via |

 when | while | with | xor | #else | #endif | #if | #ifdef | #ifndef

<special> ::=

 <prefix operation name>

| <infix operation name>

| <postfix operation name>

| <other special>

<prefix operation name> ::=

 - | !

<infix operation name> ::=

 <= | <| == | ~~ | = | >= | > | | | | - | != | !~ | // | / | * | && | + | :? | : |

 mod | rem | xor

<postfix operation name> ::=

 -- | ++

<other special> ::=

 <<| _ | , | ; | := | :: | : | ? | /* | >> | */ | .. | . | (| ({ |) | [|] | { | } | }) | @

<comment> ::=

 // ˜{<line feed>| <carriage return>}* [<carriage return>] <line feed>

 | /* { ˜{*/}| <comment> }* */

The tokens <line feed> and <carriage return> refer to the characters at position 0/10 and 0/13,

respectively, of the IRV C0 set.

Control characters and spaces in a <comment> are significant: a sequence of spaces is not treated as

one space in a <comment>.

NOTE 4 – Comments bounded by /* and */ may contain nested comments.

I.2.2 Comment stereotype

A special stereotype is available to indicate comments that are guaranteed not to be treated as space,

but instead are considered part of the specification.

Concrete grammar

The comment stereotype is indicated by a <stereotype item> that is a <named value> with the <name>

comment.

114 Rec. ITU-T Z.109 (10/2016)

NOTE 1 – The <expression> in the comment stereotype is the text of the comment and is typically a <character

string>.

Mapping

NOTE 2 – The mapping for a comment stereotype is given in clause I.4.5.

I.2.3 Namespace and visibility of names

A namespace defines a context within which a name is valid and can be used. When a name is valid

and can be used, it is called "visible". Each name belongs to a namespace, which is the namespace

enclosing the definition of the name.

The following productions introduce namespaces: <package definition>, <class definition>, <agent

definition> and <interface definition>.

Concrete grammar

A namespace may allow a <name> to be visible outside of the namespace. The specification of

visibility controls the visibility of the <name> outside of a namespace. Visibility is specified by the

application of the stereotypes <<public>>, <<protected>> and <<private>>. A <name> can be

used in an <identifier> to reference an <entity> defined in a namespace from outside of that

namespace only if that <name> is visible outside of the namespace. Only one of the stereotypes

<<public>>, <<protected>> or <<private>> may be present in a definition or <visibility clause>.

An <import definition> introduces <name> items from another package into the namespace of the

containing <definition unit>, see clause I.3.3, so that these <name> items can be used in an

<identifier> without a <qualifier list>.

To use an <identifier> to reference an <entity>, the <name> of the entity has to be visible.

Namespaces may restrict the visibility of the <name> of an <entity> defined within the namespace.

Restricting visibility avoids every <name> having global visibility, so that the same <name> can be

used in different contexts for different entities.

Namespaces are scope units. In addition, a namespace may contain scope units that may introduce

local variable <name> items which hide more global <name> items visible in a namespace from view

within that scope unit. Scope units are defined by the following non-terminal symbols of the concrete

grammar: <package definition>, <class definition>, <agent definition>, <interface definition>,

<signallist definition>, <service definition>, <state definition>, <operation definition>, <constructor

definition>, <entry action>, <exit action>, <start transition>, <input>, <continuous transition>,

<spontaneous transition>, <labeled transition>, <connect transition>, <compound statement>, <if

statement>, <decision statement>, <type decision statement>, <for statement>, <while statement>

and <compound expression>.

The following productions may introduce local variable <name> items into a scope unit: <class

definition>, <agent definition>, <service definition>, <state definition>, <stimulus>, <statements>,

<loop clause> and <compound expression>. Local variable <name> items cannot be made visible

outside their scope unit and cannot have a visibility stereotype applied.

Model

If an <entity> does not contain a visibility stereotype, this is shorthand notation for having default

visibility applied, as described in Table I.2.1.

 Rec. ITU-T Z.109 (10/2016) 115

Table I.2.1 – Default visibility of entities within a given context

Context Entity Default visibility

Package all entities public

Class operation realizing interface public

Class, agent constructor public

Class, agent all other operations protected

Class, agent attribute private

Agent port public

Agent channel protected

Agent signal, signallist protected

Agent agentset protected

Class literal public

Class, agent interface, class, agent, syntype protected

Interface operation public

Mapping

A name represents a NamedElement. If the stereotype <<public>>, <<private>> or

<<protected>> is applied, visibility is public, private or protected, respectively.

I.2.4 Identifiers, names and name resolution

A specification consists of a hierarchy of definitions that each associate a name with an entity. There

are various different kinds of entities, including packages, classes or operations. In addition, name

items may reference defined entities or may reference properties of entities within the context of an

entity.

A name is established by the definition of an entity. The following productions are definitions:

<package definition>, <export definition>, <renaming>, <class definition>, <constructor definition>,

<agent definition>, <interface definition>, <signallist definition>, <signal definition>, <timer

definition>, <syntype definition>, <port definition>, <channel definition>, <attribute definition>,

<variable definition>, <literal definition>, <agentset definition>, <operation definition>,

<parameter>, <result>, <service definition>, <state definition>, <state connection points>, <state

list>, <labeled transition>, <labeled statement>, <loop variable definition> and <context

parameter>.

It is allowed to use same name for different entities, as long as they belong to different entity kind

groups or are defined in different namespaces, but the identity of the entity includes the context of

the definition, its kind, and possibly other properties such as the signature in the case of an operation.

The definition context is the path to the definition of an entity from an outer level package or the

system.

The identity of an element used in the specification (other than in its definition) is usually established

through an identifier, which includes a name and may include a qualifier list that gives the path to the

definition of the entity. However, if the complete qualifier list were given in the concrete syntax for

every identifier, these qualifier lists would obscure the specification and make it tedious to write. For

this reason it is allowed to omit the qualifier list or part of the qualifier list in the concrete syntax of

an identifier if the element is unambiguously established.

Concrete grammar

<identifier> ::=

 <qualified name> | <unqualified name>

116 Rec. ITU-T Z.109 (10/2016)

<qualified name> ::=

 <qualifier list> <name>

<unqualified name> ::=

 <name>

<qualifier list> ::=

 <absolute qualifier list> | <relative qualifier list>

<absolute qualifier list> ::=

 :: <qualifier>*

An <absolute qualifier list> gives the full path from the system specification to the entity definition.

<relative qualifier list> ::=

 <qualifier>*

If the <qualifier list> is omitted or if a <relative qualifier list> is used (i.e., the qualifier list does not

give the full path to the entity definition referenced by <name> in <base identifier>), the full path is

determined by name resolution, see below.

<qualifier> ::=

 <name> [<actual context parameters>] ::

The <name> in <qualifier> shall reference a type, a service, or a package.

Either the <qualifier> refers to a supertype of an entity defined by a type definition or the <qualifier>

reflects the logical hierarchical structure from the system level to the defining context, such that the

system level is the leftmost textual part. The <identifier> of an entity is then represented by the

qualifier, the <name> of the entity, and, only for operations, the signature.

<name> ::=

 <simple name>

 | <quoted name>

 | <integer name>

 | <real name>

 | <string name>

The <name> of an <entity> which is referenced by an <identifier> is determined by name resolution

as given below. Name resolution identifies the definition for an <identifier>; it selects the definition

of the <entity> among all the visible alternative definitions, if any.

Except for a <name> in an <operation definition>, each distinct <name> in a specification always

corresponds to a distinct token and each occurrence of the <name> corresponds to the same token. In

the case of a <name> in an <operation definition>, the token depends also on the signature of the

operation (the parameters and the result).

A scope unit may contain a list of entity definitions. Each of the definitions defines one or more

<entity> items belonging to a certain entity kind and having an associated <name>. Each <entity> has

its defining context in the scope unit that defines it.

Entities are grouped into entity kinds. The following entity kind groups exist:

a) package, agent, class, interface;

b) channel, port;

c) signal, timer, signallist;

d) variable, parameter, attribute, agentset, state;

e) literal, operation;

 Rec. ITU-T Z.109 (10/2016) 117

f) service;

g) label.

Each entity of a kind group shall have an <identifier> different from any other entity of the same kind

group. A syntype (see clause I.9.1.7) belongs to the kind group its <parent type> belongs to. If a

<name> is introduced in a <renaming> (see clause I.3.3) it belongs to the kind group the <identifier>

of the <renaming> belongs to.

NOTE 1 – Consequently, no two definitions in the same scope unit and belonging to the same entity kind

group shall have the same <name>, except operations defined in the same <class definition> that differ in at

least one argument <type>.

Entities with the same <name> are allowed in a scope if they are of different kind groups. For

example, the same <name> can be used for an agent and a class, but the same <name> cannot be used

for a class and an interface.

Operations with the same <name> are allowed in the same scope if they have different signatures,

see clause I.9.1.5.

Entities of the same kind and with the same <name> (and for operations, with the same signature)

shall not appear as entities in a type and in a supertype unless they are virtual, see clause I.4.3.

A context parameter is an entity of the same entity kind as the corresponding actual context parameter.

If a <qualifier> can be understood both as qualifying by an enclosing scope and as qualifying by a

supertype, it denotes an enclosing scope.

An entity can be referenced using an <identifier>, if the <identifier> can be bound to the entity

definition using resolution by container or, for entities of entity kind group e), resolution by context.

The binding of an <identifier> to a definition through resolution by container proceeds in the

following steps, considering every entity kind valid for the context where the <identifier> occurs, and

starting with the scope in which the <identifier> occurs, if the <identifier> has a <relative qualifier

list> or no <qualifier list> is present; or starting with the system scope, if the scope unit has an

<absolute qualifier list>; or starting with the scope defined by the (static) type of the <target>, if the

<identifier> occurs in an <invocation>:

a) If a visible <package definition> or type definition exists with the same <name> as the

leftmost <qualifier>, resolution by container for the <identifier> with the leftmost

<qualifier> removed is attempted in that <package definition> or type definition; otherwise

b) if a unique entity exists in a scope unit with the same <name> and a valid entity kind, and the

<name> is visible, the <identifier> is bound to that entity; otherwise

c) if the <identifier> is an <invocation>, resolution by container is performed in the scope unit

defined by the static type of the <target>; otherwise

d) if the scope unit is a specialized type definition, resolution by container is performed in the

scope unit defined by a <super type> until the <identifier> is bound to a unique entity that is

a visible constructor or literal, or a type is reached that has no specialization or instantiation;

otherwise

e) if the scope unit is a <template instantiation>, resolution by container is performed in the

scope unit defined by the <base identifier> until the <identifier> is bound to a unique entity

that is a visible constructor or literal, or a type is reached that has no specialization or

instantiation; otherwise

f) if the scope unit has an <import definition> and a unique entity exists with the same

<identifier> and a valid entity kind and is visible in the referenced <package definition>, the

<identifier> is bound to that entity; otherwise

118 Rec. ITU-T Z.109 (10/2016)

g) if the scope unit has an <interface definition> or <signallist definition> and a unique entity

exists with the same <identifier> and a valid entity kind and is visible in the <interface

definition> or <signallist definition>, respectively, the <identifier> is bound to that entity;

otherwise

h) resolution by container is performed in the scope unit that defines the current scope unit

unless that scope unit is a <package definition>.

NOTE 2 – In other words, <name> items reference entities that are declared in the current scope, or in an

enclosing scope (unless the current scope is a <package definition>), or have been imported into the current

scope. A <qualified name> is resolved by resolving the <qualifier list> and then resolving the <identifier> in

the namespace referenced by the <qualifier list>. When the <qualifier list> contains multiple <qualifier> items,

the resolution is iterative, starting from the leftmost qualifier, or the system specification, if an <absolute

qualifier list> is used.

When an <identifier> references an entity that belongs to entity kind group e), the binding of the

<identifier> to a definition shall be resolvable by context. Resolution by context is attempted after

resolution by container; that is, if binding of an <identifier> through resolution by container is

possible and this binding does not violate any static constraints, this binding is used even if resolution

by context could bind that <identifier> to another entity also.

NOTE 3 – Consequently, resolution by context is only applied if a unique binding that satisfies all static

constraints cannot be found through resolution by container.

The context for resolving an <identifier> is an <assignment> (if the <identifier> occurred in an

<assignment>), a <decision statement> (if the <identifier> occurred in the <expression> or

<constraint> of a <decision statement>), a <type decision statement> (if the <identifier> occurred in

the <expression> or <type> items of a <type decision statement>) or an <expression> that is not part

of any other <expression>, otherwise. Resolution by context proceeds as follows:

a) For each <identifier> occurring in the context, find the set of visible <name> items matching

the <name> of <identifier> and a valid entity type for the context.

b) Consider only those elements that do not violate any static type constraints. Each remaining

element represents a possible, statically correct binding of the <identifier> items in the

<expression> to entities.

c) Remove all elements that represent an operation definition in a supertype of a type, where an

operation definition with equal signature is present in the type, or where an operation is

present in the type such that the signature of this operation can be converted into the signature

of the operation in the supertype by applying the conversions below, or vice versa.

d) For each identified operation, determine the conversions that have to be applied to the actual

parameters to match the parameters in the identified operation definition, if any. For each

operation, count the number of mismatches considering the worst conversion (see below) in

any argument.

e) Compare the elements in pairs, dropping those with more mismatches, if both elements in a

pair have the same worst conversion applied, or dropping those with the worse conversion

(see below).

f) If there is more than one remaining element, all non-unique <name> items shall represent the

same operation signature; otherwise in the context it is not possible to bind the <identifier>

items to a definition.

The following conversions are applicable to an expression in step d) of resolution by context:

1) coercion of the dynamic type of the expression to a supertype, if the expression corresponds

to an <in parameter>; or

2) substitution of the default for an omitted parameter; or

 Rec. ITU-T Z.109 (10/2016) 119

3) if the number of actual parameters is more than the number of parameters and the last

parameter is a list type, and all actual parameters including the actual parameter

corresponding by position to the last parameter have a type compatible with the <type

identifier> in the list type, replacement of those actual parameters by a single expression

returning a collection of those actual parameter expressions (see clause I.9.2.6).

In steps d) and e) of resolution by context, a conversion further down the above list is worse than a

conversion higher up in this list.

A class may realize operations with the same <name> and signature from two separate interfaces. An

agent may use signals with the same <name> from two separate signallists. In these situations, the

<name> items are considered to be references to the same definition and can be used without

qualification.

When an <identifier> references an entity that does not belong to entity kind group e), the <identifier>

is bound to an entity that has its defining context in the nearest enclosing scope unit in which the

<qualifier list> of the <identifier> is the same as the rightmost part of the <absolute qualifier list>

denoting this scope unit. If the <identifier> does not contain a <qualifier>, then the requirement on

matching of <qualifier> items does not apply.

Mapping

If the <qualifier> list is empty, a <qualified name> references a <name> defined in or imported into

the current namespace. If the <qualifier> list is not empty, the <qualified name> references a <name>

in another namespace. The <name> represents the name of the defined or imported element.

NOTE 4 – The interpretation of a <template instantiation> is given in clause I.4.4.1.

A <qualifier> indicates the Namespace a name is defined in. The <identifier> represents the name in

the Namespace.

NOTE 5 – The interpretation of a qualifier with <actual context parameters> is given in clause I.4.4.1.

I.3 Organization

It is not usually practical to describe a system in a single definition unit. The language therefore

supports the partitioning of the specification into a number of definition units and the use of packages

to organize the specification.

I.3.1 Entities

Each entity is defined within a namespace, which is the entity or package within which it is defined.

Entities in the system specification are contained in an unnamed global namespace.

Table I.3.1 lists the kinds of entities that may appear in a specification, where (that is, at what level

of a specification) they may appear, and whether their definition may be parameterized. "Global"

refers to the outermost namespace, that is, the unnamed namespace introduced by the system

specification (the term "definition" is omitted from this table for conciseness).

Concrete grammar

<entities> ::=

 { <stereotype>* <entity>* }

 | ;

<entity> ::=

 <import definition>

 | <export definition>

 | <visibility clause>

 | <class definition>

 | <agent definition>

120 Rec. ITU-T Z.109 (10/2016)

 | <interface definition>

 | <signallist definition>

 | <syntype definition>

 | <signal definition>

 | <timer definition>

 | <attribute definition>

 | <variable definition>

 | <agentset definition>

 | <service definition>

 | <state definition>

 | <transition>

 | <start transition>

 | <labeled transition>

 | <entry action>

 | <exit action>

 | <operation definition>

 | <constructor definition>

 | <literal definition>

 | <channel definition>

 | <port definition>

 | <selected entities>

Mapping

Each <entity> in the <entity> list represents the definition of model elements contained in the

containing definition.

Each <entity> represents the definition of a model element. The containing definition represents

owner.

Table I.3.1 – Entity kinds

Entity May appear in
May be

specialized

May be

parameterized

definition unit global, package No No

package global, package No No

export package No No

import global, package No No

visibility clause package No No

class global, package, agent, class Yes Yes

agent global, package, agent Yes Yes

interface global, package, class, agent Yes Yes

signallist global, package, agent Yes Yes

syntype global, package, agent, class Yes No

signal global, package, agent, signallist No Yes

timer global, package, agent No No

attribute class No No

variable global, package, agent, class, service, statements No No

agentset agent No No

service global, package, agent No No

 Rec. ITU-T Z.109 (10/2016) 121

Table I.3.1 – Entity kinds

Entity May appear in
May be

specialized

May be

parameterized

state service No No

transition service No No

start transition service No No

labeled transition service No No

entry action composite state No No

exit action composite state No No

operation global, package, class, agent, service No Yes

constructor class, agent, service No Yes

literal class, agent No No

channel agent No No

port agent No No

selected entities any entity list No No

I.3.2 Specification

A <specification> is described as a <system specification>, possibly augmented by a set of <package

definition> items. A <package definition> allows definitions to be used in different contexts by

referencing the definitions in the package in these contexts or by importing <name> items from the

package into these contexts, see clause I.3.3.

Concrete grammar

<specification> ::=

 <package definition>* <system specification>

<system specification> ::=

 <definition unit>* <system>

<definition unit> ::=

 <entity>*

A <definition unit> corresponds to a file which contains a set of <entity> items.

NOTE 1 – The manner in which the <system> is provided is not defined in this appendix.

An <entity> in a <definition unit> shall be one of the following: <class definition>, <agent

definition>, <interface definition>, <signallist definition>, <syntype definition>, <service definition>,

<operation definition>, <signal definition>, <timer definition>, <variable definition>, <import

definition>, <export definition> <visibility clause>.

A <variable definition> in a <definition unit> shall have <immutability> const defined.

NOTE 2 – Variables in definition units are global to the (system or package) context and cannot be modified.

Model

If the definition of the package Predefined is not present in a <specification>, the package definition

of package Predefined is inserted into the <package definition> list of the <specification>.

I.3.3 Package

In order for definitions to be used in different systems they have to be defined within a package.

122 Rec. ITU-T Z.109 (10/2016)

There is no special syntax to define packages; packages are represented by directories. A directory

may contain a number of files. A file represents a <definition unit> and may contain multiple entity

definitions.

A top-level directory represents a global namespace. This directory may contain directories

(representing packages) or files (representing definition units). Each directory, representing a

package, may in turn contain directories (representing packages) or files (representing definition

units).

A package may export a list of name items or it may export a list of name items associated with a

name that could be used to reference that list of name items in a subsequent import.

A definition unit may import a list of name items from another package or from a type within the

current package after which these name items can be used without a qualifier list to refer to the

definitions in the original package or in the type.

Concrete grammar

<package definition> ::=

 <definition unit>* <package definition>*

A <package definition> corresponds to a directory of the file system. The <name> of the package is

the name of the directory.

Each file in a directory corresponding to a package definition corresponds to a <definition unit> (see

clause I.3.2). All <entity> items in a <definition unit> of a package belong to the package.

Each directory in a directory corresponding to a package definition corresponds to a contained

<package definition>.

If the <system specification> is omitted in a <specification>, there shall exist a mechanism for using

the <package definition> items in other <specification> items. The mechanism is not otherwise

defined in this appendix.

<export definition> ::=

 export { <named export> | <unnamed export> | <asterisk export> | <no export> };

If <no export> is present in an <export definition>, no other <export definition> items shall be present

in the containing <package definition>.

<named export> ::=

 <name> = <exported names>

<unnamed export> ::=

 <exported names>

<asterisk export> ::=

 *

<no export> ::=

 none

<exported names> ::=

 <exported name>+[| ,]

<exported name> ::=

 [<kind>] <identifier>

The <identifier> in an <exported name> shall reference a visible and public <name>. The <qualifier>

list of the <identifier> items in an <exported name>, if present, shall contain at most one <qualifier>

which shall reference a type definition in the package containing the <export definition>. If such

<qualifier> is present, the <name> shall not be the <name> of a type definition.

 Rec. ITU-T Z.109 (10/2016) 123

An <exported name> may contain a <name> in its <identifier> which the package has imported from

other packages.

<import definition> ::=

 import { <named import> | <unnamed import> | <asterisk import> | <local import> };

<named import> ::=

 <imported names> from <identifier>

<unnamed import> ::=

 <identifier>

<asterisk import> ::=

 * from <identifier>

<local import> ::=

 <imported names> from <name>

The <identifier> in a <named import>, <unnamed import> and <asterisk import> shall reference a

visible <package definition>. This package shall be part of the <specification> or a package contained

in another package or else there shall exist a mechanism (not defined by this appendix) for accessing

the referenced <package definition>, just as if it were a part of the <specification>. All <package

definition> items referenced by the <name> items in the <qualifier> of the <identifier>, if present,

shall be visible relative to the containing package. A package is visible if its <identifier> is visible

according to the visibility rules for <identifier> items. The visibility rules imply that a package is

visible in the package in which it is logically contained.

The <name> in a <local import> shall reference a <class definition> or <agent definition> contained

in the current package or be an imported <name> referencing a <class definition> or <agent

definition>.

An <import definition> shall be used only when no name collision occurs. A name collision occurs

when the import definition introduces a name into the namespace of a package where the same name

of the same kind is already used in that namespace without qualification.

NOTE 1 – It is allowed to import multiple names of the same kind from different packages, as long as these

names are not used in the importing package without qualification.

NOTE 2 – It is allowed to shadow an imported name in a narrower scope.

<imported names> ::=

 <imported name>+[| ,]

<imported name> ::=

 [<kind>] { <identifier> | <renaming> }

The <identifier> in an <imported name> of a <named import> shall reference a <name> visible in

the package referenced in the containing <named import>.

The <identifier> in an <imported name> of a <local import> shall reference a visible <name>.

The <qualifier> list of the <identifier> items in an <imported name>, if present, shall contain at most

one <qualifier> which shall reference a type definition in the package referenced in the <import

definition>.

<renaming> ::=

 <name> = <identifier>

<kind> ::=

 operation | service | state | signal | timer | agent | class | interface |

 signallist | type | literals | syntype | channel | port | attribute |

 variable | agentset | package

124 Rec. ITU-T Z.109 (10/2016)

The <kind> type is used for selection of the <name> of a type definition and also of a syntype

<name>.

The <kind> in an <exported name> or <imported name> denotes the entity kind of the <name>

exported or imported, respectively. Any pair of <kind> and <identifier> shall be distinct within an

<import definition>. For an <imported name>, <kind> shall be omitted if and only if the <name> of

the <identifier> is unique in the package referenced by the <import definition>.

<visibility clause> ::=

 <identifier>+[| ,] <stereotype>* ;

A <visibility clause> shall not contain the stereotype <<protected>>.

A <visibility clause> shall not contain a <stereotype> that relaxes the visibility constraints imposed

by the referenced definition.

Model

Each package shall import implicitly or explicitly the package Predefined. Each package shall

implicitly or explicitly import all public <name> items from the package Predefined, including the

public <name> items for all operations of classes defined in the package Predefined. Every package

shall include an <unnamed import> of the package Predefined, if equivalent <import definition>

items are not already present in that package. Further, every package shall include a <local import>

listing all public operator <name> items for each <class definition> imported from the package

Predefined in its <imported names>, if such <local import> is not already present in that package.

If a package does not contain an <export definition>, this is shorthand for an <asterisk export>.

When an <export definition> contains <asterisk export>, this is shorthand for an <export definition>

that lists all public <name> items defined in the package and all public <name> items that are

imported from other packages in the <exported names> of its <unnamed export>. The <exported

name> items also contain the <kind> of each exported <name>.

If an <import definition> contains a <name> in the <imported names> of a <named import> where

that <name> is the <name> of a <named export> in an <export definition> of the <package

definition> referenced by the <identifier>, then the <name> is replaced by the list of <name> items

contained in the <exported names> of the <named export>. After this transformation, the referenced

<named export> is transformed into an <unnamed export> with the <exported names> as its

<exported names>.

An <unnamed import> is shorthand for a <named import> such that every <name> of an <identifier>

in any <exported name> item of the <package definition> referenced by the <identifier> of the

<unnamed import> appears as an <imported name> of the <named import>. If the <exported name>

contains <kind>, the <imported name> contains that <kind> also.

When an <import definition> contains <asterisk import>, this is shorthand for an <import definition>

that lists all public <name> items in the package referenced in the <identifier> and all public <name>

items imported into the referenced package in the <imported names> of its <named import>.

For every <name> of an <imported name>, a <visibility clause> is created with the stereotype

<<private>>.

An element shall have public visibility to be able to be exported from a namespace or imported into

a namespace. If a <visibility clause> is present where a <qualified name> in the <qualified name>

list is the name of an element, the visibility of the element is considered to be as defined in the

<stereotype> items. The visibility of the element within the package is not affected by the <visibility

clause>.

 Rec. ITU-T Z.109 (10/2016) 125

Mapping

A <package definition> represents a Package. A name represents name. The <stereotype> items in the

<stereotype> list apply to the Package. Each <entity> in <entities> represents an ownedMember. A

package uses another package if either the fully qualified name of the used package is the <qualifier>

of a name referenced in the using package or if the using package contains an <import definition>

where <qualified name> is the fully qualified name of the used package.

An <export definition> establishes the exported elements of the containing package.

NOTE 3 – An <export definition> does not represent a model element. The exported elements are used to

establish what an <import definition> represents.

The package exports all elements identified in its <exported names>.

Each <imported name> in the <imported names> of an <import definition> represents ElementImport.

The importedElement is represented by the <qualified name>. If <kind> is present, the imported

element shall be of the indicated kind. If <renaming> is present, the <name> represents the alias, and

the <qualified name> represents the importedElement. The current namespace is the

importingNamespace and visibility is private. The package the element is imported from is determined

based on the <qualifier> list. If an <absolute qualifier list> is used, the element is imported from the

package identified by following the package name items constituting the <qualifier> list from the

root of the package hierarchy; otherwise, the element is imported from the package identified by

following the package name items from the current package.

