International Telecommunication Union

ITU-T Z.168

TELECOMMUNICATION (11/2007)
STANDARDIZATION SECTOR
OF ITU

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) — Testing and Test
Control Notation (TTCN)

Testing and Test Control Notation version 3:
TTCN-3 mapping from CORBA IDL

Recommendation ITU-T Z.168

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGESAND GENERAL SOFTWARE ASPECTSFOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)
Specification and Description Language (SDL)
Application of formal description techniques
Message Sequence Chart (MSC)

Extended Object Definition Language (eODL)
User Requirements Notation (URN)
Testing and Test Control Notation (TTCN)

PROGRAMMING LANGUAGES
CHILL: TheITU-T high level language

MAN-MACHINE LANGUAGE
General principles
Basic syntax and dial ogue procedures
Extended MML for visual display terminals
Specification of the man-machine interface
Data-oriented human-machine interfaces
Human-machine interfaces for the management of telecommunications networks

QUALITY
Quality of telecommunication software
Quality aspects of protocol-related Recommendations

METHODS
Methods for validation and testing

MIDDLEWARE
Processing environment architectures

Z.100-Z.109
Z.110-7.119
Z2.120-Z2.129
Z.130-Z.139
Z.150-Z.159
Z.160-Z2.179

Z.200-2.209

Z.300-2.309
Z.310-2.319
Z2.320-2.329
Z.330-2.349
Z.350-Z2.359
Z2.360-Z.379

Z.400-Z.409
Z2.450-Z.459

Z.500-Z2.519

Z.600-Z.609

For further details, please refer to thelist of ITU-T Recommendations.

Recommendation ITU-T Z.168

Testing and Test Control Notation version 3:
TTCN-3 mapping from CORBA IDL

Summary

Recommendation ITU-T Z.168 defines the mapping rules for CORBA IDL (as defined in chapter 3
in Draft Approved Specification ptc/06-05-01 (2006)) to TTCN-3 (as defined in Recommendation
ITU-T Z.161) to enable testing of CORBA-based systems. The principles of mapping CORBA IDL
to TTCN-3 can be also used for the mapping of interface specification languages of other object-
/component-based technologies.

The specification of other mappings is outside the scope of this Recommendation.

Source

Recommendation ITU-T Z.168 was approved on 13 November 2007 by ITU-T Study Group 17
(2005-2008) under Recommendation ITU-T A.8 procedure.

Rec. ITU-T Z.168 (11/2007) [

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectua property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii Rec. ITU-T Z.168 (11/2007)

http://www.itu.int/ITU-T/ipr/

CONTENTS

Page

1 00 0T P RSP UR PR PR PRPPRORRO 1
2 REFEIENCES.......oeeee ettt b e s aeeae e 1
3 F N oo 1= V= o] SO 2
4 N 0] 107 o: o 1SS 2
5 LeXiCal CONVENTIONS......cceeiieieeeiesieesie et e e st ee e e st eesseesseesesneesreensennen e 2
5.1 COMIMENES....c.ceeee e s e s 2

52 LAENEITIEIS....eieeee e et 2

53 KEYWOITS......ceietecie ettt sttt et et te s s re e ae e e s reeeeeneesreenneeneenrean 2

54 L= = TSR 2
PrE-PIOCESSINGvivieeiieeiiei ettt sttt b et e e e e e b e e b e nbeebenneeneas 3

LI o= o o= o IO 3

7.1 MOdUIE AECIAraLION......c.eeieieieeieeie e 3

7.2 INterface deClarationcceieeieece e 4

7.3 ValUE AECIAIatiON.....c.eeviiieeeiee e 5

7.4 Constant deClaralion...........ccoeeererierere e 5

8 TYPE AECIAIALION ...ttt bbb et e b e b sneenes 6
8.1 DL DBSIC LYPES.....ccueeieeieeieieete sttt 6

8.2 (00001 100 1= 0 1Y/ 0= 7

8.3 JLICE 1010 = (S0 0= 9

8.4 ComPlEX AECIAratorcceiieiieieeceece e 10

9 EXCEPLION AECIAralionooueieiieieriesi e 10
10 Operation deClaration...........ccveiieieeiieie et esae e re e e snee e e 11
RN 11 g1 o101 (= (<ol = 1 o o SRS 12
12 NAMES ANA SCOPINGcuveeueeiteeieeiesee st et e s e s e e ste s e e sre et e sreesseetesseesseesesseesseensesreesseennens 12
APPENDIX | — EXAMPIES. ...ttt ettt a et ee s 14
1.1 EXAIMPIE. ... e 14
ApPendiX 11 —MapPiNg SIS ...ccuieiiieeciee e e e e e ens 20
1.1 IDL keyword and concept mapping liStccoeveererinnienene e 20

1.2 Comparison of IDL, ASN.1, TTCN-2 and TTCN-3 datatypes.........cc.cceuen.e. 21

2T o] ToT | "] V7S 22

Rec. ITU-T Z.168 (11/2007) iii

I ntroduction

Object-based technologies (such as CORBA, DCOM, DCE) and component-based technologies
(such as CCM, EJB, .NET) use interface specifications to describe the structure of an
object-/component-based system and its operations and capabilities to interact with the
environment. These interface specifications support interoperability and reusability of
objects/components.

The techniques used for interface specifications are often called interface definition language (IDL),
for example CORBA IDL, Microsoft IDL or DCE IDL. These languages are comparable in their
abilities to define system interfaces, operations at system interfaces and system structures to various
extents. They differ in details of the object/component model.

