

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.130
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Amendment 1
(06/2006)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Extended Object
Definition Language (eODL)

 Extended Object Definition Language (eODL):
Techniques for distributed software component
development – Conceptual foundation,
notations and technology mappings
Amendment 1: New Annex E – eODL to CIDL
mapping

ITU-T Recommendation Z.130 (2003) – Amendment 1

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Testing and Test Control Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Distributed processing environment Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006) i

ITU-T Recommendation Z.130

Extended Object Definition Language (eODL): Techniques for
distributed software component development – Conceptual foundation,

notations and technology mappings

Amendment 1

New Annex E – eODL to CIDL mapping

Summary
This amendment provides an example mapping of ITU eODL for technology independent
component specifications into a technology dependent one, which in this case is the CIDL (OMG
Component Implementation Definition Language as part of CORBA 3.0). This amendment
transforms (by means of different mappings) the concept of components from design and
implementation (where modules are well known) to binary software. The composition of
components takes place during execution time.

Source
Amendment 1 to ITU-T Recommendation Z.130 (2003) was approved on 13 June 2006 by ITU-T
Study Group 17 (2005-2008) under the ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2006

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006) iii

CONTENTS

 Page
1) Replace the following part in the items of Summary: .. 1

2) Update the Contents as follows: ... 1

3) Insert before Appendix I:.. 1

 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006) 1

ITU-T Recommendation Z.130

Extended Object Definition Language (eODL): Techniques for
distributed software component development – Conceptual foundation,

notations and technology mappings

Amendment 1

New Annex E – eODL to CIDL mapping

1) Replace the following part in the items of Summary
• Annex D contains a software reference to the XML representation [12] of the eODL

metamodel according to the XML meta interchange format (XMI) [6]. It is provided in a
separate file in order to allow import and processing of the eODL metamodel by UML
tools.

• Clause 1 provides an overview of how eODL is used by designers, implementers and
managers of a distributed system. A concrete example of the use is given in Appendix I.

with:
• Annex D contains a software reference to the XML representation [12] of the eODL

metamodel according to the XML meta interchange format (XMI) [6]. It is provided in a
separate file in order to allow import and processing of the eODL metamodel by UML
tools.

• Annex E contains mapping rules from technology independent eODL to technology
specific CIDL [7].

• Appendix I provides an overview of how eODL is used by designers, implementers and
managers of a distributed system. A concrete example of the use is given in Appendix I.

2) Update the Contents as follows
Add the following entries to the Contents paragraph before Appendix I. Modify the page number
according to the new document.

3) Insert before Appendix I

Annex E

eODL to CIDL mapping

E.1 Introduction
The component based software development is an approach for modular and model-based software
development. Supported by different mappings, it transforms component models (seen from
different views like design and implementation) to the binary software components. The
composition of software components takes place during execution time.

2 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006)

eODL is a language which offers concepts for a technology independent model description of the
components in their life cycle from different viewpoints. Concepts like computational object,
component, interface, module, signal, and data type are essential for the computational and
implementation viewpoint. In addition, there are further concepts for the description of runtime
environments and deployment of software components.

The CCM (CORBA Component Model [7]) is an OMG standard for a platform dependent
framework. It provides a metamodel for the description of technology dependent CORBA
components and the technology and runtime environment for components developed using that
metamodel. CCM is based on mature CORBA technologies like the GIOP protocol and language
bindings for implementation languages. The component model of CCM defines two kinds of
component interactions. There is a RPC-like interaction with request/response and a signal-like one
with events. For each of these interaction kinds components can declare the usage or the provision.
For the notation of component implementation CCM uses the language CIDL.

To bridge the gap between technology-independent software component models given as eODL
specifications technology-dependent models given as CIDL models, mappings are needed as a base
for automated model transformations.

The OMG Component Implementation Definition Language (CIDL) is a language used to describe
the structure and state of CORBA component implementations. Component-enable compilers
generate implementation skeletons from CIDL definitions. Component builders extend these
skeletons to create complete implementations.

This annex defines the rules for an eODL to CIDL mapping. These rules are verified by a compiler
implementation.

E.2 Restricted mapping from eODL to CIDL
The definition of eODL is widely based on concepts defined by CORBA IDL 2.x [5]. Also the
metamodel of eODL forms an extension of the CORBA metamodel. The adopted concepts are
assigned to the computational viewpoint of eODL. Unfortunately the metamodel of CCM does not
support the eODL concepts of the deployment viewpoint and the target environment viewpoint. This
field is not defined by the MOF metamodel of CCM yet. There are only XML document types
defined that are necessary for the final realization of the deployment architecture.

Conclusion: The eODL concepts concerning the deployment viewpoint and the target environment
viewpoint are not mapped. The mapping rules should be extended as far as an according OMG
standardization process will be finalized.