I.4 Basic concepts

This clause introduces language mechanisms to support the modeling of application-specific

phenomena by instances and application-specific concepts by types. The concepts of type and

instance and their relationship are fundamental to a specification. This clause introduces the basic

semantics of type definitions, templated definitions, template instantiations, binding of context

parameters, specialization and instantiation.

I.4.1 Types and instances

Type definitions introduce named entities, referred to as types, that define the behaviour and structure

of a set of data items, referred to as the instances of the type. A data item always has a type which

defines its behaviour and its structure.

A type describes a set of properties. All instances of the type have this set of properties. An example

of a type definition is an agent definition. An example of a property of this type is a service definition.

An example of a set of properties is an agentset definition.

The following productions are type definitions: <class definition>, <agent definition>, <interface

definition> and <syntype definition>.

The following productions represent definitions of properties of types: <agent definition>, <class

definition>, <interface definition>, <syntype definition>, <signal definition>, <service definition>,

<state definition>, <entry action>, <exit action>, <start transition>, <labeled transition>, <input>,

<save>, <spontaneous transition>, <continuous transition>, <connect transition>, <channel

definition>, <port definition>, <signallist definition>, <operation definition>, <constructor

definition>, <literal definition>, <attribute definition> and <agentset definition>.

Clause I.5.1 introduces type definitions for agents, while other type definitions are introduced in

clause I.9.1.1 (class) and clause I.9.1.2 (interface).

An instance is created by the instantiation of a type. An example of an instance is an agent instance,

which is an instantiation of an agent. An instance of a particular type has all the properties defined

for that type. A type may be declared as abstract, in which case the type shall not be instantiated.

126 Rec. ITU-T Z.109 (10/2016)

Specialization allows one type, the subtype, to be based on another type, its supertype. A subtype

inherits all the properties of the supertype. The subtype may further add properties to those inherited

from the supertype or it may redefine virtual properties of the supertype. A virtual property is allowed

to be constrained in order to provide for analysis of the more general types.

A parameterized (templated) type is a type where some entities are represented as context parameters.

A context parameter of a type definition may have a constraint, limiting the actual parameters that

can be bound (see clause I.4.4.1). The constraints allow static analysis of the parameterized type. An

example of a parameterized type is a parameterized agent definition where one of its contained

agentsets is specified by a type context parameter; this allows the parameter to be of different types

in different contexts, that is, instances of that agent may contain agentsets of different agents

depending on the context.

The type of an instance (or instance set) based on a parameterized identifier is the anonymous type

formed by binding the parameters of the parameterized identifier to the actual parameters given.

Binding all context parameters of a parameterized type yields an unparameterized type. There is no

subtype relationship between a parameterized type and the type derived from it.

Concrete grammar

<type> ::=

 <type identifier>

 | <constrained type>

 | <list type>

<type identifier> ::=

 <identifier> | <template instantiation> | stop

A <type identifier> identifies a type (a set of elements or data items) introduced by a type definition.

NOTE 1 – To avoid cumbersome text, this appendix relies on the convention that the phrase "the type S" (or

"the S type") is used instead of "the type defined by the type definition with <name> S in its <type identifier>",

when no confusion is likely to arise.

NOTE 2 – The keyword stop represents the <type identifier> of the stop signal, see clause I.7.2.

<constrained type> ::=

 <type identifier> <constraint>

The <expression> items in each <range> of the <constraint> shall be constants.

<list type> ::=

 { <type identifier> | <constrained type> }*

A <list type> shall be present only in the <parameters> of a <constructor definition> or an <operation

definition> and in an <operation context parameter>.

Model

A <list type> is transformed into a <syntype definition> with an anonymous <name> and a parent

type that is an anonymous type derived from the predefined type String with the <type identifier>

in the <list type> as type parameter.

A <constrained type> is shorthand notation for an implied <syntype definition> having an anonymous

<name>. This anonymous <syntype definition> is constructed from the <constrained type> by using

<type> as the <type> and <constraint> as the <constraint>.

Mapping

A <type> that is a <type identifier> references a DataTypeDefinition or an <<ActiveClass>>Class.

The <type identifier> represents the name of the definition. A <constrained type> represents a

 Rec. ITU-T Z.109 (10/2016) 127

<<Syntype>>Class where the <type identifier> in <type> represents name and the <constraint>

represents constraint. The interpretation of <list type> is given in the Model above.

I.4.2 Abstract types and operations

A type is abstract if its definition contains the stereotype <<abstract>> or has unbound context

parameters. An operation is abstract if its definition contains the stereotype <<abstract>>.

Concrete grammar

The stereotype <<abstract>> specifies that the entity this stereotype is attached to is abstract; it

applies to <class definition>, <agent definition> and <operation definition>.

A type with unbound <context parameters> is also an abstract type.

A signal defined in <signal definition> referencing an abstract <class definition> shall not be

referenced in an <output>. The constructor for a class defined by an abstract <class definition> shall

not appear in an <operation call>. The constructor for an agent defined by an abstract <agent

definition> shall not appear in a <create request>.

A <class definition> or <agent definition> that is not abstract shall not contain an abstract <operation

definition> as one of its <entities>.

I.4.3 Specialization

A type definition may specify a type as a specialization of another type (the supertype), yielding a

new subtype. A subtype has all the properties of the supertype and optionally has properties in

addition to the properties of the supertype. The subtype optionally redefines virtual properties of the

supertype.

Virtual types optionally have constraints (that is, properties any redefinition of the virtual type shall

have). These properties are used to guarantee properties of any redefinition.

I.4.3.1 Properties of specialized types

A specialized type is based on a type, or a set of types (its supertypes) and defines a new type separate

from its supertypes. The entities of a specialized type definition consists of the entities of the

supertypes and the entities added by the specialization.

Concrete grammar

<specialization> ::=

 : <super type>+[| ,]

<super type> ::=

 <type identifier>

At most one of the <super type> items in the <super type> list shall reference a type definition other

than an <interface definition>.

NOTE – In other words, multiple inheritance is allowed only for interfaces.

A <type identifier> in a <super type> list references the definition of a supertype of the specialized

type. The specialized type is said to be a subtype of the supertype. Any specialization of the subtype

is also a subtype of the supertype.

If a type is (directly or indirectly) a subtype of another type, the supertype, then:

a) the definition of the supertype shall not contain the definition of the subtype;

b) the definition of the supertype shall not be a specialization of the subtype;

c) definitions contained by the definition of the supertype shall not be specializations of the

subtype.

128 Rec. ITU-T Z.109 (10/2016)

A specialized type definition shall not contain a property with the same <name> (and in the case of

operations, also with the same <operation signature>) for a property defined in a supertype, unless

the property in the subtype redefines the property in the supertype.

An inherited property of a type may be redefined in a subtype of the type if the property is virtual.

An inherited property of a type shall not be redefined in a subtype of the type if the property is not

virtual.

When a type definition has the stereotype <<final>> applied, this type definition shall not be

specialized.

Mapping

The interpretation of <specialization> is given in the clauses where <specialization> is used.

I.4.3.2 Virtuality and redefinition

Within a type, its properties (see clause I.4.1) may be given a virtuality indicating that when the

containing type is specialized it is allowed to redefine these properties in the specialization.

The impact of being virtual on a property differs with the property. For example, virtual operations

are invoked (dispatched) based on the dynamic types of their target. Virtual start transitions replace

the existing start transition invoked when the agent is created.

Concrete grammar

Virtuality applies to all <entity> items representing properties of types and is expressed by the

stereotypes <<virtual>> or <<redefined>>.

When the stereotype <<virtual>> or <<redefined>> is applied to a property, the property is a

virtual property. A virtual property may be redefined in a specialization of the enclosing type.

Otherwise, the property is not a virtual property. If a property is not virtual, the property shall not be

redefined in a specialization of the enclosing type.

A redefined property is a property having <<redefined>> as virtuality or having no virtuality, if this

property was virtual in a super type. Every redefined property shall be directly or indirectly (via

another redefined property) a redefinition of a virtual type that is not redefined.

A virtual property that is a type is a virtual type. A virtual type may have an associated virtuality

constraint which is an <identifier> referencing a definition of the same entity kind as the specialized

type. The virtuality constraint is the <expression> of a <named value> in the virtuality stereotype.

If a virtuality constraint is present and does not reference the type of the virtual property being

constrained, the <type identifier> in <specialization>, if present, shall be the same type or a subtype

of the type referenced by the virtuality constraint.

A virtual property and its constraint shall not have context parameters.

Accessing a virtual type by means of a qualifier denoting one of the supertypes implies the application

of the definition of the virtual property given in the supertype referenced by the qualifier. A type

whose name is hidden in an enclosing subtype by a redefinition of its type is made visible by

qualification with a supertype name. The qualifier consists of only one path item denoting the

supertype.

When a virtual type is redefined, the redefined type shall be the same type as the type referenced in

the virtuality constraint or a subtype of the referenced type.

A subtype of a type that is a virtual property is a subtype of the original type and not of a redefinition.

A property in a subtype shall not be redefined so that it is no longer accessible when the property in

the supertype is accessible. In other words, it is not allowed to hide inherited properties in a

 Rec. ITU-T Z.109 (10/2016) 129

subtype (e.g., by applying the stereotype <<private>> to a property that is <<public>> in the

supertype).Model

When a virtual type does not have a virtuality constraint, the type is used as the virtuality constraint.

The redefinition of a virtual property is allowed in the definition of a subtype of the enclosing type

of the virtual property. In the definition of the subtype, the redefined properties of the virtual property

include when the virtual property applies to other properties of the subtype inherited from the

supertype. A virtual property that is not redefined in a subtype definition has the definition as given

in the supertype definition.

Redefinition may be a replacement of the definition (e.g., an operation of the supertype may be

replaced with a more specific operation in the subtype) or it may be an extension of the definition

(e.g., a port in the subtype may support additional interfaces to those inherited from the supertype).

A redefined property may in turn be virtual in the subtype.

When a property replaces the definition inherited from the supertype, the definition of the property

in the subtype is used instead of the definition inherited from the supertype.

When a property extends the definition inherited from the supertype, the entities of the property are

added to the entities inherited from the supertype. For example, a port on the subtype may specify

that it contains additional signals in its port constraints.

How properties are redefined is discussed in the relevant definitions of each property. Table I.4.1

summarizes the impact of redefinition on properties of a type. Column "Constraint" describes

constraints on the redefinition in terms of properties of the redefined virtual property. For example,

the redefinition of a state shall have at least the connectors of the virtual state it redefines.

Table I.4.1 – Redefinition of virtual properties

Property Redefinition Constraint

agent, class, interface, syntype replaces shall at least be the virtuality

constraint

signal, timer replaces shall at least be the type or add

parameters

service replaces

state replaces shall have at least the connectors

of the supertype

entry action, exit action, start

transition, save, labeled

transition, input, spontaneous

transition, continuous transition,

connect transition

replaces

channel replaces

port, signallist, literal extends

Operation replaces shall have the same parameter

types and may covariantly vary

the result type

attribute, agentset replaces shall have the same type

I.4.4 Templates

A template is a type definition or operation definition with context parameters. It creates an abstract

definition of a type or an operation, leaving properties unspecified. The unspecified properties are

130 Rec. ITU-T Z.109 (10/2016)

denoted by the context parameters, which must all be bound to model elements in order to create a

concrete type that can be instantiated or a concrete operation that can be called.

I.4.4.1 Templated entities

A template instantiation is used to define the properties of an entity in terms of a template. A template

instantiation denotes a new entity formed by binding actual context parameters to a base identifier.

Templated entities may be type definitions, in which case they define a parameterized type, or

operation definitions (for operations defined outside of a class or agent), in which case they define a

parameterized operation.

Concrete grammar

<template instantiation> ::=

 <base identifier> <actual context parameters>

If <actual context parameters> are not supplied for all <context parameter> items in the templated

entity referenced by the <base identifier> and the corresponding <context parameter> does not have

<default> or <default type>, as appropriate, the entity is still templated.

<base identifier> ::=

 <identifier>

The <identifier> in a <base identifier> shall reference a <name> of an entity definition with a

<template>.

NOTE 1 – Templates and context parameters are defined in clause I.4.4.2.

A <context parameter> shall not be used as <base identifier> in a <template instantiation>.

<actual context parameters> ::=

 <{ <actual context parameter>+[| ,]

 | <named actual context parameter>+[| ,] }>

<actual context parameter> ::=

 [<template kind>] {<primary> | <type> | <omitted parameter>}

<named actual context parameter> ::=

 [<template kind>] <name> = {<primary> | <type>}

A <template instantiation> with unbound <actual context parameters> shall not be used as an <actual

context parameter>.

An <omitted parameter> shall be used as <actual context parameter> only if <default> or <default

type> is present in the corresponding <context parameter>.

<template kind> ::=

 <type context parameter kind> | <input context parameter kind> | state | operation |
attribute |port

NOTE 2 – <template kind> may be inserted for additional clarity.

If <template kind> is present, the <actual context parameter> shall be bound to an entity that is of an

appropriate kind, i.e., a type, signal, timer, state or operation.

Model

A <template instantiation> is transformed into an anonymous type defined by applying the actual

context parameters to the context parameters of the template instantiation denoted by the <base

identifier>. The definition of this type with anonymous <name> is formed by:

1) Copying the definition of the <base identifier> into the context where the construct using the

<template instantiation> occurs and changing the <name> to a unique anonymous <name>;

then in this copy

 Rec. ITU-T Z.109 (10/2016) 131

2) Replacing each occurrence of each <template name> by the corresponding <actual context

parameter>;

3) Removing the <context parameter> from the <context parameter> list and removing the

<context parameters> if the <context parameter> list is empty;

4) Replacing the <template instantiation> by the anonymous <name>.

5) If a <template instantiation> textually identical to the current <template instantiation> has

already been transformed, the anonymous <name> for that <template instantiation> is used

rather than creating a new anonymous type.

NOTE 3 – Two textually identical <template instantiation> items denote the same type.

In addition to fulfilling any static conditions on the definition denoted by the <base identifier>, the

anonymous type derived from the <template instantiation> shall also fulfil any static condition on the

resultant type.

NOTE 4 – For example, the static properties on the usage of a <template instantiation> are possibly violated

in the following cases:

– Signal context parameters or timer context parameters could introduce non-disjoint triggers,

depending on the actual context parameters.

– When an output in a scope unit refers to a port or a channel which is not defined in the nearest

enclosing type having ports, instantiation of that type results in an erroneous specification if there is

no communication path to that port.

– When a scope unit has an agent context parameter that is used in an output, the existence of a possible

communication path depends on which actual context parameter will be used.

If the scope unit contains <specialization> and any <actual context parameter> items are omitted in

the <template instantiation>, the <context parameter> items are copied (while preserving their order)

and inserted in front of the <context parameter> items (if any) of the scope unit. In place of omitted

<actual context parameter> items, the template names of corresponding <context parameter> items

are inserted as <actual context parameter> items. These <actual context parameter> items have the

defining context in the current scope unit.

If <named actual context parameter> items are present in the <actual context parameters>, then the

<actual context parameter> items are reordered to match against the <context parameters> based on

the <name> which shall be identical to the <template name> of the corresponding <context

parameter>. Then each <named actual context parameter> is replaced by its <primary> or <type>

item, whichever is present. If <named actual context parameter> items are present in the <actual

context parameters>, and an actual context parameter corresponding to a <context parameter> is

omitted, an <omitted parameter> is inserted in the corresponding position in the <actual context

parameters>.

If an <actual context parameter> is an <omitted parameter>, the data item provided in the

corresponding <default> or <default type> is used as the <actual context parameter>.

The <base identifier> of a <template instantiation> may also denote an <operation definition>. A

concrete <operation definition> is derived from the parameterized <operation definition> in the same

manner as for parameterized types.

Mapping

The <actual context parameters> represent actualContextParameterList.

An <actual context parameter> represents an ActualContextParameter. If the <actual context

parameter> corresponds to a <context parameter> that is not a <value context parameter>, then the

<term> or <type> item represents a contextParameter. If the <actual context parameter> corresponds

to a <context parameter> that is a <value context parameter>, then the <term> or <type> item

represents a synonymContextParameter.

132 Rec. ITU-T Z.109 (10/2016)

I.4.4.2 Context parameters

In order for a definition to be used in different contexts, both within the same system specification

and within different system specifications, definitions can be parameterized with context parameters.

Context parameters are replaced by actual context parameters as defined in clause I.4.4.1.

The following definitions optionally have context parameters: <class definition>, <agent definition>,

<interface definition>, <signallist definition>, <timer definition>, <operation definition>.

Context parameters optionally have constraints (which denote required properties any entity

referenced by the corresponding actual parameters shall have).

Concrete grammar

<template> ::=

 template <context parameters>

The scope unit of a definition with a <template> defines the <template name> for each <context

parameter> used in the definition. The <template name> items of <context parameters> are therefore

visible in the definition.

<context parameters> ::=

 < [<context parameter>+[| ,]] >

<context parameter> ::=

 <type context parameter>

 | <input context parameter>

 | <operation context parameter>

 | <variable context parameter>

 | <state context parameter>

 | <port context parameter>

 | <value context parameter>

A <context parameter> shall be bound only to an <actual context parameter> of the same entity kind

that meets the constraint of the <context parameter>.

A <context parameter> using other <context parameter> items in its <context constraint> shall not

be bound before the other parameters are bound, and if this means there is no possible order for

binding the context parameters the specification is not valid.

<context constraint> ::=

 <atleast constraint>

 | <signature constraint>

Constraints on <context parameter> items are specified by the <context constraint>.

<signature constraint> ::=

 : { <entity>* }

A <signature constraint> specifies sufficient properties of the definition of the actual context

parameter substituted for the context parameter: the definition referenced by the actual context

parameter shall be compatible with the signature constraint. A definition is compatible with the

signature constraint if it contains entities as specified by the entities in the signature constraint.

An <entity> item in a <signature constraint> shall be one of the following <entity> items: <class

definition>, <agent definition>, <literal definition>, <interface definition>, <signallist definition>,

<port definition>, <operation definition>, <signal definition>, <timer definition> or <syntype

definition>. Constructors are identified by an <operation signature> (an unnamed constructor is

referenced by the <type identifier>). A specific <signature constraint> shall only contain those

entities that are permitted for the kind of definition being constrained.

 Rec. ITU-T Z.109 (10/2016) 133

An <entity> in a <signature constraint> shall not contain a <template>.

<atleast constraint> ::=

 : <type>

An <atleast constraint> specifies that the context parameter shall be replaced by an actual context

parameter, which is the same type or a subtype of the type referenced in the <atleast constraint>.

A <context parameter> shall not be used in an <atleast constraint>.

<template name> ::=

 <name>

<type context parameter> ::=

 <type context parameter kind> <template name> <stereotype>* [<context constraint>]

 [<default type>]

If the <context constraint> is omitted, any type is allowed as the actual type context parameter.

<default type> ::=

 = <type>

<type context parameter kind> ::=

 class | agent | interface | signallist | type

<operation context parameter> ::=

 <template name> <operation signature> <stereotype>*

NOTE 1 – An <operation context parameter> binds also to constructors. For an unnamed constructor, the

name of the type is used in the <template name>.

The <name> list and the <default> in <parameter> shall be omitted in the <operation signature> of

an <operation context parameter>.

An <operation definition> is compatible with an operation signature if it has the same <name>, each

<in parameter> of the <operation definition> is type compatible with, and has the same <modifier>

as, the corresponding <in parameter> of the operation signature, each <out parameter> and <inout

parameter> of the <operation definition> has the same <type> and the same <modifier> as the

corresponding <out parameter> or <inout parameter>, respectively, of the operation signature, and

the <result> <type> is a compatible type.

<input context parameter> ::=

 <input context parameter kind> <template name> <stereotype>* [<atleast constraint>]

<input context parameter kind> ::=

 signal | timer

<variable context parameter> ::=

 [attribute] [<modifier>] <template name> <context constraint> <stereotype>*

[<default value>]

<value context parameter> ::=

 const <template name> <context constraint> <stereotype>*

[<default value>]

An <actual context parameter> substituted for a <value context parameter> shall be a <literal

expression> or a <variable access> that is an <identifier>.

<state context parameter> ::=

 state <template name> <state signature> <stereotype>*

An <actual context parameter> substituted for a <state context parameter> shall identify a

<composite state definition>. The <outbound connection points> of the <composite state definition>

134 Rec. ITU-T Z.109 (10/2016)

referenced by the <actual context parameter> shall contain all <name> items contained in the

<outbound connection points> of the <state context parameter>, if any. The <inbound connection

points> of the <composite state definition> referenced by the <actual context parameter> shall

contain all <name> items contained in the <inbound connection points> of the <state context

parameter>, if any.

NOTE 2 – As the <name> items in <state connection points> are separated by comma symbols which also

separate <context parameter> items, the inbound and outbound connection points of a <state context

parameter> need to be surrounded by parentheses if the <state context parameter> is not the last context

parameter in the <context parameters> or is not followed by a <stereotype>.

<port context parameter> ::=

 port <template name> [<port constraints>] <stereotype>*

An <actual context parameter> substituted for a <port context parameter> shall reference a <port

definition>. The <outbound port constraint> of the <port definition> referenced by the <actual

context parameter> shall contain all <identifier> items contained in the <outbound port constraint>

of the <port context parameter>, if any. The <inbound port constraint> of the <port definition>

referenced by the <actual context parameter> shall contain all <identifier> items contained in the

<inbound port constraint> of the <port context parameter>, if any.

NOTE 3 – As the <identifier> items in <port constraints> are separated by comma symbols which also separate

<context parameter> items, the inbound and outbound port constraints of a <port context parameter> need to

be surrounded by parentheses if the <port context parameter> is not the last context parameter in the <context

parameters>.

<default value> ::=

 = <term>

The <default value> shall be a constant.

Model

The context parameters of a definition that is neither a subtype definition nor defined by binding

context parameters in a <template instantiation> are the parameters specified in the <context

parameters>.

The <context parameter> items are bound to <actual context parameter> items in a <template

instantiation>. In this binding, occurrences of context parameters inside the templated definition are

replaced by the actual context parameters. When binding template names contained in <context

parameter> items to definitions (that is, deriving their qualifier, see clause I.2.4), local definitions

other than the <context parameters> items are ignored.

If a scope unit contains <specialization>, any omitted actual context parameter in the <specialization>

is replaced by the corresponding <context parameter> of the <base identifier> in the <template

instantiation> and this <context parameter> becomes a context parameter of the scope unit.

If the actual parameter substituted for a <value context parameter> is an <expression> that does not

reference a <variable definition> with <immutability>, there is an implied <variable definition> with

<immutability> and an anonymous <name> and the same <type> in the context surrounding the

templated definition with the <expression> as <default>.

Mapping

A type definition with <template> represents a Classifier, where the <context parameters> represent

the formalContextParameterList.

A <context parameter> represents a FormalContextParameter.

 Rec. ITU-T Z.109 (10/2016) 135

A <type context parameter> represents SortContextParameter if <type context parameter kind> is

class, interface or type, where each <entity> in <signature constraint> (if present) represents a

signature (a literalSignature, operatorSignature or methodSignature, depending on its kind).

A <type context parameter> represents AgentTypeContextParameter if <type context parameter kind>

is agent, where each <entity> in <signature constraint> (if present) represents an agentSignature.

A <type context parameter> represents InterfaceContextParameter if <type context parameter kind> is

signallist.

The <template name> represents contextParameter and the <atleast constraint> (if present) represents

atLeastClause.

An <operation context parameter> represents ProcedureContextParameter. The <template name>

represents contextParameter, <atleast constraint> (if present) represents atLeastClause, and <operation

signature> (if present) represents procedureSignature.

An <input context parameter> represents SignalContextParameter if <input context parameter kind> is

signal or TimerContextParameter if <input context parameter kind> is timer. The <template name>

represents contextParameter, and the <atleast constraint> (if present) represents atLeastClause.

A <variable context parameter> represents VariableContextParameter. The <template name>

represents contextParameter;<atleast constraint> (if present) represents atLeastClause.

A <value context parameter> represents SynonymContextParameter. The <template name> represents

synonymContextParameter, <atleast constraint> (if present) represents atLeastClause and <signature

constraint> (if present) represents sort.

A <state context parameter> represents CompositeStateTypeContextParameter. The <template name>

represents contextParameter, and <state signature> (if present) represents compositeStateTypeSignature.

I.4.5 Stereotype

Stereotypes are a mechanism to provide additional information concerning a definition. For example,

a stereotype can be used to limit the visibility of an operation in a class, or to indicate which properties

of a type may be redefined by a subtype.

Stereotypes may also be used to provide guidance to tools processing a specification. Such stereotypes

are not defined in this appendix.

For generality this appendix includes all places where a stereotype is syntactically valid, regardless

of whether that stereotype is given an interpretation in this appendix or not.

Concrete grammar

<stereotype> ::=

 << [<stereotype item>+[| ,]] >>

<stereotype item> ::=

 <stereotype name> [(<named value>*)]

 | <stereotype name> = <expression>

<stereotype name> ::=

 <name> | <keyword>

<named value> ::=

 [<name> =] <expression>

Table I.4.2 summarizes the stereotypes defined throughout this appendix and their applicability.

136 Rec. ITU-T Z.109 (10/2016)

Table I.4.2 – Stereotypes

Stereotype Applies to See clause

<<comment>> anywhere I.2.2

<<public>>, <<protected>>,

<<private>>
all entities I.2.3

<<abstract>> agent, class, operation,

constructor

I.4.2

<<virtual>>, <<redefined>> all properties I.4.3.2

<<final>> agent, class I.5.1, I.9.1.1

<<static>> operation I.9.1.5

<<extern>> variable, operation, class I.11.2

Any stereotypes not discussed specifically in this appendix are not further defined in this appendix

and have tool-specific or application-specific meaning.

NOTE – For example, a compiler might define a stereotype <<inline>>, to be applied to variable definitions

with the meaning that all occurrences of this variable shall be implemented as directly embedded in the defining

context rather than as pointers to an object on the heap. For a top-level variable this would imply that the

variable is implemented on the stack. As a further example, the compiler may signal an error if it cannot

determine that the actual parameters of an operation call can be interpreted in arbitrary order without affecting

the result of the interpretation. In this case, the compiler might define the stereotype <<pure>> to be applied

to the operation call to indicate to the compiler that the results of the actual parameter expressions are

independent of the order of their interpretation.

Mapping

A <stereotype> defines properties of the containing model element. The <stereotype> items apply as

specified in Table I.4.2.

The stereotype <<abstract>> represents that the isAbstract property of the model element is true.