When considering the testing of object-/component-based systems with TTCN-3, one is faced with
the problem of accessing the systems to be tested via the system interfaces as described in an IDL
specification. In particular, for TTCN-3 based test systems, a direct import of IDL specifications
into the test specifications for the use of, e.g., system's interface, operation and exception definitions
is prevalent to any manual transformation into TTCN-3.

This Recommendation discusses the mapping of CORBA IDL specifications into TTCN-3. This
mapping rules out the principles not only for CORBA IDL, but also for other interface specification
languages. The mapping can be adapted to the details of other interface specification languages.

The interface definition language (IDL) (chapter 3 in CORBA) is a base of the whole common
object request broker architecture (CORBA) and an important point in developing distributed
systems with CORBA. It allows the reuse and interoperability of objects in a system. A mapping
between IDL and a programming language is defined in the CORBA standard. IDL is very similar
to C++, containing pre-processor directives (include, comments, etc.), grammar as well as constant,
type and operation declarations. There are no programming language features like, e.g.,
If-statements.

The core language of TTCN-3 is defined in Recommendation ITU-T Z.161 and provides afull text-
based syntax, static semantics and operational semantics as well as a definition for the use of the
language with ASN.1. The IDL mapping provides a definition for the use of the core language with
IDL (Figure1).

TTCN-3
ASN.1 types — Tabular
& values language format
IDL types Graphical
and values format R ['TCN-3 user
Other types Biesaitaien - The shaded boxes are
. f D E— not defined in this
and values, ormat, : ;
Recommendation

Z.168(07)_FO01

Figure 1 —User'sview of the corelanguage and the various presentation for mats

It makes no difference for the mapping if requested or provided interfaces are required by the test
system and SUT. Hence, TTCN can be used on the client side and server side without modifications
to the mapping rules.

This Recommendation is structured similar to the IDL specification to provide easy access to the
mapping of each IDL element.

iv Rec. ITU-T Z.168 (11/2007)

Recommendation ITU-T Z.168

Testing and Test Control Notation version 3:
TTCN-3 mapping from CORBA IDL

1 Scope

This Recommendation defines the mapping rules for CORBA IDL (as defined in chapter 3 in
[OMG CORBA]) to TTCN-3 (as defined in [ITU-T Z.161]) to enable testing of CORBA-based
systems. The principles of mapping CORBA IDL to TTCN-3 can be also used for the mapping of
interface specification languages of other object-/component-based technol ogies.

The specification of other mappings is outside the scope of this Recommendation.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T T.50] Recommendation ITU-T T.50 (1992), International Reference Alphabet (IRA)
(Formerly International Alphabet No. 5 or 1A5) — Information technology —
7-bit coded character set for information interchange.

[ITU-T X.680] Recommendation ITU-T X.680 (2002) | ISO/IEC 8824-1: 2002, I nformation
technology — Abstract Syntax Notation One (ASN.1): Specification of basic
notation.

[ITU-T Z.161] Recommendation ITU-T Z.161 (2007), Testing and Test Control Notation
version 3: TTCN-3 core language.

[|EEE 754] |EEE 754-1985, |EEE standard for binary floating-point arithmetic.
<http://iecexplore.ieee.org/servl et/opac?punumber=2355>

[I1SO/IEC 646] I|SO/IEC 646:1991, Information technology — 1SO 7-bit coded character set for
information interchange.
<http://www.iso.org/iso/iso_catalogue/catalogue tc/catalogue detail.htm?csnu
mber=4777>

[ISONNEC 8859] ISO/IEC 8859:1992, 8-hit single-byte coded graphic character sets.
<http://www.is0.0rg/iso/iso catalogue/cataloque tc/catalogue tc browse.htm?c
ommid=45050>

[ISO/NIEC 10646] 1SO/IEC 10646:2003, Information technology — Universal Multiple-Octet
Coded Character Set (UCS).
<http://www.iso.org/iso/iso_catal ogue/catalogue tc/catalogue detail.htm?csnu
mber=39921>

[OMG CORBA] Object Management Group, Draft Approved Specification ptc/06-05-01 (2006),
Common Object Request Broker Architecture - for embedded (CORBA/e).
<http://www.omg.org/docs/ptc/06-05-01. pdf>

Rec. ITU-T Z.168 (11/2007) 1

http://ieeexplore.ieee.org/servlet/opac?punumber=2355
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=4777
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=4777
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45050
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45050
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39921
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39921
http://www.omg.org/docs/ptc/06-05-01.pdf

3 Abbreviations

This Recommendation uses the following abbreviations and acronyms:
ASN.1 Abstract Syntax Notation One

CCM Common Object Request Broker Architecture Component Model
CORBA Common Object Request Broker Architecture

DCE Distributed Computing Environment

EJB Enterprise JavaBeans'™

IDL Interface Definition Language

NET XML -based component technology

OSF Open Software Foundation

SUT System Under Test

TTCN Testing and Test Control Notation

XML eXtended Markup Language

4 Approach

Two different approaches can be identified: the use of either implicit or explicit mapping. The
implicit mapping makes use of the import mechanism of TTCN-3, denoted by the keywords
language and import. It facilitates the immediate use of data specified in other languages. Therefore,
the definition of a specific data interface for each of these languages is required. Currently, ASN.1
data can be used besides the native TTCN-3 types (see clause D.1 of [ITU-T Z.161)).