E.3 Mapping of eODL concepts which are CORBA concepts on CCM
Like the eODL metamodel, the CCM metamodel also extends the CORBA 2.x concepts. Therefore,
for eODL concepts which derive from CORBA, the simplest mapping is chosen, the identical
mapping. This allows the assignment of basic concepts from the eODL computational viewpoint
like data types, interfaces, operations and attributes from the platform independent level to the
platform specific level in a way which is the simplest one for the developer.

By using the CORBA metamodel as source as well as destination for the mapping, the occurrence
of overlapping by defining the transformation rules is possible. Because of the identical mapping,
this only happens when concepts of the CORBA metamodel are used in a context which is not
derived from the CORBA metamodel.

 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006) 3

E.4 Mapping of the computational viewpoint concepts

E.4.1 Signal
Signals are information carrier in eODL. They are transported during a signal-based interaction
from the sender to the receiver.

Rule 1: For each SignalDef in eODL an EventDef in CCM with the same name is created.
The associated names and data types in a CarryField in eODL are mapped onto ValueMemberDef
elements in CCM, which are contained within the EventDef. All created ValueMemberDef have
public visibility (isPublicMember==true).

Example:

signal Sig {
 long l;
};

Is mapped to CIDL,

eventtype Sig {
 public long l;
};

E.4.2 Consume and Produce
The interaction elements consume and produce of eODL are supposed to define the signal-based
interaction within an interface. Even though signal-based interaction exists in CCM (EventDef), it
is not allowed to be part of an interface. CCM defines such an interaction only as a direct part of a
component definition. Again this is not allowed in eODL: only attributes are permitted. A complete
prohibition of consume and produce in the eODL model would prevent a signal-based interaction.
Therefore a replacement construction is defined, which does increase the complexity of the
mapping but at least allows signal-based interaction. In CCM the definition of a signal (EventDef)
forms a definition of an interface for signal exchange. When defining component ports, they are
handled as own ports. So for each signal-based interaction element of eODL, a separate port is
defined at the component.

Rule 2: Elements of type ConsumeDef and ProduceDef in eODL are not mapped themselves but
are handled by the rules for ports.

Example:

signal Sig;
interface A {
 consumes Sig c;
 produces Sig p;
};

Is mapped to CIDL,

where the signal-based interaction elements from the EnhancedInterfaceDef are removed. Only
signals are reflected in CCM as EventDef.

eventtype Sig {
};
interface A {
};

4 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006)

E.4.3 Media, sink and source
Operational and signal-based interactions are supported by CCM. A Stream-based interaction is not
reflected. There are efforts to extend CCM by those concepts but these are not part of the standard.

Therefore, the mapping will not transform the model elements of these concepts from eODL to
CCM.

E.4.4 CO-type, supports and requires
Both eODL and CCM are extensions of CORBA concepts and introduce the concept of a
component. In eODL this concept is called CO-type, whereas CCM calls it component. So a
CO-type is mapped onto a component. Interactions of the CO-type are only allowed via ports
because this interaction variant also exists in CCM.

Rule 3: For each COTypeDef in eODL a ComponentDef in CCM with the same name is created. If
the COTypeDef B specializes COTypeDef A in eODL, then the corresponding ComponentDef B
specializes ComponentDef A in CCM. The relations supports and requires are not mapped.
Multiple inheritance of COTypeDef in eODL is not permitted.

Example:

CO A {
};
CO B {
};

The CO-types of eODL are mapped onto components in CCM while the inheritance relation is
preserved.

component A {
};
component B : A {
};

E.4.5 Home (HomeDef)
In CCM a further concept exists that is related closely to CCM component. The concept home is
used for managing the components during runtime. A home provides a facility for creating
instances of the components. That is why a component definition without a home is incomplete. So
the mapping creates for each CO-type also a home in CCM.

Rule 4: For each COTypeDef in eODL, a HomeDef in CCM is created constructing its name by
concatenating the name of the COTypeDef and "_Home". The resulting ComponentDef and
HomeDef take part in the Component_Home association. If a COTypeDef B specializes
COTypeDef A in eODL then the corresponding HomeDef B specializes HomeDef A in CCM.

Example:

CO A {
};
CO B : A {
};

The mapping creates for each CO-type a component type in CCM as well as a home.

component A {
};
home A_Home manages A {};
component B : A {
};

 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006) 5

home B_Home : A_Home manages B {};

E.4.6 Provide and used port
The concepts ProvidePortDef and UsedPortDef in eODL are used to define the interface between
the CO-type and the environment. In CCM the corresponding concept is port (ComponentFeature),
which occurs in different specializations. There is a port for the realization and usage of an interface
in the context of CORBA as well as one for signal-based interaction.