The stereotype <<static>> represents that the isStatic property of the model element is true.

The stereotype <<const>> represents that the isConstant property of the model element is true.

The stereotype <<virtual>> represents the redefinedElement association of the model element,

linking to the model element that is being redefined.

The stereotype <<final>> represents that the isLeaf property of the model element is true.

The stereotypes <<public>>, <<protected>> and <<private>> represent the visibility property

of the model element being public, protected or private, respectively.

The stereotype <<comment>> represents Comment; the <expression> represents body; the model

element that this stereotype is associated with represents annotatedElement.

Any stereotypes not discussed specifically are not further defined in this Recommendation and have

tool-specific or application-specific meaning.

I.5 Structure

The basic structuring concept for a specification is an agent. Each specification consists of a system

agent, which may contain other agents.

I.5.1 Agent

An agent represents an independent entity in a system, encapsulating its own thread of control and its

own state.

 Rec. ITU-T Z.109 (10/2016) 137

Agents communicate with their environment (the system environment or the external world, or other

agents) by means of signal exchanges that avoid simultaneous access to shared data structures.

Agents may contain other agents. These contained agents are placed in agentsets.

All agents have a state machine which, in collaboration with its component agents, defines its

behaviour. Signals sent to the agent may be handled by the state machine of the agent, or they may

be routed to the components of a composite agent.

Agents may invoke operations in response to signals received. The specific response to signals

depends on the state of the agent. The state of the agent is the state of the state machine of the agent

and the states of its component agents.

Concrete grammar

<agent definition> ::=

 [<template>] agent <name> [<specialization>] <stereotype>* <entities>

The <specialization> shall contain at most one <type>, which shall reference an <agent definition>.

An <entity> in the <entities> of an <agent definition> shall be one of the following: <agent

definition>, <class definition>, <interface definition>, <syntype definition>, <signal definition>,

<signallist definition>, <timer definition>, <variable definition>, <agentset definition>, <operation

definition>, <service definition>, <channel definition>, <constructor definition>, <port definition>.

An <entity> of the <entities> of an <agent definition> shall not have public visibility, except for a

<constructor definition> or <port definition>.

An agent that is not abstract shall contain an unlabelled start transition in its services.

An <agent definition> may be contained within another <agent definition>. A contained <agent

definition> shall not be instantiated outside the agent, that is, instances of the contained agent shall

be within instances of the enclosing agent. The contained agent may access visible entities of the

enclosing agent.

An <agent definition> shall not contain, directly or indirectly, a <variable access> that references a

<variable definition> that is contained in an <agent definition> that contains this <agent definition>,

unless this <variable definition> has <immutability> const defined. An <agent definition> shall not

contain, directly or indirectly, an <assignment> where the <location> references a <variable

definition> that is contained in an <agent definition> that contains this <agent definition>. An <agent

definition> shall not contain, directly or indirectly, an <agent access> where the <agent location>

references an <agentset definition> that is contained in an <agent definition> that contains this <agent

definition>.

NOTE 1 – A variable specified by a <variable definition> contained in an <agent definition> shall be accessed

only from the state machine of the agent that contains the <variable definition>, unless this variable has

<immutability> const defined.

NOTE 2 – Consequentially, an <agent definition> shall not contain a <procedure call> where the referenced

<operation definition> accesses variables of the <agent definition> that do not have <immutability> const.

A type definition contained within an <agent definition> shall not have the visibility <<public>>

applied.

Any <attribute definition>, <variable definition>, <parameter> or <result> with a type defined by

an <agent definition> shall have part <aggregation>.

If a <service definition> of an <agent definition> contains a <constructor definition> with

<parameters>, then a <constructor definition> of the agent shall contain an <operation call> to the

constructor of that service in its <constructor initializer>.

138 Rec. ITU-T Z.109 (10/2016)

Model

If no <specialization> is given, an <agent definition> implicitly specializes the predefined type

Agent.

An agent definition with virtuality is a virtual agent. A virtual agent can be redefined to a subtype in

specializations of the enclosing agent definition, subject to virtuality constraints as further discussed

in clause I.4.3.2. A redefined agent replaces the virtual agent it redefines.

If no <constructor definition> is present and no <specialization> is given, this is shorthand notation

for an unnamed <constructor definition> with a list of <parameter> items in its <parameters>, such

that for every <attribute definition> without <default> and without the stereotype <<static>>, if

any, an anonymous <in parameter> is created with the <type> being the <type> of that attribute, in

the order of occurrence of such attributes in the type definition. The <constructor initializer> consists

of a sequence of assignments to these attributes from the <identifier> of the corresponding <in

parameter>.

If no <constructor definition> is present and <specialization> is given, an unnamed <constructor

definition> is created for every <constructor definition> of the super type, with a list of <parameter

items> in its <parameters>, such that the <parameter> items of the <parameters> of the constructor

of the super type come first, and then for every <attribute definition> without <default> and without

the stereotype <<static>>, if any, an anonymous <in parameter> is created with the <type> being

the <type> of that attribute, in the order of occurrence of such attributes in the type definition. The

<constructor initializer> begins with a call to the constructor defined by the <constructor definition>

with the <identifier> items of the corresponding <in parameter> items as <actual parameters>,

followed by a sequence of assignments to these attributes from the <identifier> of the corresponding

<in parameter>. The <operation statements> are absent in the created <constructor definition> items.

If a service defined in the <agent definition> contains a default constructor that is not called in a

<constructor definition> of the agent, then a call to this constructor is inserted as the final statement

in the <constructor initializer> of that <constructor definition> of the agent.

Mapping

An <agent definition> represents an <<ActiveClass>>Class with the isActive and the isConcurrent

properties being true. The <name> represents name, <specialization> (if present) represents general.

For each <entity> in <entities>, an <attribute definition> or <agentset definition> represents an

ownedAttribute; an <operation definition> or <constructor definition> represents an ownedBehavior; a

<class definition>, <interface definition>, <signal definition>, <timer definition> or <syntype

definition> represents a nestedClassifier; a <channel definition> represents ownedConnector; a <port

definition> represents ownedPort.

NOTE 3 – An <<ActiveClass>>Class with isActive being true is mapped to an SDL agent type definition.

An SDL agent type definition defines both the SDL agent type, which specifies the properties of agent instances

of this agent type, and an SDL interface, which is the type of the identities of the agent instances of this agent

type. In this appendix, the phrase "the type defined by an agent definition" refers to the type of the identities

of the agent instances of this agent, corresponding to the SDL interface defined in this mapping.

If the <agent definition> redefines an <agent definition> in a supertype, the redefined <agent

definition> represents redefinedClassifier.

If the <entities> contain a <service definition>, a StateMachine is constructed. Each <service

definition> represents a region. Any <class definition>, <interface definition>, <syntype definition>,

<variable definition>, <signal definition>, <timer definition> or <operation definition> in that

<service definition> represent properties of the StateMachine. This state machine represents

ownedBehavior.

NOTE 4 – The interpretation of an agent definition with a <template> is given in clause I.4.4.2.

 Rec. ITU-T Z.109 (10/2016) 139

I.5.2 System

A specification describes the instantiation of a particular agent. This agent instance is referred to as

the system, and may contain further agents.

Concrete grammar

<system> ::=

 <singleton agentset>

I.5.3 Agentset

An agentset specifies a set of agent instances of a particular agent type. The agent instances are

interpreted concurrently with each other, the state machine of the agent and other agents in the system.

Concrete grammar

<agentset definition> ::=

 <dynamic agentset> | <singleton agentset>

<dynamic agentset> ::=

 agentset <name> : <type> [<index type>] <stereotype>* ;

<index type> ::=

 / [<type identifier>] [<constraint>]

The <type> of a <dynamic agentset> shall reference an <agent definition>.

The <constraint> shall be a <size constraint>.

For a <dynamic agentset> with a lower bound on its instances established by the <constraint> or the

type referenced by <type identifier>, indicating that initial agent instances will exist in this agentset,

the enclosing <agent definition> shall contain <create request> items in its <constructor definition>

or in <constructor definition> items of its services to create these initial instances.

NOTE 1 – The <constraint> establishes a constraint on the number of agent instances that may be present in

the agentset and is independent of the manner that an agent instance is accessed in the agentset. The manner

the agent instance is accessed is determined by the <index type>.

The <constraint> in a virtual agentset that is a <dynamic agentset> may have a larger upper bound

than the <constraint> it redefines. A <dynamic agentset> shall not be redefined into a <singleton

agentset>.

The redefinition of a <dynamic agentset> shall not change the <type> of the virtual agentset it

redefines.

<singleton agentset> ::=

 agentset <name> : <type> <stereotype>* <default> ;

The <type> of a <singleton agentset> shall reference an <agent definition>.

The <default> shall contain an <operation call> creating the agent instance in the <singleton

agentset> and returning this agent instance as its <result>.

The redefinition of a <singleton agentset> shall not change the <type> of the virtual agentset it

redefines.

Model

If <index type> is not given, or a <type identifier> is not given in <index type>, then the predefined

syntype Natural shall be used as <type identifier> for the <index type> and an <index type> is

created, if absent.

140 Rec. ITU-T Z.109 (10/2016)

An <agentset definition> with virtuality is a virtual agentset and may be redefined. The <agentset

definition> in the redefinition replaces the <agentset definition> in the supertype of the containing

<agent definition>.

A <singleton agentset> is shorthand for a <create request> containing the <operation call> of

<default> as its <operation call> and the <name> of the <singleton agentset> in its <agent location>

inserted at the end of the constructor for the containing <agent definition>.

For a <dynamic agentset>, a set of anonymous <variable definition> items are created, each with a

<type> that is the <type> of the <dynamic agentset> and the <default> null, up to the number of

elements as given by the <constraint> in the <index type>. Each variable corresponding to an

anonymous <variable definition> item is associated with an element of the type referenced by the

<index type>.

NOTE 2 – When agent instances of the agent identified by the type of the agentset are created, their identities

are associated with the variables implied by the agentset. The phrase "an agent instance in the agentset" refers

to an agent instance created as specified by the agentset such that its identity is associated with a variable

implied by the agentset. Each such variable implied by the agentset corresponds to an element of the index

type and can be identified by that element.

For a <singleton agentset> an anonymous <variable definition> is created with a <type> which is the

type of the <singleton agentset> and the <default> null.

Mapping

An <agentset definition> represents Property with <name> representing name, <type> representing

type, and aggregation being composite. For a <singleton agentset>, initialNumber is 0, lowerValue is 1

and upperValue is 1. For a <dynamic agentset>, initialNumber is 0, and if there is a <constraint> on

<index type>, the lowerValue and upperValue correspond to the lower and upper bounds of the

<constraint>; otherwise, if <constraint> is not given, lowerValue and upperValue correspond to the

lower and upper bounds on <type>, if any. The <expression> in <default>, if present, represents

defaultValue.

I.6 Communication

Communication is a fundamental concept in a specification and is allowed between agent instances

provided communication paths (channels) exist between the agent instances. Channels may be

established between the ports on an agent. Any two ports may be connected if they are directly visible

to each other. Ports and channels may impose constraints on the items that may be communicated

across them. Communication between agent instances is asynchronous and discreet, with signals

being the individual items of communication.

I.6.1 Port

Ports are defined in agent definitions and represent connection points for channels connecting the

state machine of the agent or contained agents with its environment, and for connecting the state

machine of the agent with its contained agents.

Ports allow constraints to be specified on the communication that is permitted to flow in and out of

the agent. This also constrains the types of agents that may be connected (via channels) to a port.

Concrete grammar

<port definition> ::=

 port <name> [<port constraints>] <stereotype>* ;

 | port <port constraints> <stereotype>* ;

A <port definition> that does not have a <name> shall have either an <inbound port constraint> or

an <outbound port constraint> and it shall have only one <identifier> in the <identifier> list of its

<inbound port constraint> or <outbound port constraint>, respectively.

 Rec. ITU-T Z.109 (10/2016) 141

<port constraints> ::=

 <inbound port constraint> [<outbound port constraint>]

 | <outbound port constraint> [<inbound port constraint>]

<inbound port constraint> ::=

 in { [<identifier>+[| ,]] | ([<identifier>+[| ,]]) }

<outbound port constraint> ::=

 out { [<identifier>+[| ,]] | ([<identifier>+[| ,]]) }

If the same <identifier> is used in several <signallist definition> items referenced in <port

constraints>, these reference the same signal.

An <identifier> in the <identifier> list of an <inbound port constraint> or <outbound port constraint>

shall reference only <signallist definition> or <signal definition> items.

Model

A <port definition> with virtuality is a virtual port. A virtual port may be redefined in a specialization.

A redefined port is extended in the subtype. The <type identifier> list in an inbound or outbound port

constraint of the redefined port is the union of the <type identifier> lists of the inherited inbound or

outbound port constraints, respectively, and the inbound or outbound port constraints, respectively,

in the redefinition.

If an <identifier> in an <inbound port constraint> or <outbound port constraint> references a

<signallist definition> this is shorthand for the <identifier> items in the referenced <signallist

definition>.

A <port definition> without a <name> is shorthand for a <port definition> having a <name> that is

the <name> of the <identifier> in its <inbound port constraint> or <outbound port constraint>.

Mapping

A <port definition> represents a Port with isBehavior being false. If present, the <name> represents

name; otherwise, an anonymous name is created. Each <type identifier> in its <inbound port

constraint> represents a name in the providedInterface. Each <type identifier> in its <outbound port

constraint> represents a name in the requiredInterface.

I.6.2 Channel

A channel is a directed communication path between two ports. Channels convey the signals used for

communication from one port to another. The signals conveyed in one direction on a channel cannot

be conveyed in the opposite direction unless explicitly stated.

Concrete grammar

<channel definition> ::=

 channel [<name>] <stereotype>* <channel end> <channel end> ;

<channel end> ::=

 <source channel end>

 | <target channel end>

At least one of the <channel end> items shall be a <target channel end>.

A channel is said to be connected to the entity referenced in a <channel destination> in its <source

channel end> or <target channel end>.

NOTE 1 – It is permissible that several channels exist between the same two channel ends.

A <port definition> with an <inbound port constraint> and an <outbound port constraint> may

appear as both <source channel end> and <target channel end> of the same <channel definition>.

142 Rec. ITU-T Z.109 (10/2016)

If the <source channel end> and the <target channel end> reference <port definition> items of the

same <agent definition>, the <channel definition> shall be unidirectional.

The entities referenced by <channel end> items shall be defined in the same scope unit in which the

<channel definition> is contained.

<source channel end> ::=

 from <channel destination>++[| ,]

<target channel end> ::=

 to <channel destination>+++[| ,] [<channel constraint>]

<channel destination> ::=

 <agent port> | <agentset port> | <service destination>

<channel constraint> ::=

 with <identifier>+[| ,]

The <identifier> items in <channel constraint> shall reference either <signallist definition> or

<signal definition> items.

NOTE 2 – It is permissible that the same signal <identifier> occurs in several <channel constraint> items.

<agent port> ::=

 <identifier>

The <identifier> in an <agent port> shall reference a <port definition> in the containing <agent

definition>.

<agentset port> ::=

 <identifier> . <identifier>

The first <identifier> in <agentset port> shall reference an <agentset definition>; the second

<identifier> shall reference a <port definition> in the <agent definition> that is the <type> of the

<agentset definition>.

If a <port definition> is referenced in a <channel end> of the <channel definition>, the <channel

definition> shall be compatible with the relevant <inbound port constraint> or <outbound port

constraint> of the <port definition> (see below).

<service destination> ::=

 <identifier> | <any service>

<any service> ::=

 *

The <identifier> in a <channel destination> that is a <service destination> shall reference a <service

definition> of the containing <agent definition>. If a <target channel end> contains a <service

destination> that is an <identifier>, the signals referenced by <type identifier> items in <channel

constraint> shall not be used in any <service definition> not referenced in the <channel destination>,

even if these <type identifier> items may be referenced in the <channel constraint> of another

<channel definition> connected to that other service.

Channels between ports on an agent (an <agent port>) and an agentset (an <agentset port>) shall be

explicitly specified. Channels from a port to a service of the agent (a <service destination>) shall be

explicitly specified. In particular, a channel to a service carrying a signal shall be specified, if the

service can consume that signal and a channel exists to another service for the same signal. It is

permitted to specify channels carrying a signal to services of the agent even if the agent does not

consume that signal.

 Rec. ITU-T Z.109 (10/2016) 143

A <channel definition> with the <identifier> of a <port definition> in its <channel destination> where

the other <channel destination> is not a <service destination> shall be compatible with the <port

constraints> of the <port definition>.

A <channel definition> is compatible with the <port constraints> if:

a) the port constraint is an inbound port constraint and

1. if the channel has a channel constraint in its target channel end and the port is referenced

in the target channel end, the port constraint conveys the signals in the channel constraint,

or

2. the other channel destination of the channel is a source channel end and references the

port on an agent of the type referenced by a <type identifier> in the inbound port

constraint or a supertype of this agent, or references a port such that all signals conveyed

by that port are conveyed in the inbound port constraint;

b) the port constraint is an outbound port constraint and

1. if the channel has a channel constraint in its target channel end and the port is referenced

in the other channel end, the outbound port constraint conveys the signals in the channel

constraint, or

2. if the channel has a channel constraint in its target channel end and the other channel

destination of the channel is a target channel end and references the port on an agent of

the type referenced by a type identifier in the outbound port constraint or a subtype of

this agent, or references a port which conveys all signals conveyed in the outbound port

constraint.

Model

If a <channel destination> of a <channel end> is <any service>, this is shorthand for a set of <channel

destination> items with <service destination> for each of the services of the containing agent

definition, with the <identifier> of the service as <identifier>. These <channel destination> items are

inserted into the <channel end> instead of the <any service>.

If the <name> is omitted from a <channel definition>, the channel is implicitly and uniquely named.

A <channel definition> where both <channel end> items are a <target channel end> is split into two

separate anonymous <channel definition> items, where one <channel end> is a <target channel end>

and the other <channel end> is a <source channel end> for the same <destination> lists and <channel

constraint> items.

A <channel definition> having an <agentset port> as the <channel destination> of both <channel

end> items is shorthand for individual channels from each of the agent instances in the referenced

agentset to all other agent instances in the set, including the originating agent. Any resulting

bidirectional <channel definition> items connecting an <agent definition> in the agentset to that

<agent definition> itself is split into two unidirectional <channel definition> items as defined above.

If a <channel constraint> is omitted from a <target channel end>, this <channel constraint> is

derived as the union of the signals contained in signallist items referenced in the <outbound port

constraint> items of all ports referenced in <channel destination> items of the <source channel end>

and the signals used in any service referenced in <channel destination> items of the <source channel

end>.

If an <identifier> in a <channel constraint> references a <signallist definition>, this is shorthand for

the <identifier> items in the referenced <signallist definition>. If the same signal <identifier> is

contained in multiple referenced <signallist definition> items, these identify the same signal.

144 Rec. ITU-T Z.109 (10/2016)

A <channel definition> with virtuality is a virtual channel and may be redefined. The <channel

definition> in the redefinition replaces the <channel definition> in the supertype of the containing

<agent definition>.

Mapping

A <channel definition> represents Connector with the delay property being true. The <name> (if

present) represents name; otherwise an anonymous name is created.

Each <channel end> represents a ConnectorEnd referenced by the end property of the Connector. Each

<type identifier> in the <type identifier> list of <channel constraint> represents an InformationItem

conveyed by the corresponding InformationFlow in the direction defined by the <channel end>.

Each <channel destination> represents the role of the respective ConnectorEnd. The <qualified name>

of an <agent port> represents name. The first <qualified name> of an <agentset port> represents

partWithPort; the second <qualified name> represents name. The <qualified name> of a <service

destination> represents name.

I.6.3 Signal

A signal definition specifies that an instance of a designated class may be conveyed in a

communication.

Concrete grammar

<signal definition> ::=

 [<template>] signal <stimulus definition item>+[| ,] ;

An <identifier> with the <name> stop shall not be present in a <stimulus definition item>.

A <context parameter> in the <template> of a <signal definition> shall be a <type context

parameter>.

<stimulus definition item> ::=

 <type identifier> [<parameters>] <stereotype>*

If a <stimulus definition item> contains <parameters>, the <type identifier> shall not contain a

<qualifier list>. A <parameter> shall be an <in parameter> and shall not have ref <aggregation>

nor shall its type contain, directly or indirectly, an <attribute definition> with ref <aggregation>.

If a <stimulus definition item> does not contain <parameters>, the <type identifier> shall reference a

<class definition>. The referenced <class definition> shall not contain, directly or indirectly, an

<attribute definition> with ref <aggregation>. The <type identifier> shall not reference a primitive

type.

NOTE 1 – Consequentially, a signal conveyed to an agent will never contain references to data items owned

by another agent.

The <class definition> referenced by <type identifier> without <parameters> in a redefinition shall

be a subtype of the class definition referenced in the virtual property it redefines. If the <stimulus

definition item> contains <parameters>, a redefinition shall contain at least the <parameter> items

contained in the virtual property it redefines.

Model

When more than one <stimulus definition item> occurs in a <signal definition>, a separate <signal

definition> is created for each <stimulus definition item> and the original <stimulus definition item>

is deleted from the <signal definition>.

For a <stimulus definition item> with <parameters>, a <class definition> with the same <name> as

the <name> in the <type identifier> is constructed. For each <parameter>, an <attribute definition>

with the corresponding <type> is constructed. The <name> of the <parameter> is used as the

 Rec. ITU-T Z.109 (10/2016) 145

<name>; if no <name> is present, an anonymous <name> is used. A constructor for this class is

created with <parameters> as signature and an assignment from each <parameter> to the

corresponding <name> referencing a <variable definition>, as implicitly derived from the attribute

definition (see clause I.9.3.1), in the <constructor initializer>.

NOTE 2 – If a <parameter> does not contain a <name>, an <input variable> corresponding to this

<parameter> is not available.

A <signal definition> with virtuality is a virtual signal and may be redefined. The <signal definition>

in the redefinition replaces the <signal definition> in the supertype of the containing <agent

definition>.

Mapping

Each <stimulus definition item> in <signal definition> represents a Signal. The <type identifier>

represents name. There shall be a <class definition> with the same <type identifier> that is either

already existing or is constructed as described in the Model above. Each <attribute definition> in this

<class definition> represents an ownedAttribute.

NOTE 3 – The interpretation of a signal definition with a <template> is given in clause I.4.4.2.

I.6.4 Signallist

A signallist groups a set of signals and is used in a channel constraint or port constraint to denote that

all signals specified in the signallist definition are included in the channel constraint or port constraint.

The defining context of the signals in a signallist is the scope unit containing the signallist. The signals

in a signallist are visible where the signallist is visible.

Concrete grammar

<signallist definition> ::=

 [<template>] signallist <name> <stereotype>* = <identifier>+[| ,] ;

A <context parameter> in the <template> of a <signallist definition> shall be a <type context

parameter> or <input context parameter>.

The <name> of the <signallist definition> shall not be contained directly or indirectly in the

<identifier> list of a <signallist definition> referenced in the <identifier> list.

Model

If an <identifier> references a <signallist definition>, this is shorthand for including each element of

the <identifier> list of the referenced <signallist definition> instead of the signallist <identifier>.

A <signallist definition> with virtuality is a virtual signallist. A virtual signallist may be redefined in

a specialization. A redefined signallist is extended in the subtype. The <identifier> items of the

redefined signallist are the union of the inherited <identifier> items and the <identifier> items in the

redefinition.

Mapping

The representation of a <signallist definition> is given in the Model above.

NOTE – The interpretation of a signallist definition with a <template> is given in clause I.4.4.2.

I.7 State machine

A state machine is the basic behavioural abstraction used for agents. Each agent has an implicit or

explicit state machine composed of states and the transitions between the states. The behaviour of the

state machine is determined by its current state and input. The behaviours (actions) are specified on

the transitions between the states. Either implicitly or explicitly, a transition is defined for every

146 Rec. ITU-T Z.109 (10/2016)

stimulus in the valid input signal set in every state. That is, for every state in an agent, a transition is

defined for every stimulus that may be received by that agent.

I.7.1 Service

A service is a partitioning of the state machine of an agent. Each service has a state machine, and the

composition of the state machines of these services forms the complete state machine of the agent.

The state machine of a service has an interpretation of interleaving transitions with the state machines

of other services of the same containing agent. At any given time, each service is in one of the states

of that service, or (for one of the services only) in a transition, or has completed and is waiting for

other services to complete. Each transition runs to completion.

Concrete grammar

<service definition> ::=

 service [<name>] <stereotype>* { <entities> | <service instantiation> }

<service instantiation> ::=

 = { <identifier> | <template instantiation> };

An <entity> in the <entities> of a <service definition> shall be one of the following: <class

definition>, <interface definition>, <syntype definition>, <timer definition>, <operation definition>,

<start transition>, <state definition>, <transition>, <labeled transition>, <constructor definition>

and <variable definition>.

An <entity> in a <service definition> shall not contain a <template>.

A <constructor definition> in a <service definition> shall not contain <operation statements>.

The <signal definition> items referenced, directly or indirectly through <signallist definition> items,

in the <channel constraint> items of a <channel definition> referencing a <service definition> in the

<channel destination> of its <target channel end> shall not occur in the <channel constraint> items

of a <channel definition> referencing another <service definition> contained in the same <agent

definition> in the <channel destination> of its <target channel end> if both <channel definition>

items have the same <source channel end>.

NOTE – In other words, the stimuli corresponding to inputs handled by the services of an agent shall be

distinct.

A <service instantiation> shall reference a visible <service definition> in its <identifier> or the

<identifier> of its <template instantiation>.

Model

A <service definition> with virtuality is a virtual service and may be redefined. The <service

definition> in the redefinition replaces the <service definition> in the supertype of the containing

<agent definition>.

When a <service definition> contains a <service instantiation> which is a <template instantiation>,

the Model in I.4.4.1 is applied to the referenced <service definition> and the <service instantiation>

is replaced with the resultant anonymous identifier.

When a <service definition> contains a <service instantiation> that is an <identifier>, the <entities>

of the referenced <service definition> replace the <service instantiation>.

If <service definition> contains a <signal definition> or <timer definition>, these definitions are

moved to the containing <agent definition> and they are given an anonymous <name>.

Mapping

A <service definition> represents Region. The name, if present, represents name; otherwise, an

anonymous name is created. Each <state definition> represents a subvertex; each <transition>, <start

 Rec. ITU-T Z.109 (10/2016) 147

transition>, and each <labeled transition> represents a transition; each <attribute definition>

represents ownedAttribute.