This Recommendation follows the approach of explicit mapping, i.e., IDL data are trandated into
appropriate TTCN-3 data, and only those TTCN-3 data are further used in the test specification.

5 L exical conventions

The lexical conventions of IDL define the comments, identifiers, keywords and literals conventions
which are described below.

51 Comments

Comment definitionsin TTCN-3 and IDL are the same and therefore no conversion of commentsis
necessary.

52 Identifiers

IDL identifier rules define a subset of the TTCN-3 rules in which no conversion is necessary.

5.3 Keywords

When IDL is used with TTCN-3, the keywords of TTCN-3 shall not be used as identifiers in an
IDL module.

54 Literals

The definition of literas differs dightly between IDL and TTCN-3, which is why some
modifications have to be made. Table 1 gives the mapping for each literal type.

2 Rec. ITU-T Z.168 (11/2007)

Table 1 - Literal mapping

Literal IDL TTCN
Integer No "0" asfirst digit no "0" asfirst digit
Octet "0" asfirst digit 'FF96'0O
Hex "0X" or "Ox" asfirst '‘ABO1D'H

digits

Floating 1222 44E5 (base 10) | 1222.44E5 (base 10)
Char ‘A "A"
Wide char L"A" "A"
Boolean TRUE, FALSE true, false
String "text" "text"
Wide string L"text" "text"
Fixed point 33.33D (See useful type

IDLfixed)

IDL uses the ISO Latin-1 character set for string and wide string literas and TTCN-3 uses
[ITU-T T.50] for string literals and [SO/IEC 10646] for wide string literals.

6 Pre-processing

Pre-processor statements are not matched to TTCN-3 because the IDL specification must be used
after pre-processing it.

7 IDL specification

The module, interface, value and constant declaration are described in this clause and the type and
exception declaration as well as the bodies of interfaces are described later.

71 M odule declar ation

IDL modules are mapped to TTCN-3 modules. Nested IDL modules must be flattened according to
TTCN-3 modules.

As one IDL module can contain many nested IDL modules where severa nested modules can have
equal names in different scopes, these names can clash. Hence, module names identifiers are to be
used which are composed of the identifiers of the upper level IDL modules (from a hierarchical
point of view) and the nested IDL module name, separated one from each other by two underscores.

According to the IDL scoping rules, nested modules have access to the scope of upper level
modules. As there are no nested modules in TTCN-3, TTCN-3 modules have to import upper level
modules. For avoiding name clashes, a prefix for the imported definitions composed of the
identifier of the module from which it is imported shall be used. The prefix and the identifier are
separated by adot (.) asdefined in TTCN-3.

IDL example:

module identifierl ({
typedef long mylongl;

module identifier2 {
typedef string mystring2;
typedef mylongl mylong2;

module identifier3
typedef mylongl long from module 1;
typedef mystring2 string from module 2;
typedef mylong2 long from module 1 2;

Rec. ITU-T Z.168 (11/2007) 3

i
}i
}i

TTCN example:

module identifierl ({
type long mylongl;
}

module identifierl identifier2
import from identifierl all;
type iso8859string mystring2;
type identifierl.mylongl mylong2;

module identifierl identifier2 identifier3 ({
import from identifierl all;
import from identifierl identifier2 all;

type identifierl.mylongl long from module 1;
type identifierl identifier2.mystring2 string from module 2;
type identifierl identifier2.mylong2 long from module 1 2;

}i

7.2 Interface declar ation

Interfaces are flattened and all interface definitions are stored in one group. In contrast to interfaces
in IDL, groups in TTCN-3 do not create a scope. Therefore, prefixes for al identifiers of type
definitions inside of the interface shall be used, which are a combination of the interface name and
two underscores as the prefix.

Import of single interface definitions from other modules via the importing group statement is
possible. This can be used if inheritance is used in the IDL specification.

For each interface, a procedure-based port type is defined for the test specification. It is associated
with signatures translated from attributes and operations of the interface.

An IDL attribute is mapped to two signatures. one for the setting of a value and one for getting it.
These signatures have names composed of the prefix (interface name and two underscores),
attribute name and the word " Set" (except for "readonly") or "Get" correspondingly.

Since an interface can be used in operation parameters to pass object references, an addresstypeis
also declared in the data part. Components are used as a collection of interfaces or objects.

IDL example:

interface identifier ({

attribute long attributeId ;

void operationname (in string param value) raises (ExceptionType)
... other body definitions ...
i
TTCN example:

group identifierInterface {
signature identifier attributeIdGet () return long;
signature identifier attributelIdSet (in long identifier attributeId);

signature identifier operationname (in iso8859string identifier param value)
exception (ExceptionType) ;

...other body definitions ...

type port identifier procedure { ... }
type address identifierObject;

4 Rec. ITU-T Z.168 (11/2007)

Interface inheritance is executed by rolling out all inherited elements. Thus, they have to be handled
as defined in the interface itself. Multiple inheritance elements have to be inherited only once.
Since, normally, an inherited IDL interface uses types defined in the module, usually it is essential
to import the complete mapped TTCN-3 module. All inherited elements have to be rolled out
directly in the TTCN-3 group for the interface, even if the inheritance is multiple.

Forward references of interfaces are provided by forward referencing the according port of the
interface. Local interfaces are treated as normal interfaces. However, it is recommended not to use
forward references and to move a TTCN-3 definition of the interface (group) to a place where a
forward definition isfirst used.