Rule 5: For each ProvidePortDef in eODL within a COTypeDef, a ProvidesDef of the
corresponding ComponentDef in CCM with the same name is created. The referenced InterfaceDef
according to the ProvidePortDef is part of the provides association of the ProvidesDef. The
ProvidesDef has the role facet in respect to the ComponentDef within the aggregation
Component_Facet. Multiple ports (multiple==true) are not allowed.

Example:

interface A {
};
CO C {
 provides A the_a;
};

Provided interface types of the CO-type without signal-based interaction are mapped onto simple
ports.

interface A {
};
component C {
 provides A the_a;
};

Rule 6: For each UsedPortDef in eODL within a COTypeDef, a UsesDef of the corresponding
ComponentDef in CCM with the same name is created. The referenced InterfaceDef according to
the UsedPortDef is part of the uses association of the UsesDef. The UsesDef has the role receptacle
in respect to the ComponentDef within the aggregation Component_Receptacle. Multiple ports in
eODL (multiple==true) are mapped onto multiple ports (multiple==true).

Example:

interface A {
};
CO C {
 uses multiple A the_a;
};

In contrast to mapping of the ProvidesDef, multiple ports are allowed as used ports.

interface A {
};
component C {
 uses multiple A the_a;
};

E.4.7 Produce and consume port
Because the interaction elements were removed from the interfaces due to the mapping (Rule 2),
additional rules for the mapping of signal-based interaction with port in interfaces have to be
defined.

6 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006)

Rule 7: For each ProduceDef in eODL within an InterfaceDef that is referenced by a
ProvidePortDef of a COTypeDef, a PublishesDef is created with a name constructed of the
concatenation of the name of the ProvidedPortDef with "_" and the name of the ProduceDef. The
PublishesDef has the role publishes in respect to the ComponentDef within the aggregation
Component_Publishes.

Example:

signal Sig;
interface A {
 produce Sig p;
};
CO C {
 provides A the_a;
};

The usage of interfaces with signal-based interaction of port always results in a separated port
because each signal-based interaction has to be mapped onto a separate port.

eventtype Sig {
};
interface A {
};
component C {
 provides A the_a;
 publishes Sig the_a_p;
};

Rule 8: For each ConsumeDef in eODL within an InterfaceDef that is referenced by a
ProvidePortDef of a COTypeDef, a ConsumesDef in CCM is created with a name constructed of
the concatenation of the name of the ProvidedPortDef with "_" and the name of the ConsumeDef.
The ConsumesDef has the role consumes in respect to the ComponentDef within the aggregation
Component_Consumes.

Example:

signal Sig;
interface A {
 consume Sig s;
};

CO C {
 provides A the_a;
};

Different to the previous example, the direction of the signal-based interaction has changed, that is
why the sending port is now a receiving port.

eventtype Sig {
};
interface A {
 consume Sig c;
};
component C {
 provides A the_a;
 consumes Sig the_a_c;
};

 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006) 7

Rule 9: For each ProduceDef in eODL within an InterfaceDef that is referenced by a UsedPortDef
of a COTypeDef, a ConsumesDef in CCM is created with a name constructed of the concatenation
of the name of the ProvidedPortDef with "_" and the name of the ConsumeDef. The ConsumesDef
has the role consumes in respect to the ComponentDef within the aggregation
Component_Consumes.

Example:

signal Sig;
interface A {
 produce Sig p;
};

CO C {
 use A the_a;
};

The mapping is the same as in Rule 7 except for the mapping of a used port.

eventtype Sig {
};
interface A {
};
component C {
 uses A the_a;
 consumes Sig the_a_p;
};

Rule 10: For each ConsumeDef in eODL within an InterfaceDef that is referenced by a
UsedPortDef of a COTypeDef, a PublishesDef in CCM is created with a name constructed of the
concatenation of the name of the UsedPortDef with "_" and the name of the ConsumeDef. The
ConsumesDef has the role publishes in respect to the ComponentDef within the aggregation
Component_Publishes.

Example:

signal Sig;
interface A {
 consume Sig s;
};
CO C {
 use A the_a;
};

Compared with the previous example, the direction of the signal-based interaction has changed
therefore the sending port is now a receiving port.

eventtype Sig {
};
interface A {
 consume Sig c;
};
component C {
 uses A the_a;
 publishes Sig the_a_c;
};

8 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006)

E.4.8 Attribute
CO-types in eODL can contain only AttributeDef as interaction elements. Also the corresponding
concept in CCM can contain AttributeDef, so AttributeDef of CO-types are mapped onto
AttributeDef of component types.