I.7.2 State

A state machine in a state awaits stimuli, which are either signals sent to the agent containing the state

machine, signals sent from other services or from contained agents of that agent, timer signals or

signals sent from within the state machine. When a state detects an enabled stimulus and the guard

condition, if any, is satisfied, and the stimulus arrived via the designated path, if any, the transition

defined for this stimulus is interpreted. Alternatively, a stimulus may be saved to be handled in

another state, or transitions based on conditions being satisfied are interpreted. After interpretation of

a transition, the state machine enters a state, which may be the activating state, or a different state.

Concrete grammar

<state definition> ::=

 <basic state definition>

 | <composite state definition>

<basic state definition> ::=

 state <name> <stereotype>* ;

A virtual basic state definition may be redefined to a composite state definition. A virtual composite

state definition shall be redefined only to a composite state definition.

<transition> ::=

for state { <state list> | (<state list>) }

 {{ { <input>

 | <save>

 | <continuous transition>

 | <spontaneous transition>

 | <labeled transition>

 | <connect transition> }* } }

| ;

A <transition> shall contain at most one <asterisk input list> (see clause I.7.3.2). A <transition> shall

contain at most one <asterisk save list> (see clause I.7.3.6). A <transition> shall not contain both an

<asterisk input list> and an <asterisk save list>.

<state list> ::=

 <name>+[| ,] | <asterisk state list>

<asterisk state list> ::=

 * [(<name>+[| ,])]

The <name> items in an <asterisk state list> shall be distinct and shall be contained in other <state

list> items or in <state definition> items of the enclosing <entities> or of the <entities> of a supertype

of the enclosing agent.

A <name> in a <state list> or <asterisk state list> represents the behaviour of either a basic state or a

composite state. The term "within a composite state" when applied to a state means that this state is

part of a service defined within a <composite state definition>.

A <name> shall appear in a <state list> or <asterisk state list> only if it is the <name> of a <basic

state definition> or a <composite state definition>.

Model

A <state definition> with virtuality is a virtual state and may be redefined. The <state definition> in

the redefinition replaces the <state definition> in the supertype of the containing <agent definition>.

148 Rec. ITU-T Z.109 (10/2016)

If a <service definition> does not contain a <state definition> (and no state is inherited from the

supertype of the containing agent), this is shorthand for a <basic state definition> with an anonymous

<name>. The unlabelled <start transition> of this <service definition> contains a <named nextstate>

as its only <statement> in the <transition statements> such that its <identifier> references that state.

This anonymous state is not inherited in a specialization.

For every state referenced in a <state list> or <state definition>, a <transition> is created with an

<input> with <stimulus> stop and a <stop statement> as <transition statements>, unless an <input>

or <save> with stop as <stimulus> is already defined for this state.

When the <state list> of a <transition> contains more than one <name>, a copy of that <transition>

is created for each such <name>. Then the <transition> is replaced by these copies.

When several <transition> items contain the same <name> in their <state list>, these <transition>

items are combined into one <transition> having that <name>.

A <transition> with an <asterisk state list> is transformed to a set of <transition> items, one for each

<name> of a state of the enclosing state machine, except for those <name> items contained in the

<asterisk state list>.

Mapping

A <basic state definition> represents State. The <name> represents name. If the <basic state

definition> redefines a <basic state definition> in a supertype, the redefined <basic state definition>

represents redefinedClassifier.

The <input>, <save>, <continuous transition>, <spontaneous transition>, <labeled transition> and

<connect transition> represent a Transition, as further described below. If <state list> contains a name,

the Transition is the outgoing property of the Vertex represented by the name. The source property of

the Transition is the Vertex identified in the <state list>. The target property of the Transition is the

Vertex identified by the <transition terminating statement> in the <statements> representing the

effect.

I.7.3 Transition

The transitions of a state machine serve two main purposes: they specify the actions that should

happen given a current state and a stimulus, and they specify the next state that should be entered at

the completion of the transition.

I.7.3.1 Start transition

Every state machine has a transition which specifies the actions that happen when the interpretation

of the state machine begins. A start transition does not define a state and cannot be performed again

after a transition.

Concrete grammar

<start transition> ::=

 start [<name>] <stereotype>* <transition statements>

All potentially instantiated agents shall have a <start transition>. There shall be exactly one <start

transition> without <name> in a <service definition>.

A <start transition> with a <name> shall be within the <entities> of a <composite state definition>.

The <name> shall reference a label in the <inbound connection points>.

Model

A <start transition> with virtuality is a virtual start and may be redefined. The <start transition> in

the redefinition replaces the <start transition> in the supertype of the containing <agent definition>.

NOTE – A <start transition> contained in a <composite state definition> is defined in clause I.7.4.1.

 Rec. ITU-T Z.109 (10/2016) 149

Mapping

A <start transition> represents a Transition that is the outgoing property of a start Pseudostate with the

<name> representing name, if present, and the <transition statements> representing the effect.

If the <start transition> redefines a <start transition> in a supertype, the redefined <start transition>

represents redefinedTransition.

I.7.3.2 Input transition

For each state, an input transition defines what actions take place when a given stimulus occurs (or

one of a set of stimuli occurs). Associated with each state, the transition for a stimulus may be guarded

by a condition. Also associated with each state, a stimulus may be given a priority. The guards and

priorities of each state are independent of each other.

Concrete grammar

<input> ::=

 input { <trigger> | (<trigger>) } [<guard>] [<priority>] <stereotype>*

 <transition statements>

Within the <transition statements> of the <input>, the implicitly declared variable input is accessible

and is associated with the stimulus received (a signal or timer). The variable input shall not be the

<location> of an <assignment>.

If in the <transition statements> input occurs as the <target> of a <method call>, an <operation

definition> referenced by the <identifier> of the <invocation> shall be present in each type definition

referenced by every <stimulus> in <trigger> and shall have the same <result> type.

If in the <transition statements> input is the <expression> of an assignment or is an <actual

parameter>, the type definition items referenced by all <stimulus> items occurring in <trigger> shall

have a common (direct or indirect) supertype and this common supertype shall be the <type> of the

<location> of the <assignment> or the <parameter>, respectively.

If in the <transition statements> input is the <expression> of an <output clause>, each <stimulus>

occurring in <trigger> shall be conveyed by an <outbound port constraint> of a <port definition>

contained in the containing <agent definition>.

A virtual input shall not contain an <asterisk input list>. A virtual input may be redefined to a priority

input, to an input or to a save. The virtual input and the redefined input shall have the same <stimulus>

and if one <stimulus> has a <path>, the other shall also have a <path>.

The <expression> of the <guard> shall not reference the implicitly declared input variable or an

<input variable> used in the <trigger>.

<trigger> ::=

 <stimulus list> | <asterisk input list>

<stimulus list> ::=

 <stimulus>+[| ,]

The <type identifier> of a <stimulus> occurring in a <stimulus list> shall reference a <stimulus

definition item> of a <signal definition> or a <timer definition>.

<stimulus> ::=

 <type identifier> [(<input variable>*,)] [<path>]

 | <state timer>

The optional <path> of a <stimulus> shall reference a port of the enclosing agent. The referenced

<port definition> shall include the signal referenced in the <stimulus> in its <inbound port

constraint>.

150 Rec. ITU-T Z.109 (10/2016)

If a <stimulus> has no associated <path>, this <stimulus> shall not appear without a <path> in a

<trigger> in another <input> or <save> for the same state. If a <stimulus> has an associated <path>,

this <stimulus> shall not appear with the same <path> in a <trigger> in another input or save for the

same state.

The <type identifier> in a <stimulus> shall reference a <name> of a <stimulus definition item> or the

<name> stop.

When the <type identifier> in a <stimulus> references a stop, the <transition statements> of the

containing <input> shall terminate (directly or indirectly) with a <stop statement>.

NOTE 1 – While a stop signal may be saved, it shall not be saved in every state of the state machine of the

agent.

The <type identifier> of each <stimulus> in <stimulus list> shall reference a <stimulus definition

item> of a <signal definition> or a <timer definition>.

If the <type identifier> in a <stimulus> references a <stimulus definition item> of a <timer definition>,

<path> shall not be present.

If the <identifier> in a <path> of a <stimulus> references a <channel definition>, it shall identify a

channel connected to the enclosing state machine.

<state timer> ::=

 <named state timer> | <unnamed state timer>

<named state timer> ::=

 <set>

<unnamed state timer> ::=

 timer <default>

The <default> in a <timer set clause> shall be omitted only if the referenced <timer definition> has a

<default>. The <default> in an <unnamed state timer> shall not be omitted. The <expression> in the

default shall be an <operand>.

<input variable> ::=

 <name> <stereotype>*

The <name> of an <input variable> shall reference an accessor (see clause I.9.1.6) defined in the type

definitions referenced by the <type identifier> of the containing <stimulus>.

If a <stimulus> in a <stimulus list> contains an <input variable>, then for all <stimulus> items in that

<stimulus list> which contain an <input variable> with the same <name>, the accessors referenced

by each <name> shall have the same <result> type.

An <input variable> shall not be the <location> of an <assignment> in the <transition statements>.

<asterisk input list> ::=

 *

Model

A <name> in a <path> of a <stimulus> referencing a <channel definition> is shorthand for a port or

a set of ports. For each port that is a <source channel end> of the <channel definition>, a copy of the

<input> that contained the <stimulus> is created and the <stimulus> with the port referenced in

<path> is used as <trigger>. The <stimulus> is removed from the original <input>, and if the

<stimulus list> is empty thereafter, the <input> is deleted.

When more than one <stimulus> occurs in the <trigger> of an <input>, a copy of the <input> is made

for each <stimulus>, using that <stimulus> as <trigger> and inserted into the containing <transition>.

 Rec. ITU-T Z.109 (10/2016) 151

When the <trigger> is an <asterisk input list>, a copy of the <input> is made for each <type

identifier> of the complete valid input signal set of the containing <service destination> except for

any <type identifier> referencing a <signal definition> contained in any other <input> or <save> of

the containing <transition>, using that <type identifier> as <stimulus> in <trigger>, and inserted into

the containing <transition>. If the <trigger> has a <priority>, the created input has the same

<priority>.

NOTE 2 – If the <asterisk input list> is applied to a substate within a composite state, the substate has an input

or save for every receivable signal, and therefore in this substate it is not possible to trigger a transition on a

composite state that uses the composite state.

A <stimulus> where the <identifier> in <type identifier> references a <signallist definition> is

shorthand notation for a list of <stimulus> items, one for each <signal definition> referenced in the

<identifier> list of the <signallist definition>.

An <input> with virtuality is a virtual input and may be redefined. The <input> in the redefinition

replaces the <input> in the supertype of the containing <agent definition>.

An anonymous <variable definition> is created in the containing <agent definition> with aggregation

part, and a <type> which is the class referenced by the <stimulus definition item> referenced by the

<type identifier> in the <stimulus>.

For each <attribute definition> in the <stimulus definition item> referenced by the <type identifier>

in the <stimulus>, an anonymous <variable definition> is created in the <agent definition> containing

the <input>, with the <type> and <modifier> of the <attribute definition>.

If the <stimulus> does not contain <input variable> items, all references to the input variable in the

<transition statements> of <input> are replaced with references to the variable corresponding to the

stimulus.

If the <stimulus> contains <input variable> items, each reference to an <input variable> in the

<transition statements> of the <input> is replaced with a <variable access> to the anonymous

variable corresponding to the attribute referenced by the <input variable>.

An <assignment> is inserted as the first <statement> in the <transition statements> of <input> with

a <constructor call> to the default constructor of the class corresponding to the <signal definition>

referenced by the <type identifier> in the <stimulus> as the <expression> and the anonymous variable

corresponding to the stimulus as <location>. Following this a sequence of <assignment> items is

inserted in the <transition statements>, one for each <attribute definition> in the referenced <stimulus

definition item> with the corresponding attribute of the anonymous variable corresponding to the

stimulus as <location> and the anonymous variable corresponding to the attribute as <expression>.

The <input variable> list of the <stimulus> is replaced by a new <input variable> list with an <input

variable> with the <name> of the corresponding attribute of the class referenced by the <stimulus

definition item> referenced by the <type identifier> in the <stimulus> for such an attribute.

For an <unnamed state timer>, a <named state timer> is created with an anonymous <type>, where

<default> is used as the <default> of the <timer set clause> and there are no <actual parameters>.

Mapping

An <input> represents a Transition. The <trigger> represents trigger; the <expression> in <guard> (if

present) represents guard; the <expression> in the <priority> (if present) represents priority; and the

<transition statements> represent the effect. The <path> (if present) represents port. The <input

variable> items after application of the Model in clause I.7.3.2 (which correspond to the attributes in

the class definition referenced by the stimulus definition item referenced by the stimulus) represent

variableList.

If the <input> redefines an <input>, <save> or priority input in a supertype, the redefined <input>,

<save> or priority input, respectively, represents redefinedTransition.

152 Rec. ITU-T Z.109 (10/2016)

Each <stimulus> in the <stimulus list> represents a Trigger. The event of Trigger is a SignalEvent or

TimeEvent, depending on whether the <type identifier> references a signal or a timer, respectively.

The <type> in a <named state timer> represents timerIdentifier. The <default> represents

timeExpression.

I.7.3.3 Guard

A guard makes it possible to impose an additional condition on the consumption of a stimulus, beyond

its reception, or to impose a condition on a spontaneous transition.

Concrete grammar

<guard> ::=

 if <expression>

Mapping

NOTE – The mapping for a <guard> is given in clauses I.7.3.2, I.7.3.5 and I.7.3.7.

I.7.3.4 Priority

Concrete grammar

<priority> ::=

 priority <expression>

A priority input occurs when the containing <input> has a <priority>.

The <expression> in <priority> shall be a constant with the predefined syntype Natural as type.

A virtual priority input may be redefined to a priority input, to an input or to a save. The virtual

priority input and the redefined priority input shall have the same <stimulus> and if one <stimulus>

has a <path>, the other shall also have a <path>.

Mapping

NOTE – The mapping for <priority> is given in clauses I.7.3.2, I.7.3.5 and I.7.3.7.

If the priority input redefines an <input>, <save> or priority input in a supertype, the redefined

<input>, <save> or priority input, respectively, represents redefinedTransition.

I.7.3.5 Continuous transition

A continuous transition allows interpretation of a transition when a certain condition is fulfilled. A

continuous transition interprets a Boolean expression and the associated transition is interpreted when

the expression returns the predefined Boolean value true.

Concrete grammar

<continuous transition> ::=

 <guard> [<priority>] <stereotype>* <transition statements>

If several virtual continuous transitions exist in a state, then each of these shall have a distinct priority.

If only one virtual continuous transition exists in a state, it is allowed to omit the priority.

Model

A <continuous transition> with virtuality is a virtual continuous transition and may be redefined. The

<continuous transition> in the redefinition replaces the <continuous transition> in the supertype of

the containing <agent definition>.

 Rec. ITU-T Z.109 (10/2016) 153

Mapping

A <continuous transition> represents a Transition. The trigger is a Trigger; the event of the trigger is a

ChangeEvent. The <expression> in <guard> represents guard; the <expression> in the <priority> (if

present) represents priority; the <transition statements> represent the effect.

If the <continuous transition> redefines a <continuous transition> in a supertype, the redefined

<continuous transition> represents redefinedTransition.

I.7.3.6 Save

A save specifies a set of stimuli whose instances are not relevant to the agent in the state with the

save, but which need to be dealt with in future processing.

Concrete grammar

<save> ::=

 save { <saved trigger> | (<saved trigger>) } <stereotype>* ;

A virtual save shall not contain an <asterisk save list>. A virtual save may be redefined to a priority

input, to an input or to a save. The virtual save and the redefined save shall have the same <stimulus>

and if one <stimulus> has a <path>, the other shall also have a <path>.

<saved trigger> ::=

 <stimulus list> | <asterisk save list>

<asterisk save list> ::=

 *

A <stimulus> in the <stimulus list> shall not contain <input variable> items.

The optional <path> in a <stimulus> shall reference a port of the enclosing agent. The referenced

<port definition> shall include the signal referenced in the <stimulus> in its <inbound port

constraint>.

If a <stimulus> in a <save> does not have a <path>, a <stimulus> in the <saved trigger> shall not

appear without a <path> in an <input> for the same state. If an <input> has a <path>, a <stimulus>

in the <saved trigger> shall not appear with the same <path> in another <input> for the same state.

Model

An <asterisk save list> is transformed to a list of <save> items containing the complete valid input

signal set of the enclosing agent, except for any <type identifier> of an implicit input signal (for a

priority trigger, a continuous transition or a guard) or any <type identifier> contained in any other

<trigger> and <saved trigger> of the <transition>.

NOTE – If the <asterisk save list> is applied to a substate within a composite state, the substate has an input

or save for every receivable signal, therefore in this substate it is not possible to trigger a transition on a

composite state that uses the composite state.

A <save> with virtuality is a virtual save and may be redefined. The <save> in the redefinition

replaces the <save> in the supertype of the containing <agent definition>.

Mapping

A <save> represents deferrableTrigger of the sourceState. Each <type identifier> item in a <stimulus>

of a <saved trigger> represents a Trigger. The event of trigger is a SignalEvent or TimeEvent, depending

on whether the <type identifier> references a signal or a timer, respectively. The <path> (if present

in a <stimulus>) represents port. An <asterisk save list> represents an AnyReceiveEvent as trigger.

If the <save> redefines an <input>, <save> or priority input in a supertype, the redefined <input>,

<save> or priority input, respectively, represents redefinedTransition.

154 Rec. ITU-T Z.109 (10/2016)

I.7.3.7 Spontaneous transition

A spontaneous transition specifies a state transition without any trigger reception.

Concrete grammar

<spontaneous transition> ::=

 input {none | (none) } [<guard>] <stereotype>* <transition statements>

A virtual spontaneous transition may be redefined to a spontaneous transition. A state shall not have

more than one virtual spontaneous transition.

Model

A <spontaneous transition> with virtuality is a virtual spontaneous transition and may be redefined.

The <spontaneous transition> in the redefinition replaces the <spontaneous transition> in the

supertype of the containing <agent definition>.

Mapping

A <spontaneous transition> represents a Transition. The keyword none represents trigger; the event of

the trigger is a SignalEvent. The <expression> in <guard> (if present) represents guard; the <transition

statements> represent the effect.

If the <spontaneous transition> redefines a <spontaneous transition> in a supertype, the redefined

<spontaneous transition> represents redefinedTransition.

I.7.3.8 Implicit transition

Any signal not handled by an explicit input or save is consumed by an implicit transition without a

change of state.

Model

The set of stimuli contained in the triggers, priority inputs and the saved triggers of the transition

(explicitly or via asterisk input list or asterisk save list) after applying above transformations is

referred to as the local signal set. If the local signal set is the same as the complete valid input signal

set of the agent, there are no implicit transitions; otherwise an implicit transition is constructed for

each stimulus that is not in the local signal set. Each implicit transition is an <input> with the stimulus

as <trigger> and <transition statements> that contain a single <nextstate statement> leading back to

the same state.

A stimulus is in the local signal set of a composite state if it is in the local signal set for a transition

of the composite state, or in the local signal set of any enclosing composite state.

I.7.3.9 Labelled transition

A labelled transition is not in itself a complete transition. Rather, it provides the continuation of

another transition.

Concrete grammar

<labeled transition> ::=

 <label> <transition statements>

A virtual labelled transition may be redefined to a labelled transition.

All the <label> items defined in the <transition statements> of a service shall be distinct.

A <transition terminating statement> in the <transition statements> may reference only a <label> in

the same service.

A <transition terminating statement> in the <transition statements> of a service of a specialized agent

may reference a <label> defined in the supertype for the same service.

 Rec. ITU-T Z.109 (10/2016) 155

Mapping

A <labeled transition> represents a Transition with empty trigger and empty guard. The <label>

represents name; the <transition statements> represent the effect.

I.7.4 Substate machine

A substate machine is a mechanism to nest one state machine inside another. That is, a state machine

can be associated with a given state which is referred to as a composite state. The interpretation of a

substate machine is started when the associated composite state is entered, and it is exited when one

of the exit points of the substate machine is reached.

I.7.4.1 Composite state

A composite state is a state that consists of sequentially interpreted substates (with associated

transitions). A substate of a composite state is also a state, and therefore is allowed to be a composite

state.

The properties of a composite state are defined by a composite state definition together with

transitions defined for the composite state. The latter transitions apply to all the substates of the

composite state.

Concrete grammar

<composite state definition> ::=

 state <name> <state signature> <stereotype>* <entities>

An <entity> in the <entities> of a <composite state definition> shall be one of the following: <state

definition>, <transition>, <start transition>, <labeled transition>, <entry action>, <exit action> or

<variable definition>.

An <entity> in a <composite state definition> shall not contain a <template>.

A redefined composite state definition shall contain at least the <state connection points> of the

virtual composite state definition it redefines.

<state signature> ::=

 [<state connection points>]

<state connection points> ::=

 <inbound connection points> [<outbound connection points>]

 | <outbound connection points> [<inbound connection points>]

<inbound connection points> ::=

 in { [<name>+[| ,]] | ([<name>+[| ,]]) }

<outbound connection points> ::=

 out { [<name>+[| ,]] | ([<name>+[| ,]]) }

The <state connection points> specify entry to and exit from a composite state. The <inbound

connection points> specify start transitions that can be referenced from guards in a containing state

machine. The <outbound connection points> specify return states that can be referenced from a

<return statement> in a contained state machine.

A <return> with a <name> (a labelled return) shall reference only a <name> in the <outbound

connection points> of the closest containing <composite state definition>.

NOTE – It is permitted for the same <name> to occur more than once in outbound connection points, but this

has the same meaning as a single occurrence.

<entry action> ::=

 entry <stereotype>* <statements>

156 Rec. ITU-T Z.109 (10/2016)

<exit action> ::=

 exit <stereotype>* <statements>

Model

An <entry action> or <exit action> that contains virtuality is a virtual entry action or virtual exit

action, respectively, and may be redefined. The <entry action> or <exit action> in the redefinition

replaces the <entry action> or <exit action>, respectively, in the supertype of the containing <agent

definition>.

Mapping

A <composite state definition> represents State. The <name> represents name, <entities> represents

Region. If the <composite state definition> redefines a <state definition> in a supertype, the redefined

<state definition> represents redefinedClassifier.

A name in <inbound connection points> represents an entry Pseudostate. A name in <outbound

connection points> represents an exit Pseudostate.

The <entry action> and <exit action> represent a StateMachine with exactly one Region with a single

Transition. The source of the Transition is a Pseudostate with kind initial; the target is a FinalState;

the <statements> represent effect. The entry and exit property, respectively, shall refer to this

StateMachine.

I.7.4.2 Connect transition

Connect transitions are performed when a composite state is exited.

Concrete grammar

<connect transition> ::=

 [<label> | <asterisk connect list>] <transition statements>

<asterisk connect list> ::=

 [* [(<name>+[| ,])]]

A <connect transition> shall appear only in a <transition> containing a <name> in its <state list>

that references a <composite state definition>.

The <label> shall contain only <name> items in <outbound connection points> (denoting transitions

taken when exiting a composite state via a labelled return) or default (indicating a transition taken

when an unlabelled return is performed in a composite state).

A virtual connect transition may be redefined to a connect transition.

Model

A <connect transition> that contains an <asterisk connect list> is transformed into a <label> with a

<name> for each <name> in the <outbound connection points> of the <composite state definition>

in question, including default for the unlabelled <return>, except those <name> items mentioned

in the <asterisk connect list>.

A <connect transition> with virtuality is a virtual connect transition and may be redefined. The

<connect transition> in the redefinition replaces the <connect transition> in the supertype of the

containing <agent definition>.

Mapping

A <connect transition> represents a Transition with empty trigger and empty guard. The <name> in

<label> represents name; the <transition statements> represent the effect.

 Rec. ITU-T Z.109 (10/2016) 157

I.7.5 Transition statements

A transition consists of a sequence of statements to be interpreted by the agent.

Concrete grammar

<transition statements> ::=

 <statements>

Model

For a <transition statements> item, an <operation definition> with anonymous <name> and empty

parameters is constructed. The <statement> items in the <transition statements> form the <operation

statements>.

If at least one <statement> in the <statement> items contains a <transition terminating statement>,

the <type> in <result> is the predefined type Integer. The <statement> items of the <transition

statements> are removed and a <decision statement> is inserted in their stead with a call to the

anonymous operation as <expression>. Every <transition terminating statement> of the <transition

statements> is replaced in the <operation definition> by a <return statement>, returning a different

Integer and a <branch> is inserted into the <decision statement>, with that Integer as <constraint>

and the corresponding <transition terminating statement> as the single <statement> in its

<statements>.

Otherwise, there is no <result>. The <statement> items are removed and a call to the anonymous

operation is inserted in their stead.

Mapping

The <transition statements> represent an Activity containing a single node, which is either a

ConditionalNode or a CallOperationAction, as created by the Model.

I.8 Sequential behaviour

For a system to perform some useful activity, the transitions of the state machine of agents must either

have some effect on the external environment or have some effect on the internal state of the system.

Examples of such effects might be the calling of an operation, the sending of a signal to the

environment or the updating of an internal value. The details of these actions typically depend on

internal values of the system and may be performed through a series of computational steps.

At a certain level, the specification of such computational steps may seem similar to programs in a

general-purpose programming language, such as C or Java. However, a specification language aims

to describe such computations at an appropriate level of abstractions and to separate the specification

of the computation from its implementation. For example, the details of the implementation of

sending a message between agents should be hidden from the specification. As another example, the

allocation and management of memory should not be of concern to the specification.

This clause describes the general actions related to flow of control, sending of messages and timers.

Behaviour associated with specific types is described in clause I.9.

I.8.1 Statements

Statements are a sequence of actions, such as sending a message, calling an operation, assigning a

data item to a variable, etc., interpreted in the order they occur.

Concrete grammar

<statements> ::=

 { <stereotype>* { <statement> <stereotype>* }* }

 | <empty statement>

158 Rec. ITU-T Z.109 (10/2016)

<statement> ::=

 <variable definition>

 | <expression statement>

 | <labeled statement>

 | <compound statement>

 | <conditional statement>

 | <loop statement>

 | <action statement>

 | <terminating statement>

 | <transition terminating statement>

 | <selected statements>

If a <variable definition> is present, a <name> in the <variable definition> shall not be referenced,

directly or indirectly, in a <variable access> in the containing <statements> before the <variable

definition>.