7.3 Value declaration

In contrast to type interface, the IDL type value has local operations that are not used outside the
object, and are therefore not relevant from the functional testing point of view. However, since the
public attributes of value instances are used to communicate object states, the IDL value type is
mapped to the record typein TTCN-3.

The example below shows how to map valuetype and as used in clause 6.3.2.6 of [OMG CORBA|].
IDL example:

valuetype EmployeeRecord {
// note this is not a CORBA::Object
// state definition
private string name;
private string email;
private string SSN;

// initializer
factory init(
in string name, in string SSN);

i
TTCN example:

type record EmployeeRecord {
iso8859string name,
iso8859string email,
iso8859string SSN

}

7.4 Constant declaration

Constant declarations can be transformed by use of literal (see Table 1) and operator mapping for
floating-point and integer values (see Table 2).

Table 2 - Operatorsfor constant expressions

Operator IDL TTCN

Unary floating-point

Positive + +
Negative - -
Binary floating-point

Addition + +
Subtraction - -
Multiplication * *
Division / /
Unary integer

Rec. ITU-T Z.168 (11/2007) 5

Table 2 —Operatorsfor constant expressions

Operator IDL TTCN

Positive + +
Negative — -
Bit-complement ~ not4b
Binary integer
Addition + +
Subtraction - -
Multiplication * *
Division / /
Modulo % mod
Shift left << <<
Shift right >> >>
Bitwise and & and4b
Bitwise or | ordb
Bitwise xor A xor4b

IDL example:

const long number = 017; // 017 == OxF == 15

const long size = ((number << 3) % 0x1F) & 0123;

TTCN example:

const long number := "17"0O;

const long size := ((number << 3) mod 'lF'H) and4b '0123'0;

8 Type declaration

Type declaration mapping is shown in the following clauses.

A construct for naming data types and defining new types by using the keyword typedef is provided
by IDL. This can also be done under TTCN-3 viathe keyword type.

To enhance readability and to provide a clear distinction, mapped IDL data types get the prefix IDL
and the extension attribute "variant" as done in TTCN-3 for type IDLfixed (see clause D.2.3
in[ITU-T Z.161)).

8.1 IDL basic types

IDL basic data types are mapped to predefined or useful typesin TTCN-3.

8.1.1 Integer and floating-point types

Integer and floating-point types are mapped onto the corresponding useful types short,
unsignedshort, long, unsignedlong, longlong, unsignedlonglong, |EEE754float,
|EEE754double, and | EEE754extdouble.

IDL example:
const long size = ((number << 3) % 0x1F) & 0123;
const float decimal = 15.7;

6 Rec. ITU-T Z.168 (11/2007)

TTCN example:

const long size
const IEEE754float decimal

((number << 3) mod 'lF'H) and4b '0123'0;
15.7;

8.1.2 Char and widechar type

The IDL char and wide char type represent a single and wide character. They are mapped to the
self-defined type iso8859char and type universal char.

IDL example:

const char letter = '"ABCD' ;

const wchar wideLetter = L'ABCD';

TTCN example:

type universal char iso8859char (char (0,0,0,0) .. char (0,0,0,255)) with { variant "8 bit" };
const iso8859char letter := "ABCD";

const universal char widelLetter := "ABCD";

8.1.3 Boolean type
The IDL boolean typeis equivaent to the TTCN-3 boolean type.
IDL example:

const boolean isValid = TRUE;

TTCN example:

const boolean isValid = true;

8.14 Octet type

Octet cannot be mapped onto an integer type because it has the specia feature that it will not
change its internal ordering if transferred between different system architectures. To represent it
octet is mapped to octetstring.

IDL example:

const octet data = 0x55;
TTCN example:

const octetstring data = '55'H

8.15 Anytype

The IDL any type is mapped onto anytype in TTCN-3 which was especially introduced for this
mapping.

IDL example:

typedef any AllTypes;

TTCN example:

type anytype AllTypes;

8.2 Constructed types

IDL provides the three constructed types struct, union and enum. Recursive construction of types
isonly permitted with the sequence template.

Rec. ITU-T Z.168 (11/2007) 7

821 Struct
struct isused to collect ordered data in one place where it is mapped onto record in TTCN-3.
IDL example:

typedef struct NC
string id;
string kind;

} NameComponent ;

TTCN example:

type record NameComponent {
iso8859string id,
iso8859string kind

}
8.2.2 Discriminated unions

In IDL, unions are discriminated to determine the actual type. Therefore, a record type is used,
which contains two members. The first one stores the discriminator information using an
enumeration type. The second member is a TTCN-3 union type, in which members are defined
according to the specified IDL union members.

In addition, two types are defined to express the link between discriminator type and union type: a
type to reflect the discriminating type of a union and an enumeration to distinguish the
discriminated cases. Using the information provided by these type definitions, the
marshalling/unmarshalling for discriminated unions is possible in an unambiguous manner: to
encode or decode a union value, we use the value of the kind field to resolve the corresponding
chosen option and calculate then the real value for the discriminator by resolving this value in the
discriminator enumeration.