Rule 11: COTypeDef as specialization of InterfaceDef with the constraints defined by
ITU-T Rec. Z.130 is allowed to contain AttributeDef. For each AttributeDef in a COTypeDef, an
AttributeDef in CCM is created within the corresponding ComponentDef in CCM. Name,
association and attributes of the AttributeDef are preserved according to E.1.

Example:

CO C {
 readonly attribute long l;
};

Actually, the mapping of attributes is an identical one but it is used outside the context of CORBA.

Component C {
 readonly attribute long l;
};

E.5 Mapping of implementation viewpoint concepts
The concepts of eODLs implementation viewpoint are describing the relation between the
interaction elements provided by the CO-type interface types and the realizations through artefacts
of the implementation language. In doing so, elements of the implementation language of the
component technology are modelled by artefacts. In the context of object oriented implementation
languages there are usually classes. eODL is less restrictive considering the relation of interaction
elements and artefacts. Especially there is no constraint given regarding the grouping of interaction
elements and interfaces. CCM also defines concepts for specifying the structure of component
realization. For realizing this, the concept ComponentImplDef is used. Because each component
has a defined home, there is a concept HomeImplDef for its realization. CCM also defines the
concept SegmentDef for further specification of the substructure. Using the SegmentDef, an
artefact is defined that realizes the provided interfaces of the component. That means CCM allows
only relations between the interaction elements and artefacts according to their grouping in
interfaces (see Figure E.1). Furthermore the assignment of the component used interfaces to
SegmentDef is forbidden. Connecting signal-based interaction elements to SegmentDef in case of
sending is not allowed as well as in case of receiving. At least the assignment of receiving signals
should be possible in CCM.

 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006) 9

Figure E.1/Z.130 – Assignment of interaction elements and artefacts

E.5.1 Artefact
eODL uses the concepts ArtifactDef and ImplementationalElementDef for describing the structure
of a CO-type realization and the assignment of interaction elements to the artefacts. CCM specifies
the concept SegmentDef for this assignment. Therefore artefacts are mapped onto SegmentDef.
eODL defines for each artefact one of the following instantiation patterns:

 ARTIFACT_PER_REQUEST, ARTIFACT_POOL, SINGLETON or USER_DEFINED.

They are describing the time of instantiation of an artefact. The closest concepts in CCM are the
component types categories PROCESS, ENTITY, SESSION and SERVICE. On one hand, they are
only referring to whole components realization when a separation for specific SegmentDef is not
given and, on the other hand, no unique assignments between instantiation pattern and the
component types categories can be found (see 5.4.1 and CORBA Components, section 4.1.4).

10 ITU-T Rec. Z.130 (2003)/Amd.1 (06/2006)

Rule 12: For each ArtifactDef and the contained ImplementationalElementDef in eODL, a
SegmentDef with the same name is created in CCM. The ImplementationElementDef contained
within the ArtifactDef are only allowed to be related with interaction elements of the type
OperationDef and AttributeDef for interface types (Case == supply) provided via ports. All
ImplementationElementDef elements within an ArtifactDef have to cover all interaction elements
of an InterfaceDef. The association implementedBy in CCM then contains the SegmentDef and all
ProvidesDef elements according to the different InterfaceDef elements. The association
implemented_by of eODL is mapped onto the association segments of CCM according to the
corresponding created elements.

For all ArtifactDef elements in eODL, which are realizing the same CO-type, a
ComponentImplDef in CCM is created. Its name is formed by concatenating the name of the
COTypeDef and "Impl". The component implementations category is session (category ==
SESSION). The ComponentImplDef and the ComponentDef according to the COTypeDef take part
in the implemented_by relation.

For each created HomeDef according to the COTypeDef a HomeImplDef is created with the name
formed by concatenating the HomeDef name and "Impl". The HomeImplDef is associated to the
HomeDef by the implements relation and to the ComponentImplDef by the manages relation.

Example:

interface A {
 void op();
};

CO C {
 provides A the_a;
};
artefact AImpl {
 op implements supply A::op;
};

In eODL there is no separate concept for a CO-type implementation; nevertheless, CCM needs a
ComponentImplDef. For the implicitly created HomeDef also a HomeImplDef has to be created.

interface A {
 void op();
};
component C {
 provides A the_a;
};

home C_Home manages C {};
composition session CImpl {
 home executor C_HomeImpl {
 implements C_Home;
 manages CSessionImpl {
 segment AImpl {
 provides facet the_a;
 };
 };
 };
};

Printed in Switzerland
Geneva, 2006

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.130 Amendment 1 (06/2006) Extended Object Definition Language (eODL): Techniques for distributed software component development...
	Summary
	Source
	FOREWORD
	CONTENTS
	1) Replace the following part in the items of Summary
	2) Update the Contents as follows
	3) Insert before Appendix I