<terminating statement> ::=

 <return statement>

 | <break statement>

 | <continue statement>

<transition terminating statement> ::=

 <nextstate statement>

 | <stop statement>

 | <goto statement>

<action statement> ::=

 { <output> | <set> | <reset> | <assignment> };

<conditional statement> ::=

 <decision statement> | <type decision statement>

 | <if statement>

<loop statement> ::=

 <while statement>

 | <for statement>

<compound statement> ::=

 <statements>

<labeled statement> ::=

 <label> <statement>

<label> ::=

 [[<name>+[| ,]]]

NOTE – To avoid awkward wording, when a <statement> is the <statement> of a <labeled statement>, the

<label> will be referred to as the "label of the <statement>".

<expression statement> ::=

 <expression> ;

The <expression> in an <expression statement> shall be only an <operation call>, a <term> followed

by ++ or --, a <create request>, or a <compound expression>.

<empty statement> ::=

 ;

 Rec. ITU-T Z.109 (10/2016) 159

Model

If a <default> is present in a <variable definition>, for every <name> in the <variable definition>, an

<assignment> is created from the <expression> of the <default> to the <name> as <location> and

inserted into the <statements> containing the <variable definition> immediately following the

<variable definition>. The <default> is then removed from the <variable definition>.

An <empty statement> is removed from the containing <statements>.

For a <terminating statement> which is not the last <statement> in the containing <statements>, a

<compound statement> is constructed such that the <terminating statement> is its only <statement>

and is used instead of the <terminating statement>.

Mapping

The <statements> represent a SequenceNode. Each <statement> in its list of <statement> items

represents an executableNode, in the order of occurrence.

Each <statement> represents an Action or an ActivityNode.

The <name> of the <label> represents the name of the ActivityNode represented by the <statement>.

An <expression statement> represents an <<ExpressionAction>>ValueSpecificationAction. The

<expression> represents the value.

A <compound statement> represents a SequenceNode. The <statements> represent executableNode. If

the <compound statement> is not a <labeled statement>, an anonymous <name> is created as name.

The <variable definition> items contained in <statements> are collected in a list where each

represents a Variable in variable (see clause I.8.1).

I.8.2 Terminating statements

Terminating statements end the interpretation of the current transition, operation or statement

sequence. The stop statement also terminates the interpretation of the containing agent instance.

I.8.2.1 Nextstate

A transition can end by entering a state, either a different state than the original one or the same state.

Concrete grammar

<nextstate statement> ::=

 nextstate { <named nextstate> | <dash nextstate> | <history nextstate> };

<named nextstate> ::=

 <unqualified name> [<entry path>]

The <unqualified name> of a <named nextstate> shall reference a <name> contained in the <state

list> of a <transition> in the same service.

<entry path> ::=

 via <name>

The <name> in the <entry path> shall be a <name> in the <inbound connection points> of the

<composite state definition> referenced by the <unqualified name> of the <named nextstate>.

<dash nextstate> ::=

 -

<history nextstate> ::=

 --

A <dash nextstate> or <history nextstate> shall not be a <transition terminating statement> of a <start

transition>.

160 Rec. ITU-T Z.109 (10/2016)

Mapping

A <nextstate statement> with a <named nextstate> without an <entry path> represents the target

property of the containing Transition and references the State with the <unqualified name> as name.

A <nextstate statement> with a <named nextstate> containing an <entry path> represents the target

property of the containing Transition and references a Pseudostate with kind entryPoint where the

<unqualified name> represents the name of the State that owns this Pseudostate and the <name> in

the <entry path> represents the Pseudostate name.

A <nextstate statement> with a <dash nextstate> represents the target property of the containing

Transition and references a Pseudostate with kind shallowHistory.

A <nextstate statement> with a <history nextstate> represents the target property of the containing

Transition and references a Pseudostate with kind deepHistory.

I.8.2.2 Stop

An agent ceases to exist after it interprets a stop statement.

Concrete grammar

<stop statement> ::=

 stop ;

Model

For every <agentset definition> of the containing <agent definition>, a <loop statement> is inserted

before the <stop statement> which iterates over the agentset and performs an <output> with stop as

<expression> and the agent instance as <destination> for every active agent instance in the agentset.

Mapping

A <stop statement> represents a <<Stop>>ActivityFinalNode.

I.8.2.3 Return

The interpretation of an operation is terminated by a return statement.

Concrete grammar

<return statement> ::=

 <return> ;

<return> ::=

 return { [<expression>] | <exit path> }

A <return> with an <expression> shall be used only within an <operation definition>. The

<expression> shall not be omitted unless the <result> is also omitted. A <return> in a <constructor

definition> shall not have an <expression>.

The <expression> of a <return> shall be type compatible with the <type> of the <result> of the

enclosing <operation definition>.

<exit path> ::=

 via <name>

A <return> with an <exit path> shall be directly contained in a <composite state definition> that

contains in its <outbound connection points> a <name> item with the <name> of the <exit path>.

Model

A <return statement> without an <exit path> contained (directly or indirectly) within a <composite

state definition> is replaced by a <return statement> with default as the <name> of the <exit path>.

 Rec. ITU-T Z.109 (10/2016) 161

Mapping

A <return statement> with an <exit path> represents a FinalState. The <name> in the <exit path>

represents name which references an exit connection point of the containing state machine. Otherwise,

a <return statement> represents a <<Return>>ActivityFinalNode. If an <expression> is present, it

represents value.

I.8.2.4 Goto, Break and Continue

A break statement resumes interpretation following a designated statement. A continue statement

resumes interpretation at the designated statement. A goto statement identifies a labelled transition

where interpretation resumes.

Concrete grammar

<goto statement> ::=

 goto <name> ;

The <name> of a <goto statement> shall be a <name> in a <label> of a <labeled transition>.

<break statement> ::=

 break [<name>] ;

The <name> of a <break statement> shall be the <name> contained in a <label> of a <labeled

statement>.

A <break statement> shall be directly or indirectly contained within a <labeled statement> such that

the <name> is the <name> of the <label>, or within a <loop statement>, if a <name> is not present.

<continue statement> ::=

 continue [<name>] ;

The <name> of a <continue statement> shall be the <name> contained in a <label> of a <labeled

statement>.

A <continue statement> shall be directly or indirectly contained within a <labeled statement> such

that the <name> is the <name> of the <label>, or within a <loop statement>, if a <name> is not

present.

Mapping

A <goto statement> that is a <transition terminating statement> represents a Pseudostate with kind

equal to junction. The <name> represents name.

A <break statement> represents a <<Break>>OpaqueAction. The name, if present, represents name.

A <continue statement> represents a <<Continue>>OpaqueAction. The name, if present, represents

name.

I.8.3 Action statements

An action statement may cause one or more communications to happen. These communications can

trigger a state machine transition (output signals or timers).

I.8.3.1 Output

An output statement causes the sending of one or more signals.

Concrete grammar

<output> ::=

 output <output clause>+[| ,]

162 Rec. ITU-T Z.109 (10/2016)

<output clause> ::=

 <expression> [<priority>] [<communication constraints>]

The type of the <expression> in the <output clause> shall reference a type definition which has been

referenced in a <stimulus definition item> of a <signal definition> or the <expression> shall be a

stop.

A <signal definition> referenced by the type of the <expression> in <output clause> shall be

conveyed by an <outbound port constraint> of a <port definition> contained in the <agent definition>

that contains the <output clause>.

The <expression> in <priority> shall be the predefined type Natural.

NOTE 1 – If <priority> is omitted, the signal has the highest signal priority.

<communication constraints> ::=

 { <destination> | <path> }+

<destination> ::=

 to <primary>

The static type of the <primary> in <destination> shall either be the predefined type Agent (see clause

I.5.1), or a subtype thereof.

<path> ::=

 via { <channel destination> | <identifier> }

The <channel destination> in <path> shall not be a <service destination>.

NOTE 2 – Consequentially, a <channel destination> in a path references a <port definition>, either as an

<agent port> or an <agentset port>.

For each <path> with <channel destination>, the <signal definition> referenced by the type of the

<expression> in the <output clause> shall be conveyed by the <outbound port constraint> of the

referenced port definition.

The <identifier> in <path> shall reference a <channel definition> reachable from the enclosing

<agent definition>, a <port definition> or the sole <signallist definition> in a <port definition>

without a <name>.

For each <path> with <identifier>, the <signal definition> referenced by the type of the <expression>

in <output clause> shall be conveyed by either the referenced <channel definition> or the <port

definition> referenced in either <channel destination>.

Model

If the <name> in a <path> in <communication constraints> references a <channel definition> and the

<target channel end> references an <agentset definition> of the <agent definition> containing the

<output clause> in its <agentset port>, then this is replaced by a <path> referencing that <agentset

port>.

If the <name> in a <path> in <communication constraints> references a <channel definition> and the

<target channel end> does not contain an <agentset port>, then this is replaced by a <primary>

referencing a <port definition> contained in the <agent definition> containing the <output> which is

referenced in a <channel destination> of the <source channel end>.

If there is more than one <output clause> specified in an <output>, the <output> is transformed to a

sequence of <output> items, each with a single <output clause> in the same order as specified in the

original <output>. The <communication constraints> are repeated in each <output clause>.

 Rec. ITU-T Z.109 (10/2016) 163

If the <communication constraints> of an <output clause> contain more than one <destination>, this

is shorthand for replacing the <output> by a sequence of <output> items, one for each <destination>.

Each <output> has the same original <output clause>, except that in each case the <communication

constraints> contain only one <destination> taken in order from the original <communication

constraints>.

For the <expression> in an <output clause>, a <variable definition> is created for a temporary

variable with an anonymous <name>, the type of <expression> as <type> and the <expression> as

<default>. The <variable definition> is inserted before the containing <output>. A reference to the

anonymous variable is inserted in place of the <expression> in the <output clause>.

Mapping

Each <output clause> in an <output> represents a SendSignalAction.

The <name> of the <type> of the variable referenced in <expression> (see above Model) represents

the qualifiedName of the signal. If the <communication constraints> contain a <destination>, the

<primary> represents target. If the <communication constraints> contain a <path>, the <channel

destination> or <identifier> represents onPort. Each attribute of the <type> of the variable referenced

in <expression> represents an argument. If present, the optional <priority> represents the

signalPriority.

I.8.3.2 Timer

Timers cause a stimulus to occur at some future specified time. Timers, once defined, may be set or

reset. When a set timer expires, an associated stimulus is put on the input queue of the containing

agent.

Concrete grammar

<timer definition> ::=

 [<template>] timer <stimulus definition item>+[| ,] [<default>] ;

The syntactic constraints in clause I.6.3 for <stimulus definition item> shall apply.

The <expression> in the <default> shall be a constant of the predefined type Duration.

A <context parameter> in the <template> of a <timer definition> shall be a <type context parameter>,

<variable context parameter> or <value context parameter>.

<set> ::=

 set <timer set clause>+[| ,]

<timer set clause> ::=

 <type> [<actual parameters>] [<default>]

The <type> of a <timer set clause> shall reference a <class definition> referenced by a <stimulus

definition item> that is contained in a <timer definition>.

The <default> in a <timer set clause> shall be omitted only if the referenced <timer definition> has a

<default>. The <expression> in the default shall be an <operand> of the predefined type Duration.

<reset> ::=

 reset <timer reset clause>+[| ,]

<timer reset clause> ::=

 <type> [<actual parameters>]

The <type> of a <timer reset clause> shall reference a <class definition> referenced by a <stimulus

definition item> that is contained in a <timer definition>.

164 Rec. ITU-T Z.109 (10/2016)

Each <type> of an <actual parameter> in <actual parameters> in a <timer set clause> or <timer reset

clause> shall correspond by position to the <type> in the <parameter> of the <parameters> of the

referenced <timer definition>.

Model

When more than one <stimulus definition item> occurs in a <timer definition>, a separate <timer

definition> is created for each <stimulus definition item> and the original <stimulus definition item>

is deleted from the <timer definition>.

A <stimulus definition item> with <parameters> is transformed as defined in clause I.6.3.

If a <timer set clause> has no <default>, a <default> is constructed from now added to the <default>

of the referenced <timer definition>.

If a <set> contains several <timer set clause> items this is shorthand notation for specifying a

sequence of <set> items, one for each <timer set clause> such that the original order in which they

were specified is retained.

If a <reset> contains several <timer reset clause> items this is shorthand notation for specifying a

sequence of <reset> items, one for each <timer reset clause> such that the original order in which

they were specified is retained.

Mapping

Each <stimulus definition item> in <timer definition> represents a <<Timer>> Signal. The <type

identifier> of that <stimulus definition item> represents name; each <parameter> in <parameters>

represents ownedAttribute. The <default> corresponds to defaultValue.

NOTE – The interpretation of a timer definition with a <template> is given in clause I.4.4.2.

Each <timer set clause> in a <set> represents a <<SetAction>>SendSignalAction. The <type>

represents signal. The <actual parameters>, if present, represent the argument list. The <default> item

represents timeExpression.

Each <timer reset clause> in a <reset> represents a <<ResetAction>>SendSignalAction. The <type>

represents signal. The <actual parameters>, if present, represent the argument list.

I.8.4 Loop statement

A loop statement is a mechanism to perform repeated actions, either iterating over the elements of a

collection, for a defined number of times, or until some condition is met.

Concrete grammar

<for statement> ::=

 for { <loop clause>+[| ,] [<loop test>] | (<loop clause>+[| ,] [<loop test>]) }

 <statements> [<loop finalization>]

<loop clause> ::=

 <loop variable> [<loop step>]

<loop variable> ::=

 <loop variable definition> | <loop variable use>

The <name> of a <loop variable> shall not appear as the <location> of an <assignment> in the

<statements> of a <for statement>.

<loop variable use> ::=

 <name> <stereotype>*

A <name> of a <loop variable use> shall not identify a variable defined in a <loop variable

definition> of the same <for statement>.

 Rec. ITU-T Z.109 (10/2016) 165

<loop variable definition> ::=

 [<modifier>] <name> : <type> <stereotype>*

<loop step> ::=

 in <explicit enumeration>

 | in <collection enumeration>

<explicit enumeration> ::=

 <enumeration>

If the <loop step> is an <explicit enumeration>, each element of the <enumeration> shall be type

compatible with the <type> of the <loop variable>.

<collection enumeration> ::=

 <expression>

If the <loop step> is a <collection enumeration>, the <expression> shall be a collection for which

each element is type compatible with the <type> of the <loop variable> or it shall reference an

<agentset definition>.

<loop test> ::=

 while <expression>

The <expression> of a <loop test> shall have the predefined Boolean type.

<loop finalization> ::=

 then <statements>

<while statement> ::=

 while { <expression> | (<expression>) } <statements>

The <expression> of a <while statement> shall have the predefined Boolean type.

Model

If the <loop step> is an <explicit enumeration>, an operation definition with an anonymous <name>

and a result <type> that is the static type of a <variable access> to the corresponding <loop variable>

is constructed such that it returns each subsequent element in the <enumeration> (see clause I.9.1.8)

each time it is called, until the range condition is exhausted.

If the <loop step> is a <collection enumeration>, an operation definition with an anonymous <name>

and a result <type> that is the static type of a <variable access> to the corresponding <loop variable>

is constructed such that it returns each subsequent element in the collection returned by the

<expression> each time it is called, until the collection is exhausted.

If the <loop step> is an <iteration>, an operation definition with an anonymous <name> and a result

<type> that is the static type of a <variable access> to the corresponding <loop variable> is

constructed such that it first, in the first iteration only, interprets the <iteration start> expression, if

present. The <expression> in <iteration end> is interpreted and if it returns the Boolean value false,

the data items provided by this loop clause are exhausted. Otherwise, the <iteration step> is

interpreted and the data item returned is returned by the <loop step>.

Mapping

A <for statement> represents a LoopNode. For each <loop variable> in the <loop clause> list, if the

<loop variable> is a <loop variable definition>, it represents a Variable in variable (see clause I.8.1).

The <stereotype> list then applies to the Variable. The optional <loop test> is transformed into an

evaluation of the <loop test>, and if the <loop test> evaluates to true, true is returned; otherwise, the

<statements> in <loop finalization> are interpreted and false is returned. The so transformed <loop

test> represents a SequenceNode that is the testPart. The isTestedFirst attribute is true. The <expression>

of the <loop test> represents the corresponding ExpressionAction. The <statements> item represents a

166 Rec. ITU-T Z.109 (10/2016)

SequenceNode that is the bodyPart. For each <loop variable>, a sequence of <<AssignValueAction>>

OpaqueAction, with the <loop variable> representing variable and a call to the operation constructed

in the Model for the corresponding <loop step> representing value, is constructed and represents the

stepGraphPart. The name is an anonymous name, unless the <for statement> was the statement of a

<labeled statement> (in which case the <name> of the <labeled statement> represents name). If

present, the optional <loop finalization> maps to an ExecutableNode that represents the

finalizationNode.

NOTE – This Recommendation does not provide a mapping of finalization to SDL and thus the <loop

finalization> is interpreted as part of the <loop test>.

A <while statement> represents a LoopNode. The <expression> represents an ExpressionAction that is

the sole action in a SequenceNode that is the testPart. The isTestedFirst attribute is true. The <statements>

represents a SequenceNode that is the bodyPart. The setupPart and stepGraphPart are empty. The name

is an anonymous name, unless the <while statement> was the statement of a <labeled statement> (in

which case the <name> of the <labeled statement> represents name).

I.8.5 Conditional statements

A conditional statement allows one of a set of interpretation paths to be taken. The path chosen is

based on the interpretation of a Boolean condition, on the interpretation of an expression and its

matching against a set of conditions or on the matching of the type of an expression.

I.8.5.1 Decision statement

In a decision statement, an expression is interpreted and the branch whose constraint contains the

result of the expression is interpreted. If there is no match and an else branch exists, the else branch

is interpreted. If there is no match and an else branch does not exist, interpretation continues after the

decision statement.

Concrete grammar

<decision statement> ::=

 switch{ <expression> | (<expression>)} <branches> [<else branch>]

<branches> ::=

 { <branch>* }

<branch> ::=

 <constraint> <statements>

The <constraint> shall be a <range constraint>, that is, each <range> shall be type compatible with

the <type> of the <expression> in <decision statement>.

<else branch> ::=

 else <statements>

Mapping

A <decision statement> represents a ConditionalNode. Each <branch> item in the <branch> list of the

<branches> represents a Clause in clause. The <statements> represent a SequenceNode that is the body

of that Clause, and the test of the Clause is an ExpressionAction with value represented by an

SdlExpression that is a RangeCheckExpression where <expression> maps to expression and <type> maps

to the rangeCondition.

If there is an <else branch>, the <statements> represent a SequenceNode that is the body of a Clause,

with the test being an ExpressionAction with value represented by true. The successorClause set is empty.

This Clause is the sole member of the successorClause set of all other Clause items.

If there is no <else branch>, the ConditionalNode contains Clause items only for each <branch> item

in the <branch> list of the <branches>. The successorClause set of all Clause items is empty.

 Rec. ITU-T Z.109 (10/2016) 167

I.8.5.2 If statement

In an if statement, a Boolean expression is interpreted and if it returns the predefined Boolean value

true, the statements are interpreted; otherwise, the else branch, if present, is interpreted.

Concrete grammar

<if statement> ::=

 if { <expression> | (<expression>) } <statements> [<else branch>]

The <expression> shall be the predefined type Boolean.

Model

An <if statement> is transformed into a decision statement with <expression> as the <expression>, a

<branch> with <statements>, a <constraint> formed from the literal true and the <else branch>, if

present.

Mapping

An <if statement> represents a ConditionalNode. The <statements> represent a SequenceNode that is

the body of the first Clause in clause. The test of this Clause is an ExpressionAction with value represented

by "<expression> == true".

If there is an <else branch>, the <statements> represent a SequenceNode that is the body of a Clause in

clause. The test of this clause is an ExpressionAction with value represented by true. This Clause is added

to clause as a successor to all other Clause items.

If there is no <else branch> there is no additional Clause in clause.

I.8.5.3 Type decision statement

In a type decision statement, an expression is interpreted and the branch that matches the type of the

expression is interpreted. Overlapping constraints are not allowed. If there is no match and an else

branch exists, the else branch is interpreted. If there is no match and an else branch does not exist,

interpretation continues after the type decision statement.

<type decision statement> ::=

 switch { <expression> :? | (<expression> :?) } <type branches> [<else branch>]

<type branches> ::=

 { <type branch>* }

<type branch> ::=

 [<type>+[| ,]] <statements>

Model

If a <type branch> contains more than one <type> in its <type> list, for each <type> a new <type

branch> is constructed from that <type> and the <statements> of the original <type branch>. The

original <type branch> is then deleted.

Mapping

A <type decision statement> represents a ConditionalNode. Each <type branch> item in the <type

branch> list of <type branches> represents a Clause. The <statements> represent a SequenceNode that

is the body of that clause, and the test of the clause is an ExpressionAction with value represented by an

SdlExpression that is a RangeCheckExpression where <expression> maps to expression and <type> maps

to parentSortIdentifier. If <type> is a <constrained type>, its <constraint> represents rangeCondition.

168 Rec. ITU-T Z.109 (10/2016)

If there is an <else branch>, the <statements> represent a SequenceNode that is the body of a Clause,

with the test being an ExpressionAction with the value represented by the Boolean SdlExpression value

true. This Clause is added to clause as a successor to all other Clause items.

If there is no <else branch>, the ConditionalNode contains Clause items only for each <type branch>

item in the <type branch> list of the <type branches>.

I.9 Data

This clause defines the concept of data in a specification. This includes the data terminology, the

concepts to define new data types and the predefined data types.

Data definitions are principally concerned with the specification of (data) types. A (data) type defines

a set of elements or data items and a set of operations that are allowed to be applied to these data

items. The operations are the properties of (data) types. Data types are defined by class definitions.

Interface definitions define abstract types.

A (data) type consists of a set of instances and one or more operations. As an example, the predefined

type Boolean consists of the elements true and false. Among the operations of the type Boolean

are ′==′ (equal), ′!=′ (not equal), ′!′ (not), ′&&′ (and), ′||′ (or) and ′xor′. As a further example,

the predefined data type Integer consists of the elements 0, 1, 2, etc., up to the largest Integer, the

elements -1, -2, -3, etc., down to the smallest Integer and the operations ′==′, ′!=′, ′+′, ′-′,

′*′, ′/′, ′mod′, ′rem′, ′<′, ′>′, ′<=′ and ′>=′.

NOTE 1 – The predefined type Integer is conceptually infinite, but an implementation will have to limit the

type to some finite range.

NOTE 2 – The language provides several predefined data types, which are familiar in both their behaviour and

syntax. The predefined data types are described in [ITU-T Z.104].

The elements of a (data) type are either instances of the type or identities of agents. The elements of

a type are defined either by:

a) explicitly enumerating the elements of the type (see clause I.9.1.4);

b) defining the set of properties that elements of the type shall satisfy (see clause I.9.1.2); or

c) as one of several types that are predefined.

Operations are defined as possibly taking elements of a type as parameters and possibly returning an

element of a type. For instance, the application of the operation for summation (′+′) to two elements

of the predefined Integer type is valid and returns an element of the predefined Integer type,

whereas summation of elements of the predefined Boolean type is not.

Each data item belongs to exactly one type. That is, types never have data items in common. There

are no implicit conversions between types. For example, a value of the predefined type Integer shall

not be used in an operation where a parameter of the predefined type Real is required. If it is desired

to use an Integer as an actual parameter to an operation which expects an actual parameter of type

Real, an explicit conversion operation shall be applied, which converts the Integer value to a Real

value, before the operation can be applied.

For some types, there may be literal forms to denote elements of the type: for example, for elements

of the predefined type Integer, 2 is used to denote a particular instance, rather than constructing the

instance from the operation 1 + 1. It is allowed that more than one literal denote the same data item;

for example, 12.0 and 12.000 denote the same Real data item. It is also allowed that the same literal

is used for more than one type. Some types have no literals to denote the elements of that type, for

example, the predefined Array type. In that case, the elements of such types are denoted by operations

that construct the data item, possibly from elements of other types. Operations that construct elements

of a type are referred to as constructors).

 Rec. ITU-T Z.109 (10/2016) 169

Variables are holders of data items and may have associated an element of a type. Elements of a type

are associated with variables by assignment. When the variable is accessed, the associated data item

is returned.

An expression denotes a data item. If an expression does not (directly or indirectly through operation

calls) contain a variable or an imperative expression, e.g., if it is a literal of a given type, each

occurrence of the expression will always denote the same data item.

An expression that contains (directly or indirectly through operation calls) variables or imperative

expressions may have different results during the interpretation of a specification, depending on the

data item associated with the variables.

I.9.1 Definition of data types

Class definitions (see clause I.9.1.1) and interface definitions (see clause I.9.1.2) are used to define

(data) types. The creation of elements of the type is described in clause I.9.1.3 and clause I.9.1.4.

Clause I.9.1.5 shows how to define the behaviour of the operations of a data type. The remaining

subclauses detail a variety of properties related to data definitions including syntypes, attributes and

constraints. Specialization (see clause I.4.3) allows the definition of a data type to be based on another

data type, referred to as its supertype.

Since predefined data is defined in an implicitly used package Predefined (see clause I.1.7), the

predefined types and their operations are available to be used throughout a specification.

I.9.1.1 Class

A <class definition> introduces a type that is visible in the enclosing scope unit. It may introduce a

set of literals and/or operations.

The <entities> of the <class definition> define the properties of the specified type and how to

construct sets of instances of this type.

Concrete grammar

<class definition> ::=

 [<template>] class <name> [<specialization>] <stereotype>* <entities>

At most one <type identifier> in the <specialization> shall refer to a <class definition>; all other

<type identifier> items shall refer to <interface definition> items.

If <specialization> contains a <type identifier> referencing an <interface definition> and the

stereotype <<abstract>> has not been applied to the <class definition>, the <class definition> shall

provide <operation definition> items for all operations contained in the <interface definition>. If an

operation with the same <name> and compatible signature is contained in several <interface

definition> items referenced in the <specialization>, only one <operation definition> shall be

provided.

An <entity> in the <entities> of a <class definition> shall be one of the following: <class definition>,

<interface definition>, <signallist definition>, <literal definition>, <syntype definition>, <attribute

definition>, <variable definition>, <operation definition>, <constructor definition>.

A <class definition> may be contained within another <class definition> or within an <agent

definition>. The contained class may access visible entities of the enclosing class. A type definition

contained within a <class definition> or within an <agent definition> shall not have the visibility

<<public>> applied.

NOTE 1 – Consequentially, a contained <class definition> cannot be instantiated from outside the class or

agent, that is, instances of the contained class shall be within instances of the enclosing class.

170 Rec. ITU-T Z.109 (10/2016)

A <constructor definition> (see clause I.9.1.3) or <literal definition> (see clause I.9.1.4) describes

how instances of the type defined by the <class definition> are constructed. An <operation definition>

defines an operation for elements of the type (see clause I.9.1.5).