IDL example 1:
union MyUnion switch(long)
case 0 : boolean b;
case 1 : char c;
case 2 : octet o;
case 3 : short s; };

TTCN example 1:

type long MyUnion Switch;
type union MyUnionType
boolean b,
iso8859string c,
octetstring o,
short s }

type enumerated MyUnionEnumType {
boolean b, iso8859string c, octetstring o, short_s

type record MyUnion {
MyUnionEnumType kind,
MyUnionType value

}
IDL example 2:

Enum MyDiscr
BOOLEAN DISCR,
CHAR_DISCR,
OCTET DISCR,
SEQ DISCR,
SHORT DISCR

}i
union MyUnion switch(MyDiscr) ({

case BOOLEAN DISCR : boolean b;
case SHORT DISCR : short s;

8 Rec. ITU-T Z.168 (11/2007)

TTCN example 2:

type enumerated MyDiscr (
BOOLEAN DISCR, CHAR _DISCR, OCTET DISCR, SEQ DISCR, SHORT DISCR

type MyDiscr MyUnion Switch;

type enumerated MyUnion CasesType {
case_BOOLEAN DISCR,
case_SHORT_DISCR

}

type union MyUnionType {
boolean b,
short s

}

type enumerated MyUnionEnumType {
boolean b,
short_s

}

type record MyUnion {
MyUnionEnumType kind ,
MyUnionType value

1
8.23 Enumerations
Enumerations are equally defined in IDL and TTCN-3.
IDL example:
enum NotFoundReason {
missing node,
not context,
not object };
TTCN example:
type enumerated NotFoundReason {
missing node,

not_context,
not _object }

8.3 Template types
IDL supports the template types sequence, string, wide string and fixed type.

83.1 Sequence

IDL sequence is mapped to record of in TTCN-3 to maintain order and to allow unbounded
sequences.

IDL example 1:
typedef sequence<NameComponent> Name;

TTCN example 1:

type record of NameComponent Name;

IDL sequences with a specified maximum size are mapped to record of with limited number of
elements to maintain order and restrict the maximum number of elements.

IDL example 2:

typedef sequence<NameComponent, maximum size> Name;

TTCN example 2:

type record length (0, maximum size-1) of NameComponent Name;

Rec. ITU-T Z.168 (11/2007) 9

8.3.2 String and wstring

string and wstring types are sequences of char and wchar. Therefore, string and wstring are
mapped to the useful type iso8859string and univer sal charstring.

IDL example:

const string name = "My String";

const wstring wideName = L"My String";

TTCN example:

const iso8859string name := "My String";

const universal charstring wideName := "My String";

8.3.3 Fixed types

The fixed type represents a fixed-point decima number. It is mapped to the corresponding useful
type IDLfixed in TTCN-3 (seeclause D.2.3in [ITU-T Z.161]).

IDL example:

typedef fixed<12,7> myFix;

TTCN example:

template IDLfixed myFixTemplate := { 12, 7, ? }; // e.g. in module definition part
var IDLfixed myFix := { 12, 7, "12345.1234567" }; // e.g. in module control part

84 Complex declarator
Thelast kind of type declarators are the complex array and native types.

84.1 Arrays

IDL array isequal to the TTCN-3 array type.
IDL example:

typedef long NumberList[100] ;

TTCN example:

type long NumberList [100];

8.4.2 Nativetypes

Native types are used to allow implementation of dependent types. TTCN-3 provides the type
address to address entities inside a SUT. Hence, address can be used for mapping of type native
and concrete implementation isleft to the user.

IDL example:
typedef native MyNativeVariable;
TTCN example:

type MyNativeVariable address;

9 Exception declaration

In IDL, exceptions are used in conjunction with operations to handle exceptional conditions during
an operation call. Thus, a specia struct-like exception type is provided which has to be associated
with each operation that can trigger this exception. TTCN-3 also supports the use of exceptions with
procedure calls by binding it to signature definitions. However, it provides no special exception
type. Hence, exceptions are defined by using type record.

10 Rec. ITU-T Z.168 (11/2007)

A definition of an exception is shown in the following example. The use of exception binding in
signature definitions and exception catching is shown in the context of operation declaration.

IDL example:

exception NotFoundException {
NotFoundReason why;
Name rest of name; };

TTCN example:

// definition of an exception type
type record NotFoundException {
NotFoundReason why,
Name rest of name }

// definition of a template for the
// defined exception type
template NotFoundException

NotFoundExceptionTemplate (NotFoundReason reason, Name name) := {
why := reason,
rest_of name := name }
10 Operation declaration

Apart from attributes, operations are the main part of interface definitions in IDL and are used, for
instance, in the CORBA scheme as procedures which can be called by clients. Procedure calls in
genera are supported by TTCN-3 by means of synchronous communication operations which are
used in combination with ports.

IDL supports an optional oneway attribute for operations which implies best-effort invocation
semantics without a guarantee of delivery but with a most-once invocation semantics. Message or
procedure-based ports can be used for oneway procedures because both would be a valid mapping
based upon IDL. However, the use of procedure-based ports for oneway procedures is
recommended because the IDL specification does not guarantee that oneway calls are non-blocking
or asynchronous. Furthermore, CORBA implements oneway procedures by synchronous
communication, too. Use of non-blocking or blocking procedures for oneway operations is left to
the user. Mapped oneway operations acquire an additional variant attribute (see example).

The parameter attributesin, inout and out describe the transmission direction of parameters and can
be mapped directly to the communication parameter attributes in TTCN-3 because they have the
exact same semantics.

A raise expression specifies al exceptions which can be thrown by an operation. It can be mapped
directly to TTCN-3 because it can be indicated by the procedure signature definition by specifying
an exception. Nevertheless, each operation can trigger a standard exception.

A context expression provides access to local properties of the called operation. These properties
consist of a name and a string value. The context expression can be matched by redefining the
operation with the context parameters included in the operation parameters (see clause 5.4 of
[ITU-T Z.161]). The additional parameter must be of type array containing a type record for each
context parameter. The record itself contains two variables of type string for the context name and
value.