The <name> represents the type of the <class definition>, and this <name> also identifies the <class

definition> as a scope unit in a <qualifier>.

A <context parameter> in the <template> of a <class definition> shall be a <type context parameter>,

<variable context parameter>, <operation context parameter> or a <value context parameter>.

When a <class definition> has the stereotype <<final>> applied, the <class definition> shall not be

further specialized.

Model

If no <specialization> is given, or if all <type> items in <specialization> are defined by <interface

definition> items, a <class definition> implicitly specializes the predefined type Object, unless the

stereotype <<final>> is present.

If no <constructor definition> is present and no <specialization> is given, this is shorthand notation

for an unnamed <constructor definition> with a list of <parameter> items in its <parameters>, such

that for every <attribute definition> without <default> and without the stereotype <<static>>, if

any, an anonymous <in parameter> is created with the <type> being the <type> of that attribute, in

the order of occurrence of such attributes in the <class definition>. The <constructor initializer>

consists of a sequence of assignments to these attributes from the <identifier> of the corresponding

<in parameter>.

If no <constructor definition> is present and <specialization> is given, an unnamed <constructor

definition> is created for every <constructor definition> of the superclass, with a list of <parameter

items> in its <parameters>, such that the <parameter> items of the <parameters> of the constructor

of the superclass come first, and then for every <attribute definition> without <default> and without

the stereotype <<static>>, if any, an anonymous <in parameter> is created with the <type> being

the <type> of that attribute, in the order of occurrence of such attributes in the <class definition>. The

<constructor initializer> begins with a call to the constructor defined by the <constructor definition>

with the <identifier> items of the corresponding <in parameter> items as <actual parameters>,

followed by a sequence of assignments to these attributes from the <identifier> of the corresponding

<in parameter>. The <operation statements> are absent in the created <constructor definition> items.

A class definition with virtuality is a virtual class. A virtual class can be redefined to a subtype in

specializations of the enclosing type, subject to virtuality constraints as further discussed in

clause I.4.3.2. A redefined class replaces the virtual class it redefines.

Mapping

A <class definition> represents a <<DataTypeDefinition>>Class with the isActive property being

false. The <name> represents name. Each type definition referenced by a <type identifier> in the

<specialization>, if present, represents an element of general. For each <entity> in <entities>, an

<attribute definition> represents an ownedAttribute; a <literal definition>, <operation definition> or

<constructor definition> represents an ownedOperation; a <class definition> or <syntype definition>

represents a nestedClassifier.

If the <class definition> redefines a <class definition> in a supertype, the redefined <class definition>

represents redefinedClassifier.

NOTE 2 – The interpretation of a class definition with a <template> is given in clause I.4.4.2.

 Rec. ITU-T Z.109 (10/2016) 171

I.9.1.2 Interface

An <interface definition> defines an abstract type which identifies a set of operations that a subtype

of this type shall define. These operations can be called on any concrete instance with a type

compatible with the type defined by the interface.

An interface is used as the type of a variable or parameter. During interpretation an instance of a class

that is type compatible with this interface shall be associated with this variable or parameter.

The defining context of the operations in an interface is the scope unit containing the interface. The

operations in an interface are visible where the interface is visible.

Concrete grammar

<interface definition> ::=

 [<template>] interface <name> [<specialization>] <stereotype>*

 <entities>

The <type identifier> items in the <specialization> shall reference only <interface definition> items.

An <entity> in the <entities> of an <interface definition> shall be an <attribute definition> or

<operation definition>. An <operation definition> in an <interface definition> shall contain only an

<empty statement> in its <operation statements>. An <entity> in an <interface definition> shall not

contain a <template>.

A <context parameter> in the <template> of an <interface definition> shall be a <type context

parameter> or an <operation context parameter>.

Model

For each <attribute definition> in <interface definition>, the transformations in clause I.9.1.6 are

applied. The <entities> are removed from the constructed <operation definition> items and these are

inserted instead of the <attribute definition> into the <entities> of the <interface definition>.

An interface definition with virtuality is a virtual interface. A virtual interface can be redefined to a

subtype in specializations of the enclosing type, subject to virtuality constraints as further discussed

in clause I.4.3.2. A redefined interface replaces the virtual interface it redefines.

Mapping

An <interface definition> represents a <<DataTypeDefinition>>Class with the isAbstract property

being true and with the isActive property being false. The <name> represents name. Each <interface

definition> referenced by a <type identifier> in the <specialization>, if present, represents an element

of general. Each <operation definition> in <entities> represents an ownedOperation.

If the <interface definition> redefines an <interface definition> in a supertype, the redefined

<interface definition> represents redefinedClassifier.

NOTE – The interpretation of an interface definition with a <template> is given in clause I.4.4.2.

I.9.1.3 Constructor

Constructors specify a particular instance of a type. They either identify that instance or create a new

instance possessing a specified set of properties.

Concrete grammar

<constructor definition> ::=

 constructor [<name>] <operation signature> <stereotype>*

 <constructor initializer> [then <operation statements>]

The <operation signature> of a <constructor definition> shall not contain a <result>.

172 Rec. ITU-T Z.109 (10/2016)

A default constructor is a constructor defined by a <constructor definition> without <name> and

without <parameters> in its <operation signature>.

<constructor initializer> ::=

 <operation statements>

Each <statement> of the <operation statements> in the <constructor initializer> shall either be a

<constructor call> to a constructor of the supertype, a <constructor call> to a different constructor

of the containing type definition, an <assignment> to a variable resulting from an <attribute

definition> or an <operation call> to a mutator defined in the containing type definition. A

<constructor call> shall be the first <statement> of the <operation statements>, if present. The

assignments to variables (either through <assignment> or through an <operation call> to a mutator)

shall occur in the order of the corresponding <attribute definition> items, if any. Initialization of

variables of supertypes shall be performed by invocation of a constructor of the supertype, not by

assignments to the variables in the subtype.

NOTE 1 – If the constructor of the supertype has the same <name> as the constructor in the subtype, a

<qualified name> needs to be used to identify the intended constructor.

Within the <constructor initializer>, it is allowed to give initial data items to the read-only variable

and attributes defined as properties of the containing <class definition>.

Both the <operation statements> in the <constructor initializer> and the <operation statements> shall

not contain calls to virtual operations. A <constructor initializer> shall not contain a <return

statement>.

For every <attribute definition> in a containing <type definition> without <optionality> and without

a <default>, the <constructor initializer> shall contain an assignment to the variable resulting from

that <attribute definition>.

If the containing type definition has a <specialization>, a call to a constructor defined in the type

referenced by the <specialization> shall appear in the <constructor initializer> before any

assignments to variables defined by an <attribute definition> of the containing type definition.

Model

If the <name> is omitted in a <constructor definition>, this is shorthand notation for a <constructor

definition> with the <name> of the containing type definition.

If the containing type definition has a <specialization> and there is no call to a constructor in the

<constructor initializer>, a call to the default constructor of the supertype that is not an interface, if

present, is inserted as the first <statement> in <constructor initializer>.

Mapping

A <constructor definition> represents an Operation with isOperator true and is mapped as described

further in clause I.9.1.5. The Operation has the stereotypes <<create>> and <<private>> applied.

I.9.1.4 Literals

A literal definition specifies the contents of a type by enumerating the elements of the type. It may

define operations that allow comparison between the elements of the type. These elements are called

literals.

Concrete grammar

<literal definition> ::=

 literals <literal definition item>+[| ,] <stereotype>* ;

<literal definition item> ::=

 <name> [<actual parameters>] [<entities>]

 Rec. ITU-T Z.109 (10/2016) 173

If <actual parameters> are present in a <literal definition item>, the containing <class definition>

shall contain a <constructor definition> without an <identifier> and with <parameters> that match

the <actual parameters>.

Each <actual parameter> in <actual parameters> of a <literal definition item> shall be type

compatible with the corresponding (by position) <parameter> of the matching unnamed <constructor

definition>.

An <entity> in the <entities> of a <literal definition item> shall be an <operation definition> that

defines a method.

A <variable definition> contained in a <class definition> that contains a <literal definition> shall

have <immutability> const.

Model

For each <literal definition item> in a <literal definition>, an <operation definition> with an empty

<parameter> list as <parameters> and the type specified by the enclosing <class definition> as the

<type> in <result> is constructed. This operation has stereotypes <<static>> and <<public>>,

unless a visibility stereotype was provided in the <literal definition> in which case that visibility

stereotype is applied. If no <actual parameters> are given in a <literal definition item>, this operation

returns the corresponding instance. Otherwise, if <actual parameters> are given, the operation returns

the data item returned by the call to the (unnamed) constructor with <parameters> matching the

<actual parameters>.

NOTE 1 – The instances corresponding to inherited literals in a specialized type consequentially are members

of the specialized type, not the parent type that defined these literals.

NOTE 2 – The operations implicitly defined by the presence of <actual parameters> might, for example,

introduce an ordering on the instances of the type specified by the containing <class definition>.

If a <literal definition item> contains <operation definition> items, then for each <operation

definition>, an <operation definition> with matching <name>, <operation signature> and <result> is

constructed such that the <operation statements> contain a <decision statement> where the

<operation statements> of the original <operation definition> form the <statements> of a <branch>

of the <decision statement> with the corresponding literal <name> as the label, unless an <operation

definition> has already been constructed with matching <name>, <operation signature>, and

<result>, in which case this branch is inserted into the <decision statement> of that <operation

definition>. The variable this is used as the <expression> of the <decision statement>. The so

constructed operations are inserted into the containing type definition. After this transformation, all

<operation definition> items are removed from the <literal definition item>.

NOTE 3 – The operations defined in a <literal definition item> apply only to the literal defined in this <literal

definition item>.

A <literal definition> with virtuality is a virtual literal definition. A virtual literal definition may be

redefined in a specialization. A redefined literal definition is extended in the subtype. The literal

definition item list of the redefined literal definition is the union of the inherited literal definition item

list and the literal definition item list in the redefinition.

Mapping

NOTE 4 – The result of the Model for <literal definition> is mapped as the resulting <operation definition>

items (see clause I.9.1.5).

I.9.1.5 Operation

Operations describe behaviour that can be invoked by an <operation call>. Operations may return

data items as their return data item or through parameters. The behaviour of an operation is defined

by its <operation statements>.

174 Rec. ITU-T Z.109 (10/2016)

Concrete grammar

<operation definition> ::=

 [<template>] <name> <operation signature> <stereotype>* <operation statements>

An operation is identified within a scope unit by its <operation signature> and its <name>.

An <operation definition> in a <class definition> or <interface definition> with the stereotype

<<static>> defines an operator. Otherwise, if the stereotype <<static>> is not applied to an

<operation definition> in a <class definition> or <interface definition>, the <operation definition>

defines a method. An <operation definition> not contained within a <class definition> or <interface

definition> defines a procedure. The term "operation" refers to operators, methods and procedures.

When a virtual method is redefined, its <operation signature> shall be the same as the <operation

signature> in the supertype, except that the <type> in the <result> of the redefined operation shall be

type compatible to the <type> in the <result> of the supertype.

NOTE 1 – Because of this constraint it is not possible to define covariantly redefined methods.

A visibility stereotype shall not be applied to an <operation definition> that redefines an inherited

operation.

An <operation definition> with the stereotype <<abstract>> applied defines an abstract operation.

An abstract operation shall not be referenced in an <operation call>.

Overloading allows for more than one operation with the same <name> within the same scope.

Operations can be overloaded as long as each <operation definition> has a different <operation

signature>. If two operations in the same scope have the same <name> and have signatures that

cannot be distinguished for each call to this operation, the behaviour of the specification is not

defined. Two operation definitions with the same <name> items are allowed in an entity if they have

a differing number of parameters, or they have the same number of parameters and contain at least

one matching parameter with differing types.

A <context parameter> in the <template> of an <operation definition> shall be a <type context

parameter>, <operation context parameter>, <variable context parameter> or <value context

parameter>.

<operation signature> ::=

 <parameters> [: <result>]

A <result> shall be present in the <operation signature> of an <operation definition>.

<parameters> ::=

 ([<parameter>+[| ,]])

A <list type> shall be used only as the <type> of the last <parameter> in <parameters>. For a

<parameter> with a <list type>, the <name> list shall contain only a single <name>. This <name>

shall be used only as the <expression> that is the <collection enumeration> iterated over in a <for

statement>.

<parameter> ::=

 {<in parameter> | <out parameter> | <inout parameter>} [<default>]

The <expression> in <default> shall be a constant of the <type> of the <parameter>.

<in parameter> ::=

 [in] [<modifier>] [<name>+[| ,] :] <type> <stereotype>*

An <in parameter> is a read-only variable. The <name> of an <in parameter> shall not appear in a

<location>.

 Rec. ITU-T Z.109 (10/2016) 175

<out parameter> ::=

 out [<modifier>] [<name>+[| ,] :] <type> <stereotype>*

NOTE 2 – If an <out parameter> has const <immutability>, it can only be initialized in the <operation

signature>.

<inout parameter> ::=

 inout [<modifier>] [<name>+[| ,] :] <type> <stereotype>*

<result> ::=

 [<modifier>] <type>

 | ([<modifier>] <type> <stereotype>*)

NOTE 3 – If <stereotype> items need to be applied to the <type> of the <result>, parentheses need to be used.

<operation statements> ::=

 <statements>

A <statement> contained (directly or indirectly) in the <operation statements> of an <operation

definition> contained in a <class definition> shall not be a <transition terminating statement>.

For an operation defined outside of an <agent definition> none of the <statement> items contained in

its <operation statements> (either directly contained or indirectly, through <statements>) shall

perform a queuing or blocking operation (sending signals, setting timers, etc.) or be a <transition

terminating statement>.

Model

An <operation definition> with virtuality is a virtual operation and may be redefined. The <operation

definition> in the redefinition replaces the <operation definition> in the supertype of the containing

type.

If a <list type> is present in a <parameter>, this <parameter> is transformed as specified in

clause I.4.1.

An <operation definition> that is a method is shorthand for an <operation definition> that is an

operator. An <in parameter> with an anonymous <name>, the <type> of the containing <class

definition> and <aggregation> ref is inserted as the first <parameter> into <parameters>.

The <variable access> this is transformed into a <variable access> referencing this anonymous

<parameter>.

Mapping

An <operation definition> represents an Operation with isOperator false. The containing <entity>

represents owner; the <name> represents name; each <parameter> in <parameters> of <operation

signature> represents ownedParameter; the <result> represents ownedParameter. The <type> of

<result> represents the type. If the <operation definition> defines a method, isLeaf is false. Otherwise,

isLeaf is true.

If the <operation definition> redefines an <operation definition> in a supertype, the redefined

<operation definition> represents redefinedOperation.

If the <operation definition> defines a procedure, it represents a StateMachine with exactly one Region

with a single Transition. The source of the Transition is a Pseudostate with kind initial; the target is

a FinalState; the <operation statements> represent the effect. This StateMachine represents method. If

the <operation definition> defines a method or operator, the <operation statements> represent the

node of an Activity. This Activity represents method.

The ownedParameter of the Operation are also used as the ownedParameter items of the Activity or

StateMachine that serves as the method.

176 Rec. ITU-T Z.109 (10/2016)

If an <operation definition> defining a procedure has a <template>, the <context parameters>

represent the formalContextParameterList of the StateMachine that is the method of the represented

Operation, as defined in clause I.4.4.2.

NOTE 4 – Operation definitions with a <template> are only supported for procedures.

Each <name> in the <name> list of a <parameter> represents Parameter with the isAnchored property

being false. If present, <aggregation> represents aggregation, otherwise aggregation is composite;

<immutability>, if present, represents the isReadOnly property being true, otherwise, the isReadOnly

property is false; <type> represents type; the <expression> in <default>, if present, represents

defaultValue. For an <in parameter>, direction is in; for an <out parameter>, direction is out; for an

<inout parameter>, direction is inout.

A <result> represents Parameter with the isAnchored property being false. If present, <aggregation>

represents aggregation, otherwise aggregation is composite; <immutability>, if present, represents the

isReadOnly property being true, otherwise, the isReadOnly property is false; <type> represents type;

direction is return.

I.9.1.6 Attribute

An attribute is a property of a type which specifies accessor and mutator operations for a data item

associated with an instance of a type. The attribute may specify a data holder the data item will be

associated with. The accessor and mutator operations will obtain and update the data item without

making explicit to a caller how the data item is represented in the type.

An instance of a type with an attribute may store private data in a data holder. However, from the

viewpoint of the client of the type, an attribute merely provides accessor and mutator operations, that

is, an operation to access the data item associated with the data holder, and an operation to change

the data item associated with the data holder. The attribute does not, however, provide operations that

operate directly on the associated data item. Consequentially, the class may later change the manner

in which it realizes its interfaces without the clients of the class having to change. As long as the class

still provides the operations equivalent to the accessor and mutator operations to its clients, the class

may change or remove an attribute, without affecting its clients.

NOTE 1 – If a class needs to enable its clients to manipulate the content of the data item associated with an

attribute, appropriate operations should be provided by the class, which access and change the content of that

data item.

NOTE 2 – Based on the operations of a class, a client of the class cannot discern whether and how private data

of the class is stored in attributes.

Concrete grammar

An <operation definition> specifies an accessor for a <type>, if the <type> contains an <attribute

definition> with <name> and this <name> is the <name> of the <operation definition>, the

<parameters> of the <attribute definition>, if any, are the <parameters> of the <operation

definition>, <type> is the <result> type of the operation and has the same <modifier> as in the

<attribute definition>, and if a mutator is specified for this <type> with this <name>, the condition

below is met.

An <operation definition> specifies a mutator for a <type>, if the <type> contains an <attribute

definition> with <name> and this <name> is the <name> of the <operation definition>, the

<parameter> items in the <parameters> of the <attribute definition>, if any, are the initial

<parameter> items of the <operation definition> and the last <parameter> in the <parameters> of

the <operation definition> has <type> as its type, the <result> is omitted, and if an accessor is

specified for this <type> with this <name>, the condition below is met.

 Rec. ITU-T Z.109 (10/2016) 177

When the mutator of a type is invoked on an instance of that type with <expression> as the last actual

parameter, and the accessor for this type with this <name> is subsequently invoked on that instance,

then the result of the accessor invocation shall be equal to the result of interpreting the <expression>.

<attribute definition> ::=

 [<modifier>] <name>+[| ,] : <type> <stereotype>* [<default>] ;

 | <pseudo attribute>

If a <default> is present, it shall be type compatible with <type>.

NOTE 3 – <default> is further explained in clause I.9.3.1.

If <type> identifies a syntype and a <default> is present, the result of the <default> shall be valid for

the <constraint> of the syntype.

The redefinition of an attribute shall not change the <type> of the virtual attribute it redefines.

<pseudo attribute> ::=

 <modifier> <name> <parameters> : <type> <stereotype>* ;

If an accessor operation is specified for a <pseudo attribute> within the same <class definition>, the

<modifier> of its <result> shall be the <modifier> of the <pseudo attribute>.

Model

When a <modifier> is not present, the shorthand of clause I.9.3.1 applies. If visibility is absent, the

stereotype <<private>> is inserted into the <attribute definition>.

For each <name> of an <attribute definition> that is not a <pseudo attribute> and which is not abstract

and not contained in an <interface definition>, a <variable definition> with the same <name>, <type>

and <default>, if any, is constructed. The <stereotype> list applies to the <variable definition>, except

for visibility stereotypes. The stereotype <<private>> is applied to the <variable definition>. If a

<default> is present, it is used as the <default> for the <variable definition>. Otherwise, if no

<default> is present, the <variable definition> does not have a <default>.

NOTE 4 – Consequentially, in a subtype of the class, the data holder could be realized in a different manner,

as long as the accessor and mutator operations are provided giving the same interface as in the supertype.

NOTE 5 – A <pseudo attribute> does not create a <variable definition>. Therefore, the manner in which the

data item is represented is determined by the implied accessor and mutator operations, which shall be provided

in the containing class or a subtype.

For each <name> of an <attribute definition>, an accessor operation is constructed for the attribute

<type> with this <name>, empty <parameters> and the <modifier> as result <modifier>, unless an

<operation definition> with this <name> and operation signature is already present. If such

<operation definition> is present without <operation statements> but where the result <modifier>

differs from the <modifier> of the <attribute definition>, the result <modifier> is used as the result

<modifier> of the implied accessor. The <stereotype> list in <attribute definition> applies to the

accessor <operation definition>. If the <attribute definition> has the stereotype <<abstract>>

associated and no accessor operation with operation statements is present, the accessor is abstract and

does not have <operation statements>. Otherwise, the accessor operation returns the data item

associated with the variable <name>.

For each <name> of an <attribute definition> that does not have const <immutability>, a mutator

operation is constructed for the attribute <type> with this <name> and a single <parameter> with

<type> as parameter <type> and <aggregation> part, unless an <operation definition> with this

operation signature is already present. The <stereotype> list in <attribute definition> applies to the

mutator <operation definition>. If the <attribute definition> has the stereotype <<abstract>>

associated and no mutator operation is present, the mutator is abstract and does not have <operation

statements>. Otherwise, the mutator operation assigns the <parameter> data item to the variable

<name>.

178 Rec. ITU-T Z.109 (10/2016)

After these transformations have been applied, the <attribute definition> is deleted.

NOTE 6 – The impact of the modifier, if present, on the variables created for each attribute definition is given

in clause I.9.3.1.

An <attribute definition> with virtuality is a virtual attribute and may be redefined. The <attribute

definition> in the redefinition replaces the <attribute definition> in the supertype of the containing

type.

Mapping

For each <name> in the <name> list of an <attribute definition>, the <attribute definition> represents

a Property with initialNumber being 0 and <name> representing name. If present, <aggregation>

represents aggregation, otherwise aggregation is composite; <type> represents type; the <expression>

in <default>, if present, represents defaultValue. If the <attribute definition> defines a read-only

attribute, isReadOnly is true.

I.9.1.7 Syntype

A syntype specifies a subset of the elements of a type. A syntype used as a type has the same semantics

as the parent type except for checks that data items belong to the specified subset of the elements of

the parent type.

Concrete grammar

<syntype definition> ::=

 syntype <name> <stereotype>* = <parent type> ;

<parent type> ::=

 <type>

The <parent type> shall reference a <class definition>.

When the <parent type> is in turn defined by a <syntype definition>, the two syntypes shall not be

mutually defined, that is, the <parent type> of a <syntype definition> shall not refer directly or

indirectly to the syntype being defined.

If the <parent type> identifies a <constrained type> where the <type identifier> references a syntype,

its <constraint> is not restricted to the range of the referenced syntype, if any.

The <parent type> in a redefined syntype shall be the same type or a subtype of the virtual syntype it

redefines. If the range check specified by the <constraint> in the redefined syntype holds for a data

item, then the range check specified by the <constraint> in the virtual syntype it redefines shall also

hold for that data item.

Model

A <syntype definition> with virtuality is a virtual syntype and may be redefined. The <syntype

definition> in the redefinition replaces the <syntype definition> in the supertype of the containing

type.

Mapping

A <syntype definition> represents <<Syntype>>Class. The <name> represents name. The <parent

type> represents parentSortIdentifier. If the <parent type> has a <constraint>, it represents constraint.

 Rec. ITU-T Z.109 (10/2016) 179

I.9.1.8 Constraint

A constraint defines a range check, that is, an operation that determines whether a given data item

satisfies the constraint.

Concrete grammar

<constraint> ::=

 [{<range constraint> | <size constraint>}]

<range constraint> ::=

 <range>+[| ,]

If all <expression> items occurring in the <range> items are of the same type as the type being

constrained (that is, the <parent type> of a <syntype definition> or the type of the <expression> in a

<decision statement>), the <constraint> specifies a range constraint.

<size constraint> ::=

 <range>

If the <constraint> does not specify a range constraint and any <expression> occurring in the <range>

is of the predefined type Natural, the <constraint> is a size constraint.

<enumeration> ::=

 [<range constraint>]

All <expression> items occurring in the <range> items of the <range constraint> shall be of the same

type.

<range> ::=

 <closed range>

 | <open range>

 | <expression>

 | <unconstrained range>

<unconstrained range> ::=

 *

<closed range> ::=

 <lower bound> .. <upper bound>

<lower bound> ::=

 <expression>

<upper bound> ::=

 <expression> | *

If a <range> is a <closed range> and the range check is a range constraint, the type the range check

is applied to shall support the operation ′<′.

<open range> ::=

 {== | != | <| > | <= | >= } <expression>

If a <range> is an <open range> containing <, >, <= or >= and the range check is a range constraint,

the type the range check is applied to shall support the operation ′<′.

Model

If a <range> occurs in a <constraint>, it is transformed as follows: a <range> consisting of a single

<expression> is transformed into an <open range> with the operation ′==′ and the <expression> as

<expression>. A <closed range> where <upper bound> is * is transformed into an <open range>

180 Rec. ITU-T Z.109 (10/2016)

with the operation ′>=′ and the <expression> in <lower bound> as <expression>. An <unconstrained

range> is removed.

Mapping

A <range constraint> or <size constraint> represents a RangeCondition. Each <range> represents a

ConditionItem in the conditionItemSet, such that the owner is the RangeCondition.

A <closed range> represents ClosedRange. The <lower bound> represents firstConstant. The <upper

bound> or asterisk symbol represents secondConstant.

An <open range> represents an OpenRange. The symbol ==, !=, <, >, <= or >= represents the

operationIdentifier. The <expression> represents the constantExpression.

I.9.2 Use of data

This clause defines expressions and how literals and operations are interpreted in expressions.

NOTE – The use of expressions that depend on variables is defined in clause I.9.3. The use of expressions that

depend on the state of agents is defined in clause I.9.4.

I.9.2.1 Expression

The interpretation of an expression returns a data item. The data item returned by the expression may

depend on the state of the system or the interpretation of other elements of the specification or it may

be independent of these (that is, it may be a constant).

Concrete grammar

<expression> ::=

 <type coercion expression>

 | <conditional expression>

 | <disjunctive expression>

 | <expression> xor <expression>

 | <conjunctive expression>

 | <equality expression>

 | <expression> {<| > | <= | >= } <expression>

 | <type check expression>

 | <operand>

<operand> ::=

 <operand> {+ | - } <operand>

 | <operand> {* | / | mod | rem } <operand>

 | <term>

<term> ::=

 - <term>

 | <negation expression>

 | <imperative expression>

 | <term> {++ | -- }

 | <primary>

<primary> ::=

 <operation call>

 | <target expression>

<target expression> ::=

 <variable access>

 | <literal expression>

 | <agent expression>

 Rec. ITU-T Z.109 (10/2016) 181

 | <create request>

 | <compound expression>

 | <parenthesized expression>

<compound expression> ::=

 ({ <statement>* <expression> })

<parenthesized expression> ::=

 (<expression>)

The productions for <expression>, <operand> and <term> offer special syntactic forms for <quoted

name> items. These syntactic forms are introduced so that common operations (for example,

arithmetic and Boolean operations) have their usual syntactic appearance. Consequentially, one may

write (1 + 1) = 2 rather than being forced to use, for example, equal(add(1,1),2).

A <prefix operation name>, <infix operation name> or <postfix operation name> in an expression,

operand or term has the normal semantics of an operation but with prefix, infix or postfix syntax,

respectively. The <quoted name> may also be used in standard operation notation.

The order of precedence of <infix operation name>, <prefix operation name> and <postfix operation

name> items determines the binding of operations and is shown in Table I.9.1. An <operation

identifier> with lower precedence binds tighter than an <operation identifier> with higher

precedence. When the binding is ambiguous, then binding is from left to right.

Table I.9.1 – Precedence of special quoted operation names

Quoted operation name Precedence

′:′ 11

′?:′ 10

′||′, ′xor′ 9

′&&′ 8

′==′ , ′!=′ 7

′<′, ′>′, ′<=′, ′>=′, ′:?′ 6

′+′, ′-′ 5

′*′, ′/′, ′mod′, ′rem′ 4

′-′, ′!′ 3

′++′, ′--′ 2

′#′ 1

An <expression> is assignable if it is an <identifier> referencing a variable without <immutability>

or with val <immutability>, or it is an <operation call> such that its <name> references a mutator

operation (see clause I.9.1.5) and the parameters match all but the last parameter of the mutator, or it

is an <operation call> that is a <method call> such that its rightmost invocation is a <name>

referencing a mutator operation and the parameters match all but the last parameter of the mutator.

NOTE 1 – An expression that is an <operation call> of a mutator operation created by the transformation in

clause I.9.1.6 is assignable.

An <expression> is able to be referenced if it is an <identifier> referencing a <variable definition>

that does not contain <immutability>, or it is an <operation call> such that its <name> references an

accessor operation (see clause I.9.1.5), or it is an <operation call> that is a <method call> such that

its rightmost invocation is a <name> referencing an accessor operation, and the accessor operation

does not have <immutability>.

182 Rec. ITU-T Z.109 (10/2016)

An <expression> is a constant, if the data item returned by the <expression> does not depend on the

current data items associated with variables that do not have <immutability> const, or on the

existence or identities of agents or the system state (such as imperative expressions). The result of a

constant expression is independent of when it is interpreted.

NOTE 2 – Some kinds of <expression> items (such as a <literal expression> or a <variable access> to a

variable with <immutability> const) are always constant. Other kinds of expressions (such as any other

<variable access>) always depend on the interpretation. Expressions that have other expressions as elements

(such as an <operation call>) are constant if all their elements are constant.

Model

An <expression> of the form of an <expression> followed by an <infix operation name>, followed

by an <expression> is shorthand notation for an <operation call> with the <infix operation name>

converted into a <quoted name> as <name> and the <expression> items as <actual parameter> items.

An <expression> of the form of a <prefix operation name> followed by an <expression> is shorthand

notation for an <operation call> with the <prefix operation name> converted into a <quoted name>

as <name> and the <expression> as <actual parameter>.

An <expression> of the form of an <expression> followed by a <postfix operation name> is shorthand

notation for an <operation call> with the <postfix operation name> converted into a <quoted name>

as <name> and the <expression> as <actual parameter>.

An operation name in an infix, prefix or postfix <expression> is converted into a <quoted name> by

surrounding it with apostrophe symbols.

A <boolean conditional expression> is shorthand notation for an <operation call> with ′?:′ as

<name> and the <expression>, <consequence expression> and <alternative expression> items as

<actual parameter> items.

For a <compound expression>, an <operation definition> with anonymous <name> is constructed

within the namespace in which the <compound expression> occurs, such that its body consists of the

<statement> list, augmented with a <return statement> with <expression> as the <expression> in its

<return>. For every reference to a <variable definition> within the current namespace, an <inout

parameter> is constructed, and this <parameter> is inserted into <parameters>, in the order of

occurrence. The <compound expression> is then replaced by an <operation call> invoking this

anonymous operation, with the references to <variable definition> items as <actual parameters> in

the order of occurrence, if any.

Mapping

An <expression> represents a subtype of SdlExpression, as specified for each kind of <expression>.

If the <expression> is a constant expression, isConstant is true; otherwise isConstant is false.

A <parenthesized expression> represents what its <expression> represents.

I.9.2.2 Literal expression

A literal is a specific instance of a type or the special symbol null.

Concrete grammar

<literal expression> ::=

 <identifier> | <null>

<null> ::=

 null

 Rec. ITU-T Z.109 (10/2016) 183

Whenever a <literal expression> is specified with an <identifier>, the unique <name> is derived in

the same way, with the result type derived from context. A literal <name> is derived from context

(see clause I.2.2) so that if the <literal expression> is overloaded (that is, the same <name> is used

for more than one literal or operation), then the <literal expression> identifies a visible <name> with

the result type consistent with the literal expression. If there are two literals with the same <name>

but differing by result types, these are different.

It shall be possible to bind each <literal expression> containing an <unqualified name> to exactly

one defined literal <name>.

Mapping

A <literal expression> represents a LiteralValue. Its value is represented by the referenced <simple

name>, <string name>, <real name>, <integer name> or by <null>. The type of the <literal

expression> represents type.

I.9.2.3 Equality

An <equality expression> represents the equality of the data items returned by its expressions.

Concrete grammar

<equality expression> ::=

 <positive equality expression>

 | <negative equality expression>

<positive equality expression> ::=

 <expression> == <expression>

<negative equality expression> ::=

 <expression> != <expression>

The type of one of the <expression> items of an <equality expression> shall be type compatible to

the type of the other <expression>.

Mapping

An <equality expression> represents an EqualityExpression. The first <expression> represents

firstOperand. The second <expression> represents secondOperand. If the <equality expression> is a

<positive equality expression>, the operationIdentifier is =. If the <equality expression> is a <negative

equality expression>, the operationIdentifier is !=.

I.9.2.4 Boolean expression

A Boolean expression is a Boolean disjunction or conjunction interpreted in short-circuit manner.

Concrete grammar

<disjunctive expression> ::=

 <expression> || <expression>

<conjunctive expression> ::=

 <expression> && <expression>

For a <disjunctive expression> or <conjunctive expression>, both <expression> items shall be of the

predefined Boolean type.

<negation expression> ::=

 ! <term>

For a <negation expression>, the <term> shall be of the predefined Boolean type.

184 Rec. ITU-T Z.109 (10/2016)

Model

A <disjunctive expression> is shorthand for a <conditional expression> where the <expression> is

the first <expression>, the <consequence expression> is the predefined Boolean value true and the

<alternative expression> is the second <expression>.

A <conjunctive expression> is shorthand for a <conditional expression> where the <expression> is

the first <expression>, the <consequence expression> is the second <expression>, and the

<alternative expression> is the predefined Boolean value false.

A <negation expression> is shorthand for a <conditional expression> where the <expression> is the

<term>, the <consequence expression> is the predefined Boolean value false and the <alternative

expression> is the predefined Boolean value true.

Mapping

NOTE – The interpretation of the <conditional expression> is given in the Model.

I.9.2.5 Conditional expression

A conditional expression is an expression where a Boolean expression is interpreted to determine

whether to interpret a consequence or an alternative expression.

Concrete grammar

<conditional expression> ::=

 <boolean conditional expression> | <null check expression>

<boolean conditional expression> ::=

 <expression> ? <consequence expression> : <alternative expression>

<null check expression> ::=

 <expression> null ? <consequence expression>

<consequence expression> ::=

 <expression>

<alternative expression> ::=

 <expression>

For a <boolean conditional expression>, the type of the <consequence expression> shall be

compatible to the type of the <alternative expression>, or the type of the <alternative expression>

shall be compatible to the type of the <consequence expression>, and the type of the <expression>

shall be the predefined type Boolean.

For a <null check expression>, the type of the <consequence expression> shall be compatible to the

type of the <expression>.

Model

A <null check expression> is shorthand for a <conditional expression> where the <expression> is a

<positive equality expression> with the <expression> as the first <expression> and null as the second

<expression>, the <consequence expression> is the <consequence expression> and the <alternative

expression> is the <expression>.

Mapping

A <boolean conditional expression> represents a ConditionalExpression. The <expression> represents

booleanExpression. The <consequence expression> represents consequenceExpression. The <alternative

expression> represents alternativeExpression.

NOTE – The interpretation of the <null check expression> is given in the Model above.

 Rec. ITU-T Z.109 (10/2016) 185

I.9.2.6 Operation call

An operation call causes the interpretation of the named operation. The result returned by the

interpretation of the operation is the result of the operation call.

Concrete grammar

<operation call> ::=

 <operator call>

 | <method call>

 | <procedure call>

 | <constructor call>

If an <identifier> can be interpreted as either the <identifier> of an <operator call>, <procedure call>

or <constructor call> with omitted <actual parameters> or as a <variable access>, it is interpreted

as an operator, procedure or constructor <identifier> unless it occurs within the <operation

statements> of an accessor <operation definition> with this <identifier> and empty <parameters>, as

introduced in clause I.9.1.6.

NOTE 1 – It may be required to use a qualifier to identify the unique <operation definition> referenced by the

<identifier> of an <operator call>, <procedure call> or <constructor call>. In particular, for an <operation

definition> defined in a type with a <template> the intended <operation definition> may not be able to be

determined otherwise.

<operator call> ::=

 <operation identifier> [<actual parameters>]

<operation identifier> ::=

 <identifier> | <template instantiation>

The <operation identifier> of the <operator call> shall identify an <operation definition> that is an

operator or method (see clause I.9.1.5).

<method call> ::=

 <target> . <invocation>

<target> ::=

 { <target expression> | super | <operator call> | <procedure call> | <constructor call> }

 {. <invocation> }*

<invocation> ::=

 <operation identifier> [<actual parameters>]

The <target> super shall occur only in an <operation definition> that defines a method (see clause

I.9.1.5) or a constructor.

A <procedure call> in a <target> shall reference an <operation definition> with a <result>. The

<operation identifier> of the <invocation> shall identify an <operation definition> that is a method

(see clause I.9.1.5).

<procedure call> ::=

 <operation identifier> [<actual parameters>]

The <operation identifier> of the <procedure call> shall identify an <operation definition> or

<constructor definition> that is a procedure (see clause I.9.1.5).

<constructor call> ::=

 { <operation identifier> | <type identifier> } [<actual parameters>]

The <operation identifier> of the <constructor call> shall reference a <constructor definition>. If a

<type identifier> is used in a <constructor call>, it references the unnamed <constructor definition>

with matching <parameters> contained in the type definition with this <type identifier>.

186 Rec. ITU-T Z.109 (10/2016)

<actual parameters> ::=

 ([<actual parameter>+[| ,] | <named actual parameter>+[| ,]])

The number of the <actual parameters> shall match the number of elements required in the context

where <actual parameters> is used. The corresponding list of <parameters> determines the number

of required elements.

<actual parameter> ::=

 <expression> | <omitted parameter>

<named actual parameter> ::=

 <name> := <expression>

Each <expression> that is an <actual parameter> corresponding to an <in parameter>, if present,

shall be type compatible with the <type> in the corresponding (by position) <parameter> of the

<parameters> of the identified <operation definition>, unless the <actual parameter> is an <omitted

parameter>. Each <expression> that is an <actual parameter> corresponding to an <out parameter>

or an <inout parameter>, if present, shall have the same type as the corresponding (by position)

<parameter> of the <parameters> of the identified <operation definition>, unless the <actual

parameter> is an <omitted parameter>.

The <expression> in an <actual parameter> corresponding by position to an <in parameter> in the

identified <operation definition> or <constructor definition> shall satisfy the syntactic constraints on

assignment (see clause I.9.3.3), that is, if the parameter has ref aggregation and the actual parameter

has part aggregation, then the actual parameter expression shall be able to be referenced (see

clause I.9.2.1), and if the parameter has part aggregation and is not a direct or indirect subtype of

Agent, the actual parameter expression shall not be null.

The <expression> in an <actual parameter> corresponding by position to an <out parameter> or an

<inout parameter> in the identified <operation definition> or <constructor definition> shall be

assignable (see clause I.9.2.1).

If all the <expression> items in <actual parameters> are constant expressions and the <operation

statements> of the identified <operation definition> or <constructor definition> do not contain

<imperative expression> items or <variable access> items referencing variables outside of the

<operation statements> or <agent expression> items, the <operation call> is a constant expression

as defined in clause I.9.2.1.

<omitted parameter> ::=

 _

An <omitted parameter> shall be used as <actual parameter> only if <default> is present in the

corresponding <parameter>.

Model

If the <operation identifier> of an <operator call> references an <operation definition> that is a

method, the <operator call> is transformed into a <method call> with the <target> this, where the

<invocation> is formed from the <operation identifier> and <actual parameters>, if any.

If the <operation identifier> of an <operator call> references an <operation definition> that is a

method with the <parameter> corresponding to the first <actual parameter> of the <operator call>

omitted, the <operator call> is transformed into a <method call> with the first <actual parameter> as

the <target>, where the <invocation> is formed from the <operation identifier> and the remaining

<actual parameters>, if any.

 Rec. ITU-T Z.109 (10/2016) 187

If the <operation identifier> or the <type identifier> of a <constructor call> with omitted <actual

parameters> references a <constructor definition> with an empty <parameter> list as <parameters>,

the <constructor call> is transformed into a <constructor call> with an empty <actual parameter>

list as <actual parameters>.

If the <operation identifier> of an <invocation> with omitted <actual parameters> references an

accessor <operation definition> (see clause I.9.1.6) with an empty <parameter> list as <parameters>,

the <invocation> is transformed into an <invocation> with an empty <actual parameter> list as

<actual parameters>.

NOTE 2 – After this transformation and the transformations in clause I.9.3.2 have been applied, the <actual

parameters> of an <operation call> will always be present, albeit they may be empty.

If <named actual parameter> items are present in the <actual parameters>, then the <actual

parameter> items are reordered to match against the <parameters> of the identified <operation

definition> or <constructor definition> based on the <name> in the <named actual parameter> which

shall be identical to the <name> of the corresponding <parameter>. Then all <named actual

parameter> items are replaced by their <expression> items. If <named actual parameter> items are

present in the <actual parameters> and an actual parameter corresponding to a <parameter> is

omitted, an <omitted parameter> is inserted in the corresponding position in the <actual

parameters>.

If an <omitted parameter> is used as <actual parameter> in the <actual parameters>, the

<expression> provided in the <default> of the corresponding <parameter> is used as <actual

parameter>.

If the <operation call> has a part return aggregation or the <operation call> is a <method call> with

an <operator call>, a <compound statement> is created with the <statement> containing the

<operation call> as its <statements>, if such <compound statement> does not already exist.

If the last <parameter> in the <parameters> of the referenced <operation definition> or <constructor

definition> contains a <list type>, a <variable definition> with an anonymous <name> and the

anonymous type created by the <syntype definition> corresponding to the <list type> (see clause I.4.1)

is created. The <actual parameter> corresponding (by position) to that <parameter> and all

subsequent <actual parameter> items are assigned to this variable as a collection, that is, an

<expression> constructing an instance of the predefined type String containing these <actual

parameter> items is assigned to this variable. Then the anonymous <name> of this anonymous

variable is used as the <actual parameter> of the <operation call> instead of these <actual

parameter> items.

If the <operation identifier> is an <identifier> and does not reference an <operation definition>, but

there is an <operation definition> with a template and the <name> in <identifier> such that <actual

context parameters> can be derived given the <actual parameters> of the <operation call> and the

context, this is shorthand for an <operation identifier> that is a <template instantiation> with the

<identifier> as <base identifier> and the derived <actual context parameters>.

If the <operation identifier> is an <identifier> and does not reference a <constructor definition>, but

there is a type definition with a template and the <name> in <identifier> such that <actual context

parameters> can be derived given the <actual parameters> of the <operation call> and the context,

this is shorthand for a <type identifier> that is a <template instantiation> with the <identifier> as

<base identifier> and the derived <actual context parameters>.

A <method call> is converted into an <operator call> by inserting <target> or <operator call> as the

first <actual parameter> into <actual parameters> of the first <invocation> of the <invocation> list

and deleting that <invocation>, or creating <actual parameters> if absent. This transformation is

applied until the <invocation> list is empty.

188 Rec. ITU-T Z.109 (10/2016)

When the <target> of a <method call> is super, this is converted into a <target> which is a <type

coercion expression> with this as the <expression> and the supertype of the containing <class

definition> as <type>.

Mapping

An <operator call>, <procedure call> or <constructor call> represents an OperationApplication. The

<identifier> or <type identifier> represents the operationIdentifier; <actual parameters> represents

actualParameterList.

The interpretation of a <method call> is given in the Model above.

Each <expression> in an <actual parameter> in <actual parameters> represents an SdlExpression in

the actualParameterList. An <omitted parameter> represents an empty SdlExpression in the

actualParameterList.

I.9.2.7 Type checking and coercion

A type check expression determines whether an expression is within the range of data items given by

a type (possibly with a constraint) or syntype.

A type coercion expression changes the dynamic type of an expression.

Concrete grammar

<type coercion expression> ::=

 <expression> : <type>

The type of the <expression> shall be type compatible with the type identified by <type>.

The static type of the <expression> shall be the type identified by <type> or a supertype of that type.

<type check expression> ::=

 <expression> :? <type>

If <type> is a <constrained type>, this represents the application of a range check as described in

clause I.9.1.8.

NOTE – If the <expression> in a <type check expression> is <null>, the <type check expression> will always

return the predefined Boolean value true.

Mapping

A <type coercion expression> represents TypeCoercion, such that <expression> represents expression

and <type> represents sortReferenceIdentifier.

A <type check expression> where <type> is a <constrained type> or references a <syntype definition>

represents a RangeCheckExpression such that <expression> represents expression. If <type> is a

<constrained type>, the <range constraint> or <size constraint> in the <constraint> of the

<constrained type> represents rangeCondition and its <type> represents parentSortIdentifier. If <type>

references a <syntype definition>, <type> represents parentSortIdentifier.

Otherwise, a <type check expression> represents a TypeCheckExpression, where <expression>

represents expression and <type> represents parentSortIdentifier.

 Rec. ITU-T Z.109 (10/2016) 189

I.9.2.8 Imperative expression

Imperative expressions obtain results from the underlying system state, such as when accessing the

system clock or the status of timers.

Concrete grammar

<imperative expression> ::=

 <now expression>

 | <timer active expression>

 | <state check expression>

<now expression> ::=

 now

<timer active expression> ::=

 set <type identifier> [<actual parameters>]

The types of the <actual parameters> shall correspond by position to the types of the <parameters>

in the <stimulus definition item> of a <timer definition> with a <type identifier> matching the <type

identifier>.

A <timer active expression> shall not occur in an <expression statement>.

<state check expression> ::=

 state <identifier>

If the <identifier> of a <state check expression> is a <qualified name>, the <qualifier list> shall

reference a <service definition> of the <agent definition> that contains the <state check expression>.

Otherwise, the <identifier> in a <state check expression> shall reference a state in the containing

service.

Mapping

A <now expression> item represents a NowExpression.

A <timer active expression> represents a TimerActiveExpression. The <type> represents the

timerIdentifier. Each <actual parameter> in <actual parameters> represents an SdlExpression in the

expression list.

A <state check expression> represents an EqualityExpression where firstOperand is a StateExpression

and secondOperand is the <qualified name> represented as the corresponding element of the

predefined Charstring type.

I.9.3 Data holders

This clause defines the use data holders, and how an expression involving a data holder is interpreted.

A data holder has a type and possibly an associated data item of that type. By assigning a new data

item to the data holder, the data item associated with the data holder is changed. The data item

associated with the data holder can be used in an expression by accessing the data holder.

Any expression containing a data holder depends on the current state of the system, because the data

item obtained by interpreting the expression varies according to the data item last assigned to the data

holder.

Data holders are variables and the parameters and result of operations, because variables are implicitly

created for these.

190 Rec. ITU-T Z.109 (10/2016)

I.9.3.1 Variable

A variable is a data holder and is established by a variable definition. The variable exists as long as

the scope containing the variable definition exists. When that scope is exited, the variable ceases to

exist.

A variable has a modifier which governs the manner in which the variable is associated with a data

item.

NOTE 1 – The meaning of variables, accessing of variables (see clause I.9.3.2) and assigning to variables (see

clause I.9.3.3) specified applies also to implicitly created variables for parameters and result of operations,

loop variables and input variables for transitions.

Concrete grammar

<variable definition> ::=

 [<modifier>] <name>+[| ,] : <type> <stereotype>* [<default>] ;

When an entity may be syntactically both an <attribute definition> or a <variable definition> and

both the entity definition has the stereotype <<private>> applied and the operation definitions

specified by the transformation in clause I.9.1.6 are present, then the entity shall be considered as a

<variable definition>. Otherwise, the entity shall be considered as an <attribute definition>.

NOTE 2 – Typically, the top-level <entities> of a <class definition>, as specified by the user, will contain

<attribute definition>, and <variable definition> items are created as specified in the transformation in

clause I.9.1.6.

A <variable definition> shall not have an associated visibility stereotype.

<modifier> ::=

 [<immutability>] [<optionality>] [<aggregation>]

<immutability> ::=

 const | val

<optionality> ::=

 opt

<aggregation> ::=

 part | ref

If the <immutability> is const, the <name> of the <variable definition> shall not occur as the

<location> of an <assignment>, unless this <assignment> occurs in a <constructor initializer>.

NOTE 3 – If a <variable definition> with <immutability> const does not have a <default>, this variable needs

to be initialized in a <constructor initializer> of the containing <class definition>; otherwise it cannot be given

a value.

If a <variable definition> does not contain <optionality>, a <default> shall be present or this variable

shall be initialized in a <constructor initializer> of the containing <class definition>.

When the type of a variable is a primitive type, its aggregation shall be part.

When the <type> of a variable is a type defined by an <agent definition>, its aggregation shall be

part, and <optionality> shall not be present.

NOTE 4 – If a modifier consistent with these constraints is not present, it is added by the transformation below.

When ref aggregation is used, the <type> shall reference a <class definition> or an <interface

definition>.

<default> ::=

 := <expression>

If the <immutability> contains const, the <expression> in the <default> shall be a constant.

 Rec. ITU-T Z.109 (10/2016) 191

Model

When <aggregation> is not present, this is shorthand for the <aggregation> part.

If the <type> of a variable is a type defined by an <agent definition>, the <default> null is added, if

no <default> is present.

If <default> is not present but the <type> references a type definition with a default constructor, an

<operation call> to the default constructor is used as the <default>.

Mapping

A <variable definition> represents a Variable. If present, <aggregation> represents aggregation;

otherwise aggregation is composite. If present, <immutability> const represents the isReadOnly

property being true; otherwise, the isReadOnly property is false. The <type> represents type and

<name> represents name. If present, <default> represents the defaultValue.

An <aggregation> part represents AggregationKind composite. An <aggregation> ref represents

AggregationKind none.

The <optionality> is not explicitly represented.

I.9.3.2 Accessing variables

This clause presents the mechanisms to retrieve the data item associated with a variable.

Concrete grammar

<variable access> ::=

 <identifier>

 |this

 |input

The <identifier> shall reference a <variable definition>, <parameter>, <input variable> or an

implicitly defined variable.

The <variable access> this shall occur only in an <operation definition> that defines a method (see

clause I.9.1.5) or a constructor.

Model

NOTE – The <variable access> items this and input are transformed as discussed in clauses I.9.1.5 and

I.7.3.2, respectively.

Mapping

A <variable access> represents a VariableAccess. If an <identifier> is present, it represents the variable.

I.9.3.3 Assignment to variables

An assignment creates an association between an identified variable and the data item that is the result

of interpreting an expression.

Concrete grammar

<assignment> ::=

 <location> := <expression> ;

The type of the <expression> shall be type compatible with the type of the <location>.

If the <location> is an <identifier> identifying a <variable definition> without <optionality>, the

<expression> shall not be <null>, unless the <type> of the <variable definition> is a direct or indirect

subtype of the predefined type Agent.

192 Rec. ITU-T Z.109 (10/2016)

NOTE – If the <expression> has <optionality> but the <location> does not, a check whether the expression is

null may need to be added before the <assignment> if it cannot be determined otherwise that the <expression>

will return a result.

If the <location> has ref <aggregation>, and the <expression> has part aggregation, then the

<expression> shall be able to be referenced (see clause I.9.2.1).

If the <location> has ref aggregation and <immutability> const, the <expression> shall not have

<immutability>.

<location> ::=

 <identifier>

 | <operation call>

Model

If the <location> is an <identifier> and references a mutator <operation definition> (see

clause I.9.1.6) with <identifier> and a single <parameter> such that the <expression> is type

compatible with that <parameter>, the <assignment> is transformed to a <method call> with

<identifier> and <expression> as <actual parameters> in <invocation> and this as <target>, unless

the <assignment> occurs within the <operation statements> of the corresponding mutator <operation

definition>.

If the <location> is an <operator call> with <identifier> and <actual parameters>, and references a

mutator <operation definition> with <identifier> such that each <actual parameter> is type

compatible with the corresponding <parameter> of the mutator and the <expression> is type

compatible with the last <parameter> of the mutator, the <assignment> is transformed to a <method

call> with <identifier> and the <actual parameter> items and <expression> as <actual parameters>

in <invocation> and this as <target>.

If the <location> is a <method call> with <target>, an <invocation> with <identifier> and omitted

<actual parameters>, and <identifier> references a mutator <operation definition> with <identifier>

and a single <parameter> such that the <expression> is type compatible with that <parameter>, the

<assignment> is transformed to a <method call> with <identifier> and <expression> as <actual

parameters> in <invocation> and <target>.

If the <location> is a <method call> with <target>, an <invocation> with <identifier> and <actual

parameters>, and <identifier> references a mutator <operation definition> with <identifier> such that

each <actual parameter> is type compatible with the corresponding <parameter> of the mutator and

the <expression> is type compatible with the last <parameter> of the mutator, the <assignment> is

transformed to a <method call> with <identifier> and the <actual parameter> items and <expression>

as <actual parameters> in <invocation> and <target>.

Mapping

If <location> is an <identifier> that references an <attribute definition>, an <assignment> represents

an AddStructuralFeatureValueAction; the <location> represents structuralFeature, and the <expression>

represents value.

If <location> references a <variable definition> (not derived from an <attribute definition>) or a

<loop variable definition>, an <assignment> represents an <<AssignValueAction>> OpaqueAction; the

<location> represents variable, and the <expression> represents value.