IDL example:

// not found exception is defined in section "exception declaration"
string remoteProcl(in long Parll, out long Parl2, inout string namel)
raises (NotFound)

context ("MyContextl");

// oneway procedure: no return value and no inout or out allowed!!!
oneway void remoteProc2(in long Par2l, in long Par22, in string name2);

Rec. ITU-T Z.168 (11/2007) 11

TTCN example:
// only operation definition

type record IDLContextElement {
iso8859string name,
iso8859string value

}

type record of IDLContextElement IDLContext;

signature RemoteProcSignaturel (
in long Parll, out long Parl2,
inout charstring namel, in IDLContext context)
return iso8859string
exception (NotFoundException) ;

signature RemoteProcSignature2 (
in long Par2l, in long Par22,
in iso8859string name2)
with { variant "IDL:oneway FORMAL/01-12-01 v.2.6" };

type port RemoteProcPort procedure {
out RemoteProcSignaturel;
out RemoteProcSignature?2

}

type component CorbaSystem {
port RemoteProcPort PCO

11 Attribute declaration

An attribute is like a set- and get-operation pair to access a value. If an attribute is marked as
readonly, only the get-operation is used. Therefore, attribute mapping can be done by the operation

mapping.

12 Names and scoping

The name definition scheme of IDL does not collide with the name definition in TTCN-3. Scoping
is more restrictive in IDL than in TTCN-3, where the IDL scoping rules have to be mapped
appropriately to alow seamless mapping. IDL uses nested scopes for modules, interfaces,
structures, unions, operations and exceptions, and identifiers are scoped in types, constants,
enumeration values, exceptions, interfaces, attributes and operations. The hierarchical scopes in
TTCN-3 are module, control part of module, function, testcase and statement blocks within control
part of module, function and testcase.

Furthermore, TTCN-3 supports no overloading of identifiers so that no identifier name can be used
more than once in a scope hierarchy. However, IDL allows redefinition of self-defined types if
defined inside a module, interface or valuetype. Hence, identifiers have to be mapped by using
their path name including all interface and valuetype names as designated in IDL and TTCN-3.
The use of module names is not necessary because they are reflected by the TTCN-3 module
structure. An underscore is used as a separator and existing underscores are doubled.

Several new identifiers are generated during transformation of IDL types by adding to the original
IDL type identifier suffixes like: "Type", "Enum”, "Object”, "Interface”, etc. This approach and the
use of TTCN-3 keywords in IDL modules can cause name clashes, which are to be resolved by a

suffix " ":

12 Rec. ITU-T Z.168 (11/2007)

IDL example:

interface identifier ({
... body definitions ...
}i

//an example of the identifier, which can cause a name clash
typedef long identifierObject;

TTCN example:

group identifierInterface {
. body definitions ...

type port identifier procedure { ... }

//the suffix ' ' is used only where necessary
//to resolve the name clash
type address identifierObject_;

}

type long identifierObject;

To indicate the special treatment of TTCN-3 statements derived from IDL, TTCN-3 provides a new
mechanism to attach attributes to language elements. The use of attributes makes code more
readable and require no special naming scheme. Therefore, the variant attribute can be used to
indicate the derivation of types from IDL and the special treatment for encoding by the test system.
Thisisused in TTCN-3 for the I DL fixed useful type:

type record IDLfixed ({
unsignedshort digits,
short scale,
charstring value_

with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

Names of new types which are specialy defined for the IDL mapping and their use in conjunction
with IDL shall always begin with the word IDL to provide better distinction.

Rec. ITU-T Z.168 (11/2007) 13

Appendix |

Examples
(This appendix does not form an integral part of this Recommendation)

.1 Example

The following example shows how a mapping would look if a complete IDL and TTCN-3
specification, including a test case, is used. It is only intended to give an impression of how the
different elements have to be mapped and used in TTCN-3.

Some parts are used from the CORBA standard, such as the naming service, with dlight
modifications to cover more IDL elements.

[.1.1 IDL specification

module ttcnExample

{

// *hkkkkkkkkkk

// Basic Types

// kkkkkkkkkkk

const long number = 017; // 017 == OxF == 15

const long size = ((number << 3) % O0x1F) & 0123;
const float decimal = 15.7;

const char letter = 'A';

const wchar wideLetter = L'A';

const boolean isValid TRUE;

const octet anOctet 0x55; // limited to 8 bit

const string myName
const wstring wideMyName

"my name";
L"my name";

typedef string MyString;

// khkhkkkhkkkkhkkkhkxk*

// Constructed Types

// khkkkkkkkkhkkkkhkk*

typedef struct NC
MyString id;
MyString kind;

} NameComponent ;

union MyUnion switch(long)
case 0 : boolean b;
case 1 : char c;
case 2 : octet o;
case 3 : short s;

}i

enum NotFoundReason { missing node,
not_context,
not _object };

// *kkkkkkkkkkkkkk

// Template Types

// kkkkkkkkkkkkkk

typedef sequence <NameComponent> Name;
typedef sequence <NameComponent> Key;
typedef fixed<12,7> Fix;

// khkkkkkhkkkdhhkhkhkhkkkkk

// Complex Declarator

// khkkkkhkhkkkhkkhhkkkkh*

typedef long NumberList [100] ;

native MyNativeVariable;