I.9.4 Expressions for agents and agentsets

It must be possible to identify an agent instance in order to send signals to it, store a newly created

agent instance in an agentset, etc. This clause discusses the mechanisms of creating and accessing

agent instances.

 Rec. ITU-T Z.109 (10/2016) 193

I.9.4.1 Accessing agents

Agent instances are accessed through agent identities associated with special variables that reflect the

usage of an agent instance. For example, the agent instance that sent the most recently consumed

signal can be determined by the sender variable. The agent instances identified with an agentset can

be accessed by their index in the agentset.

Concrete grammar

<agent expression> ::=

 self

 | parent

 | offspring

 | sender

 | <agent access>

<agent access> ::=

 @ <agent location>

<agent location> ::=

 <identifier> [(<expression>)]

The <identifier> in <agent location> shall refer to an <agentset definition> of the <agent definition>

that contains the <agent access>. If the referenced <agentset definition> is a <dynamic agentset>, the

<expression> in the <agent location> shall be present and shall be type compatible with the <index

type>.

NOTE – It is not possible to access an <agentset definition> defined in the containing <agent definition> from

within a nested <agent definition>.

If an <agent location> occurs in a <collection enumeration> or if the <identifier> of the <agent

location> refers to a <singleton agentset>, the <expression> shall not be present. Otherwise, if the

<identifier> of the <agent location> refers to a <dynamic agentset> the <expression> shall be present.

Model

An <agent access> is shorthand for accessing an implicitly declared variable implied by the agentset:

if the <qualified name> of the <agent location> in an <agent access> references an <agentset

definition> that is a <dynamic agentset> and an <expression> is present in the <agent location>, the

identity of the active agent instance associated with the variable corresponding to the result of the

<expression> implied by the agentset (see clause I.5.3) is returned. If the <qualified name> of the

<agent location> in an <agent access> references an <agentset definition> that is a <singleton

agentset>, the identity of the active agent instance associated with the variable implied by the agentset

(see clause I.5.3) is returned.

If an active agent is not found at the <agent location>, the <agent access> returns null and does not

identify any agent.

When an <agent location> without <expression> appears in a <collection enumeration> (see

clause I.8.4), the identities of the active agents in the agentset are returned as the items of the

collection.

Mapping

An <agent expression> represents PidExpression. The keywords self, parent, sender or offspring

represent expressionKind.

I.9.4.2 Create

A <create request> is used to create instances of agents (active data items). The identity of a created

agent instance is always associated with an agentset as long as the agent is active.

194 Rec. ITU-T Z.109 (10/2016)

NOTE 1 – Instances of classes (passive data items) are created by calling the constructor of the class.

Concrete grammar

<create request> ::=

 create <operation call> @ <agent location>

The <identifier> in <agent location> shall refer to an <agentset definition> of the <agent definition>

that contains the <agent access>. The <identifier> in the <agent location> of a <create request> shall

not reference a <singleton agentset>.

NOTE 2 – It is not possible to create an agent instance in an <agentset definition> defined in the containing

<agent definition> from within a nested <agent definition>.

The <operation call> shall be a <constructor call>.

Model

For a <create request>, a <variable definition> of an anonymous variable with type Agent is created

and inserted before the statement in which the <create request> occurs.

For a <create request> with an <expression> in <agent location> and referencing a <dynamic

agentset>, an <if statement> with an <expression> that is an <agent active expression> with the

<agent location> of the <create request> as <agent expression> is inserted just before the statement

in which the <create request> occurs. The <statements> of this <if statement> consist of a single

<assignment> of null to the anonymous agent variable. The <else branch> consists of the <create

request> as an <expression statement>; followed by, if an offspring was successfully created, an

assignment of offspring to the implicitly declared variable corresponding to the result of the

<expression> implied by the agentset (see clause I.5.3); followed by an <assignment> of offspring

to the anonymous agent variable.

Otherwise, the <create request> is inserted as an <expression statement> just before the statement in

which the <create request> occurs; followed by, if an offspring was successfully created, an

assignment of offspring to an arbitrary implicitly declared variable implied by the agentset (see

clause I.5.3) not associated with an active agent (for a <dynamic agentset>), or to the implicitly

declared variable implied by the agentset (see clause I.5.3) (for a <singleton agentset>); followed by

an <assignment> of offspring to the anonymous agent variable.

The original <create request> is replaced by the anonymous agent variable.

NOTE 3 – If an attempt is made to create an agent instance in an agentset at a location which identifies an

active agent instance, then no new instance is created.

Mapping

A <create request> represents a CreateObjectAction where the operation identifier in the <operator

call> represents classifier and each <actual parameter> in <actual parameters> represents an

SdlExpression in actualParameterList.

I.10 Exceptions

An exception indicates that an exceptional situation (typically an error situation) has occurred while

interpreting the specification. An exception instance is created implicitly by the underlying system.

Creation of an exception instance diverts the normal flow of control within the state machine of an

agent instance or within an operation. If an exception instance is created and is not caught in the

context where it was created, the exception instance propagates (dynamically) outwards to the calling

or invoking context and is treated as if it were created at that context. If an exception instance

propagates outwards until it reaches an agent instance and is not caught there, the further behaviour

of the system is undefined.

 Rec. ITU-T Z.109 (10/2016) 195

A number of exceptions are predefined within the package Predefined. These exceptions may be

created by the underlying system implicitly. A specification may also create instances of predefined

exceptions explicitly.

I.11 Generic system definition

A system specification may have conditional parts that are selected depending on some externally

defined condition or contain system parameters with unspecified results. Such a system specification

is called generic. A generic system specification is tailored by selecting a suitable subset of the

specification and providing a data item for each of the system parameters. The resulting system

specification does not contain external conditions.

A generic system definition is a system definition that contains an externally defined condition (see

clause I.11.1), or an operation defined by an external operation definition (see clause I.11.2) or

external data. A system definition is created from a generic system definition by providing results for

the external condition and providing behaviour for external operation definitions. How this is

accomplished is not part of this appendix.

I.11.1 Conditionalization

Conditionalization allows the final contents of a specification to be determined based on external

conditions, such as whether or not a name is defined. How the external name is defined and associated

with the specification is not defined as part of this appendix.

Concrete grammar

<selected entities> ::=

 {#ifdef | #ifndef } <selection> <selected entities item>

 [#else <selected entities item>]

 #endif

 | #if <selection condition> <selected entities item>

 [#else <selected entities item>]

 #endif

<selected entities item> ::=

 <stereotype>* <entity>*

<selected statements> ::=

 {#ifdef | #ifndef } <selection> <selected statements item>

 [#else <selected statements item>]

 #endif

 | #if <selection condition> <selected statements item>

 [#else <selected statements item>]

 #endif

<selected statements item> ::=

 <stereotype>* { <statement> <stereotype>* }*

A <selected entities item> or <selected statements item> that is not selected need not be type correct

nor need its <identifier> or <type identifier> items resolved to defined entities. The not selected items

shall be otherwise syntactically correct.

A <selected entities> item may appear in any <entities> item of the specification. A <selected

statements> item may appear in any <statements> in the specification. The <selected entities> and

<selected statements> shall contain only those <entity> items and <statement> items that are

syntactically allowed where they occur.

196 Rec. ITU-T Z.109 (10/2016)

<selection> ::=

 <name>

<selection condition> ::=

 <selection condition> | | <selection condition>

 | <selection condition> && <selection condition>

 | ! <selection condition>

 | <name>

 | defined {(<name>) | <name> }

 | (<selection condition>)

To establish the order of precedence of the symbols in a <selection condition>, the symbols ||, &&

and ! are treated as the operation name ′||′, ′&&′ and ′!′, respectively (see Table I.9.1).

Model

A <selection> with #ifdef is enabled if the <name> is externally defined. A <selection> with

#ifndef is enabled if the <name> is externally not defined. A <selection condition> with defined is

enabled if the <name> is externally defined. A <selection condition> that is a <name> is enabled if

the <name> is externally defined and has a value different than 0. A <selection condition> containing

!, && or || is interpreted as discussed in clause I.9.2.4, with an enabled <selection condition> being

treated as a predefined Boolean value true, and a <selection condition> which is not enabled being

treated as a predefined Boolean value false.

For the <selected entities>, if the <selection> or <selection condition> is enabled, the <selected

entities> are replaced with the first <selected entities item>; otherwise, the <selected entities> are

replaced with the second <selected entities item>, if present.

For the <selected statements>, if the <selection> or <selection condition> is enabled, the <selected

statements> are replaced with the first <selected statements item>; otherwise, the <selected

statements> are replaced with the second <selected statements item>, if present.

Mapping

The result of the Model for <selected entities> is mapped as the resulting <entity> (see clause I.3.1).

The result of the Model for <selected statements> is mapped as the resulting <statement> (see

clause I.8.1).

I.11.2 External definition

An external entity is defined by a definition whose body is not included in the specification. An

external definition is treated as if part of the specification. How an external entity is interpreted is not

further defined in this appendix.

Concrete grammar

The stereotype <<extern>> references a definition external to the specification.

When the stereotype <<extern>> is used in a definition, the body of the definition shall be empty.

 Rec. ITU-T Z.109 (10/2016) 197

Bibliography

[b-ITU-T T.50] Recommendation ITU-T T.50 (1992), International Reference Alphabet (IRA)

(Formerly International Alphabet No. 5 or IA5)  Information technology 

7-bit coded character set for information interchange.

[b-ITU-T Z.111] Recommendation ITU-T Z.111 (2008), Notations and guidelines for the

definition of ITU-T languages.

[b-ISO/IEC 10646] ISO/IEC 10646:2012, Information technology – Universal Coded Character

Set (UCS).

Printed in Switzerland
Geneva, 2017

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	1 Scope and objectives
	1.1 Conformance
	1.2 Restrictions on SDL-2010 and UML
	1.3 Mapping

	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions and names
	5.1 Conventions
	5.1.1 References

	5.2 Names and name resolution: NamedElement
	5.2.1 Attributes
	5.2.2 Constraints
	5.2.3 Semantics
	5.2.4 Notation
	5.2.5 References

	5.3 Transformation

	6 Summary of stereotypes and metaclasses
	6.1 Stereotype summary
	6.2 Metaclass summary

	7 Structure
	7.1 Structure metamodel diagrams
	7.2 ActiveClass
	7.2.1 Attributes
	7.2.2 Constraints
	7.2.3 Semantics
	7.2.4 References

	7.3 ChoiceType
	7.3.1 Attributes
	7.3.2 Constraints
	7.3.3 Semantics
	7.3.4 References

	7.4 Classifier
	7.4.1 Attributes
	7.4.2 Constraints
	7.4.3 Semantics
	7.4.4 References

	7.5 Connector
	7.5.1 Attributes
	7.5.2 Constraints
	7.5.3 Semantics
	7.5.4 References

	7.6 DataTypeDefinition
	7.6.1 Attributes
	7.6.2 Constraints
	7.6.3 Semantics
	7.6.4 References

	7.7 Interface
	7.7.1 Attributes
	7.7.2 Constraints
	7.7.3 Semantics
	7.7.4 References

	7.8 LiteralType
	7.8.1 Attributes
	7.8.2 Constraints
	7.8.3 Semantics
	7.8.4 References

	7.9 Operation
	7.9.1 Attributes
	7.9.2 Constraints
	7.9.3 Semantics
	7.9.4 References

	7.10 Package
	7.10.1 Attributes
	7.10.2 Constraints
	7.10.3 Semantics
	7.10.4 References

	7.11 Parameter
	7.11.1 Attributes
	7.11.2 Constraints
	7.11.3 Semantics
	7.11.4 References

	7.12 Port
	7.12.1 Attributes
	7.12.2 Constraints
	7.12.3 Semantics
	7.12.4 References

	7.13 Property
	7.13.1 Attributes
	7.13.2 Constraints
	7.13.3 Semantics
	7.13.4 References

	7.14 Signal
	7.14.1 Attributes
	7.14.2 Constraints
	7.14.3 Semantics
	7.14.4 References

	7.15 Specification
	7.15.1 Attributes
	7.15.2 Constraints
	7.15.3 Semantics
	7.15.4 References

	7.16 StructureType
	7.16.1 Attributes
	7.16.2 Constraints
	7.16.3 Semantics
	7.16.4 Notation
	7.16.5 References

	7.17 Syntype
	7.17.1 Attributes
	7.17.2 Constraints
	7.17.3 Semantics
	7.17.4 References

	7.18 Timer
	7.18.1 Attributes
	7.18.2 Constraints
	7.18.3 Semantics
	7.18.4 References

	8 State machines
	8.1 State machine metamodel diagrams
	8.2 DashNextstate
	8.2.1 Attributes
	8.2.2 Constraints
	8.2.3 Semantics
	8.2.4 References

	8.3 CompositeStateGraph
	8.3.1 Attributes
	8.3.2 Constraints
	8.3.3 Semantics
	8.3.4 References

	8.4 CompositeStateTypeDefinition
	8.4.1 Attributes
	8.4.2 Constraints
	8.4.3 Semantics
	8.4.4 References

	8.5 DecisionNode
	8.5.1 Attributes
	8.5.2 Constraints
	8.5.3 Semantics
	8.5.4 References

	8.6 FinalState
	8.6.1 Attributes
	8.6.2 Constraints
	8.6.3 Semantics
	8.6.4 References

	8.7 JoinNode
	8.7.1 Attributes
	8.7.2 Constraints
	8.7.3 Semantics
	8.7.4 References

	8.8 ProcedureDefinition
	8.8.1 Attributes
	8.8.2 Constraints
	8.8.3 Semantics
	8.8.4 References

	8.9 ProcedureGraph
	8.9.1 Attributes
	8.9.2 Constraints
	8.9.3 Semantics
	8.9.4 References

	8.10 Pseudostate
	8.10.1 Attributes
	8.10.2 Constraints
	8.10.3 Semantics
	8.10.4 References

	8.11 Region
	8.11.1 Attributes
	8.11.2 Constraints
	8.11.3 Semantics
	8.11.4 References

	8.12 ReturnNode
	8.12.1 Attributes
	8.12.2 Constraints
	8.12.3 Semantics
	8.12.4 References

	8.13 State
	8.13.1 Attributes
	8.13.2 Constraints
	8.13.3 Semantics
	8.13.4 References

	8.14 StartNode
	8.14.1 Attributes
	8.14.2 Constraints
	8.14.3 Semantics
	8.14.4 References

	8.15 StateAggregationArea
	8.15.1 Attributes
	8.15.2 Constraints
	8.15.3 Semantics
	8.15.4 References

	8.16 StateMachine
	8.16.1 Attributes
	8.16.2 Constraints
	8.16.3 Semantics
	8.16.4 References

	8.17 StopNode
	8.17.1 Attributes
	8.17.2 Constraints
	8.17.3 Semantics
	8.17.4 References

	8.18 Transition
	8.18.1 Attributes
	8.18.2 Constraints
	8.18.3 Semantics
	8.18.4 References

	9 Actions and activities
	9.1 Action and activity metamodel diagrams
	9.2 Activity
	9.2.1 Attributes
	9.2.2 Constraints
	9.2.3 Semantics
	9.2.4 References

	9.3 AssignValueAction
	9.3.1 Attributes
	9.3.2 Constraints
	9.3.3 Semantics
	9.3.4 References

	9.4 Break
	9.4.1 Attributes
	9.4.2 Constraints
	9.4.3 Semantics
	9.4.4 References

	9.5 CallOperationAction
	9.5.1 Attributes
	9.5.2 Constraints
	9.5.3 Semantics
	9.5.4 References

	9.6 ConditionalNode
	9.6.1 Attributes
	9.6.2 Constraints
	9.6.3 Semantics
	9.6.4 References

	9.7 Continue
	9.7.1 Attributes
	9.7.2 Constraints
	9.7.3 Semantics
	9.7.4 References

	9.8 CreateObjectAction
	9.8.1 Attributes
	9.8.2 Constraints
	9.8.3 Semantics
	9.8.4 References

	9.9 ExpressionAction
	9.9.1 Attributes
	9.9.2 Constraints
	9.9.3 Semantics
	9.9.4 References

	9.10 LoopNode
	9.10.1 Attributes
	9.10.2 Constraints
	9.10.3 Semantics
	9.10.4 References

	9.11 ResetAction
	9.11.1 Attributes
	9.11.2 Constraints
	9.11.3 Semantics
	9.11.4 References

	9.12 Return
	9.12.1 Attributes
	9.12.2 Constraints
	9.12.3 Semantics
	9.12.4 References

	9.13 SequenceNode
	9.13.1 Attributes
	9.13.2 Constraints
	9.13.3 Semantics
	9.13.4 References

	9.14 SendSignalAction
	9.14.1 Attributes
	9.14.2 Constraints
	9.14.3 Semantics
	9.14.4 References

	9.15 SetAction
	9.15.1 Attributes
	9.15.2 Constraints
	9.15.3 Semantics
	9.15.4 References

	9.16 Stop
	9.16.1 Attributes
	9.16.2 Constraints
	9.16.3 Semantics
	9.16.4 References

	9.17 Variable
	9.17.1 Attributes
	9.17.2 Constraints
	9.17.3 Semantics
	9.17.4 References

	10 ValueSpecification
	10.1 ValueSpecification metamodel diagrams
	10.2 ActiveAgentsExpression
	10.2.1 Attributes
	10.2.2 Constraints
	10.2.3 Semantics
	10.2.4 References

	10.3 AnyExpression
	10.3.1 Attributes
	10.3.2 Constraints
	10.3.3 Semantics
	10.3.4 References

	10.4 ClosedRange
	10.4.1 Attributes
	10.4.2 Constraints
	10.4.3 Semantics
	10.4.4 References

	10.5 ConditionalExpression
	10.5.1 Attributes
	10.5.2 Constraints
	10.5.3 Semantics
	10.5.4 References

	10.6 ConditionItem
	10.6.1 Attributes
	10.6.2 Constraints
	10.6.3 Semantics
	10.6.4 References

	10.7 EqualityExpression
	10.7.1 Attributes
	10.7.2 Constraints
	10.7.3 Semantics
	10.7.4 References

	10.8 ImperativeExpression
	10.8.1 Attributes
	10.8.2 Constraints
	10.8.3 Semantics
	10.8.4 References

	10.9 LiteralValue
	10.9.1 Attributes
	10.9.2 Constraints
	10.9.3 Semantics
	10.9.4 References

	10.10 NowExpression
	10.10.1 Attributes
	10.10.2 Constraints
	10.10.3 Semantics
	10.10.4 References

	10.11 OpenRange
	10.11.1 Attributes
	10.11.2 Constraints
	10.11.3 Semantics
	10.11.4 References

	10.12 OperationApplication
	10.12.1 Attributes
	10.12.2 Constraints
	10.12.3 Semantics
	10.12.4 References

	10.13 PidExpression
	10.13.1 Attributes
	10.13.2 Constraints
	10.13.3 Semantics
	10.13.4 References

	10.14 PidExpressionKind
	10.14.1 Attributes
	10.14.2 Constraints
	10.14.3 Semantics
	10.14.4 References

	10.15 RangeCheckExpression
	10.15.1 Attributes
	10.15.2 Constraints
	10.15.3 Semantics
	10.15.4 References

	10.16 RangeCondition
	10.16.1 Attributes
	10.16.2 Constraints
	10.16.3 Semantics
	10.16.4 References

	10.17 SdlExpression
	10.17.1 Attributes
	10.17.2 Constraints
	10.17.3 Semantics
	10.17.4 References

	10.18 SizeConstraint
	10.18.1 Attributes
	10.18.2 Constraints
	10.18.3 Semantics
	10.18.4 References

	10.19 StateExpression
	10.19.1 Attributes
	10.19.2 Constraints
	10.19.3 Semantics
	10.19.4 References

	10.20 TimerActiveExpression
	10.20.1 Attributes
	10.20.2 Constraints
	10.20.3 Semantics
	10.20.4 References

	10.21 TimerRemainingDuration
	10.21.1 Attributes
	10.21.2 Constraints
	10.21.3 Semantics
	10.21.4 References

	10.22 TypeCheckExpression
	10.22.1 Attributes
	10.22.2 Constraints
	10.22.3 Semantics
	10.22.4 References

	10.23 TypeCoercion
	10.23.1 Attributes
	10.23.2 Constraints
	10.23.3 Semantics
	10.23.4 References

	10.24 Undefined
	10.24.1 Attributes
	10.24.2 Constraints
	10.24.3 Semantics
	10.24.4 References

	10.25 ValueReturningCallNode
	10.25.1 Attributes
	10.25.2 Constraints
	10.25.3 Semantics
	10.25.4 References

	10.26 VariableAccess
	10.26.1 Attributes
	10.26.2 Constraints
	10.26.3 Semantics
	10.26.4 References

	11 Context parameters
	11.1 Context parameter metamodel diagrams
	11.2 ActualContextParameter
	11.2.1 Attributes
	11.2.2 Constraints
	11.2.3 Semantics
	11.2.4 References

	11.3 AgentContextParameter
	11.3.1 Attributes
	11.3.2 Constraints
	11.3.3 Semantics
	11.3.4 References

	11.4 AgentTypeContextParameter
	11.4.1 Attributes
	11.4.2 Constraints
	11.4.3 Semantics
	11.4.4 References

	11.5 CompositeStateTypeContextParameter
	11.5.1 Attributes
	11.5.2 Constraints
	11.5.3 Semantics
	11.5.4 References

	11.6 FormalContextParameter
	11.6.1 Attributes
	11.6.2 Constraints
	11.6.3 Semantics
	11.6.4 References

	11.7 GateContextParameter
	11.7.1 Attributes
	11.7.2 Constraints
	11.7.3 Semantics
	11.7.4 References

	11.8 GateConstraint
	11.8.1 Attributes
	11.8.2 Constraints
	11.8.3 Semantics
	11.8.4 References

	11.9 InterfaceContextParameter
	11.9.1 Attributes
	11.9.2 Constraints
	11.9.3 Semantics
	11.9.4 References

	11.10 ProcedureContextParameter
	11.10.1 Attributes
	11.10.2 Constraints
	11.10.3 Semantics
	11.10.4 References

	11.11 SignalContextParameter
	11.11.1 Attributes
	11.11.2 Constraints
	11.11.3 Semantics
	11.11.4 References

	11.12 SortContextParameter
	11.12.1 Attributes
	11.12.2 Constraints
	11.12.3 Semantics
	11.12.4 References

	11.13 SynonymContextParameter
	11.13.1 Attributes
	11.13.2 Constraints
	11.13.3 Semantics
	11.13.4 References

	11.14 TimerContextParameter
	11.14.1 Attributes
	11.14.2 Constraints
	11.14.3 Semantics
	11.14.4 References

	11.15 VariableContextParameter
	11.15.1 Attributes
	11.15.2 Constraints
	11.15.3 Semantics
	11.15.4 References

	12 Predefined data
	12.1 Non-parameterized data types
	12.1.1 Boolean
	12.1.2 Character
	12.1.3 Charstring
	12.1.4 Integer
	12.1.5 Natural syntype
	12.1.6 Real
	12.1.7 Duration
	12.1.8 Time
	12.1.9 Bit
	12.1.10 Bitstring
	12.1.11 Octet syntype
	12.1.12 Octetstring

	12.2 Parameterized data types
	12.2.1 Array
	12.2.2 Bag
	12.2.3 Powerset
	12.2.4 String
	12.2.5 Vector

	12.3 Pid
	12.4 UndefinedVariable

	Appendix I Example language specification
	I.1 Conventions
	I.1.1 Concrete grammar
	I.1.2 Model
	I.1.3 Mapping
	I.1.4 Introductory text
	I.1.5 Environment
	I.1.6 Validity and errors
	I.1.7 Package Predefined

	I.2 Lexical rules and names
	I.2.1 Lexical rules
	I.2.2 Comment stereotype
	I.2.3 Namespace and visibility of names
	I.2.4 Identifiers, names and name resolution

	I.3 Organization
	I.3.1 Entities
	I.3.2 Specification
	I.3.3 Package

	I.4 Basic concepts
	I.4.1 Types and instances
	I.4.2 Abstract types and operations
	I.4.3 Specialization
	I.4.3.1 Properties of specialized types
	I.4.3.2 Virtuality and redefinition

	I.4.4 Templates
	I.4.4.1 Templated entities
	I.4.4.2 Context parameters

	I.4.5 Stereotype

	I.5 Structure
	I.5.1 Agent
	I.5.2 System
	I.5.3 Agentset

	I.6 Communication
	I.6.1 Port
	I.6.2 Channel
	I.6.3 Signal
	I.6.4 Signallist

	I.7 State machine
	I.7.1 Service
	I.7.2 State
	I.7.3 Transition
	I.7.3.1 Start transition
	I.7.3.2 Input transition
	I.7.3.3 Guard
	I.7.3.4 Priority
	I.7.3.5 Continuous transition
	I.7.3.6 Save
	I.7.3.7 Spontaneous transition
	I.7.3.8 Implicit transition
	I.7.3.9 Labelled transition

	I.7.4 Substate machine
	I.7.4.1 Composite state
	I.7.4.2 Connect transition

	I.7.5 Transition statements

	I.8 Sequential behaviour
	I.8.1 Statements
	I.8.2 Terminating statements
	I.8.2.1 Nextstate
	I.8.2.2 Stop
	I.8.2.3 Return
	I.8.2.4 Goto, Break and Continue

	I.8.3 Action statements
	I.8.3.1 Output
	I.8.3.2 Timer

	I.8.4 Loop statement
	I.8.5 Conditional statements
	I.8.5.1 Decision statement
	I.8.5.2 If statement
	I.8.5.3 Type decision statement

	I.9 Data
	I.9.1 Definition of data types
	I.9.1.1 Class
	I.9.1.2 Interface
	I.9.1.3 Constructor
	I.9.1.4 Literals
	I.9.1.5 Operation
	I.9.1.6 Attribute
	I.9.1.7 Syntype
	I.9.1.8 Constraint

	I.9.2 Use of data
	I.9.2.1 Expression
	I.9.2.2 Literal expression
	I.9.2.3 Equality
	I.9.2.4 Boolean expression
	I.9.2.5 Conditional expression
	I.9.2.6 Operation call
	I.9.2.7 Type checking and coercion
	I.9.2.8 Imperative expression

	I.9.3 Data holders
	I.9.3.1 Variable
	I.9.3.2 Accessing variables
	I.9.3.3 Assignment to variables

	I.9.4 Expressions for agents and agentsets
	I.9.4.1 Accessing agents
	I.9.4.2 Create

	I.10 Exceptions
	I.11 Generic system definition
	I.11.1 Conditionalization
	I.11.2 External definition

	Bibliography