14 Rec. ITU-T Z.168 (11/2007)

// kkkkkkkkkkkkkkkkkkk*x

// Valuetype Definition
// kokkkkkokkkkkkokkkkkkkk

valuetype StringValue string;

valuetype EmployeeRecord {
// note this is not a CORBA::Object
// state definition
private string name;
private string email;
private string SSN;

// initializer

factory init (in string name,

}i

// kkkkkkkkkkkkkkkkkkk*x

// Interface Definition

[] Kkkkkkkkkkkkkkkkkkkk

interface NamingContext
attribute string object type;
readonly attribute Key external form_ id;

exception NotFound {

}i

MyString bind(in Name n,

oneway void rebind(in Name n,

NotFoundReason why;
Name rest_of name;

inout Object obj,

in string SSN) ;

raises (NotFound) context ("Hostname");

}; // end of interface NamingContext

}; // end of module ttcnExample

[.1.2 Derived TTCN-3 specification

module ttcnExample {
import from IDLaux all;

!/

IR R R R EEEEE R SRR EREEEEEEEEEEEEEEEES

// Mapping of the IDL Specification

/7
//

LR R R R EEEEEEEEEEEEEEEEREEEEEEEEE

EREE R R R EEEEEEEEEEEEEEEES

// Mapping of Basic Types

/7

const long number
const long size

hkhkkhkkhkkkkkhkhkkhkhhkkhkhkhkk*k

hex2int ('1F'H) ,4) and4b '0123'0);
const IEEE754float decimal := 15.7;

type universal char iso8859char (char
with { variant "8 bit" };

const iso8859char letter
const universal char wideLetter
const boolean isvalid
const octetstring anOctet
const iso8859string myName

const universal charstring wideMyName

type iso8859string MyString;

/7
//
/7

/7
/7
/7

khkkkkkkhkhkhkhkkkkkkk

Constructed Types
EEE R R R EEEEEEEEEEES

*kkkkk

Struct
*kkkkk

in Object obj);

:= oct2int('17'0) ;
:= oct2int(int2oct (oct2int (int2oct (number, 4)<<3) mod

out Object myObj)

(0,0,0,0) .. char (0,0,0,255))

wAW,
upm,

true;
hex2oct ('55'H) ;

"my name";
"my name";

Rec. ITU-T Z.168 (11/2007)

15

type record NameComponent {
MyString id,
MyString kind

}:

// *kkkk
// Union

// * Kk k kK

type union MyUnion {
boolean b,
iso8859char c,
octetstring o,
short s

}:

// Kk ok ok ok ok ok ok ok ok ok

// Enumeration
// *kkkkkkkkkk

type enumerated NotFoundReason {
missing node,
not_context,
not object

}

// kkkkkkkk

// Sequence
// *kkkkkkk

type record of NameComponent Name;
type record of NameComponent Key;

//******

// Fixed

// *kkkk

// see also using of fixed in testcase below
template IDLfixed fixTemplate := { 12, 7, ? };

// kkkkkkkkkkkkkkkkk*x

// Complex Declarator
// khkkkkkkkkkkkkkkkkkx

type long numberList[100];

// see using of native in testcase below

// khkkkkkkkkkkkkkkkkkk*x

// Valuetype Definition
// khkkkkkkkkkhkkkkkkkkk*

type iso8859string StringValue;

type record EmployeeRecord {
iso8859string name,
iso8859string email,
iso8859string SSN

}:

// kkkkkkkkhkkhkhkhkhkhkhkhkhkk*x

// Interface Definition
// *khkkkkkkkkkkkkkkkkkk*x

type record IDLContextElement {
iso8859string name,
iso8859string value

}

type record of IDLContextElement IDLContext;

group NamingContextInterface {
type address NamingContextObject;
// attribute object type
signature NamingContext object typeGet () return iso8859string;

signature NamingContext object typeSet (in iso8859string NamingContext object type):

template NamingContext object typeSet ObjectTypeSetSignatureTemplate := {
object type := "my object type"
}

16 Rec. ITU-T Z.168 (11/2007)

//

// attribute external from id

/7

signature NamingContext external form idGet () return Key;

// exception notFoundException

type record NamingContext NotFoundException {
NotFoundReason why,
Name rest of name

}

template NamingContext NotFoundException

NamingContext NotFoundExceptionTemplate (NotFoundReason reason, Name name) := {
why := reason,
rest _of name := name

}

//
// bind procedure

//
signature NamingContext BindSignature(in Name n, inout address obj, inout address
myOb3j,
in IDLContext context) return MyString
exception (NamingContext NotFoundException);

template NamingContext BindSignature

NamingContext BindTemplate (charstring object, IDLContext con) := {
n = { {llnamell’ llll} }’
obj := object,
myOb3j = ?,
context := con

//

// rebind procedure

/7

signature NamingContext RebindSignature(in Name n, in address obj)
with { variant "IDL:oneway FORMAL/01-12-01 v.2.6" };

template NamingContext RebindSignature

NamingContext RebindTemplate (address object) := {
n .= { {llnamell' llll} }'
obj := object

type port NamingContext procedure {
out NamingContext object_ typeGet;
out NamingContext object typeSet;
out NamingContext external form idGet;
out NamingContext BindSignature;

}

// component is necessary for test case
type component CorbaSystemInterface {
port NamingContext PCO;

// somewhere has main test component MyMTC to be defined
type component MyMTC {

port NamingContext NamingContextPCO;
}

// kkkkkkkkkkkkkkkkkk*x

// Testcase Definition
// khkkkkkkkkhkhkkhkkkkkk*

testcase MyNamingServiceTestCase() runs on MyMTC system CorbaSystemInterface {

// examples to show how above definitions can be used inside a
// testcase definition

var CorbaSystemInterface myCorbaSystem := CorbaSystemInterface.create;
connect (self:NamingContextPCO, myCorbaSystem:PCO) ;
myCorbaSystem.start;

//
// Fixed Type

Rec. ITU-T Z.168 (11/2007) 17

//
var IDLfixed fix := { 12, 7, "12345.1234567" };

/7

// Native
//

var address MyNativeVariable;

//

// Procedure Calls

//

var MyString myResultl;
var Key myResult2;

var MyString myResult3;
var address object, myObject, resultObject, resultMyObject;

var IDLContextElement contextElement := {
name := "Hostname",
value := "disen"
var IDLContext contextParameter := { contextElement };
//
// procedure get object type
//
NamingContextPCO.call(ObjectTypeGetSignature)

[] NamingContextPCO.getreply(ObjectTypeGetSignature value *)
-> value myResultl {}

}
!/

// procedure set object_ type

//
NamingContextPCO.call(ObjectTypeSetSignatureTemplate);

//
// procedure get external from id
//
NamingContextPCO.call(ExternalFormIdGetSignature)
{
[] NamingContextPCO.getreply(ExternalFormIdGetSignature value *)
-> value MyResult2 {}
}
//
// procedure bind (with template)
//
NamingContextPCO.call(BindTemplate(object, contextParameter))
{
[] NamingContextPCO.getreply(BindTemplate(*) wvalue *)
-> value myResult3
param(resultObject, resultMYObject) sender mySender {}
[1] NamingContextPCO.catch(BindSignature,
NamingContext NotFoundExceptionTemplate)
{
setverdict(fail);
stop;
}
}
//
// procedure bind (without template)
//

NamingContextPCO.call (
BindSignature:{ myName, object, myObject, contextParameter })

{
[] NamingContextPCO.getreply(BindSignature:{ -, *, myObject }
value *) -> value myResult3 param(resultObject, resultMYObject) sender mySender
{}
}
//

18 Rec. ITU-T Z.168 (11/2007)

// procedure rebind
//
NamingContextPCO.call(RebindSignature:{ myName, object}); // or use a template

//
// raising an exception

/7

// this would be used to raise an exception inside of procedure bind
// if defined by TTCN-3 (if used on server side).

var NamingContext NotFoundException myNotFoundException := {
why = missing node,
rest of name := "noname"

}
NamingContextPCO.raise(BindSignature, myNotFoundException) ;

} // end of testcase MyNamingServiceTestCase

Rec. ITU-T Z.168 (11/2007) 19

Appendix 1

Mapping lists

(This appendix does not form an integral part of this Recommendation)

1.1 IDL keyword and concept mapping list

Table 11.1 lists the mapping of keywords and concepts of IDL to TTCN-3 keywords or concepts.

Literal and operator mapping can be seenin Tables 1 and 2.

Tablell.1—Conceptual list of IDL mapping

IDL TTCN-3 IDL TTCN-3
FALSE false module module
Object address native address
TRUE true octet octetstring
abstract hasto be rolled out oneway operation with variant attribute
any anytype operation signature for procedure
array array out out
attribute get (and set) operation raises exception
boolean boolean readonly only a get-operation for the
attribute
char iso8859char seguence record of
(self-defined type)
const const short short
context additional procedure parameter | string 1S08859string
of type record
enum enumerated struct record
exception | record typedef type
fixed idifixed union record, enumerated, union
float |EEE754f| oat unsigned long unsignediong
double |EEE754double unsigned long long unsignedlonglong
long |EEE754extdouble unsigned short unsignedshort
double
in in valuetype record
inout inout wchar universal char
interface group, port wstring universal charstring
local
long long
long long longlong
20 Rec. ITU-T Z.168 (11/2007)

[1.2 Comparison of IDL, ASN.1, TTCN-2 and TTCN-3 datatypes

Tablell.2 — Data Type comparison

IDL ASN.1 TTCN-2 TTCN-3
Object Objectlnstance (X.500 |A5String address
Distinguished name)
any ANY DEFINED BY [ITU-T | CHOICE anytype
X.680] or SEQUENCE
{typecode, anyVaue}
array SEQUENCE OF (with SEQUENCE SIZE(n) array
sizeConstraint subtype) OF
boolean BOOLEAN BOOLEAN boolean
char GraphicString GraphicString or is08859char
|A5String(SIZE(L)) (self-defined type)
enum ENUMERATED ENUMERATED enumerated
exception SPECIFIC ERRORS SEQUENCE record
fixed See note See note IDLfixed
float REAL See note |EEE754float
double REAL See note |EEE754double
long double REAL See note |EEE754extdouble
long INTEGER INTEGER long
long long INTEGER INTEGER longlong
native See note See note address
octet OCTET STRING OCTET STRING octetstring
(SIZE(2))
sequence SEQUENCE OF (with SEQUENCE OF record of
optional sizeConstraint
subtype for IDL bounds)
short INTEGER INTEGER short
string GraphicString GraphicString is08859string
struct SEQUENCE SEQUENCE record
union, switch, case | CHOICE (with ASN.1 SEQUENCE record, enumerated,
TAGS) union
unsigned long INTEGER INTEGER unsignediong
unsigned longlong | INTEGER INTEGER unsignedlionglong
unsigned short INTEGER INTEGER unsignedshort
valuetype See note See note record
wchar See note GraphicString or universal char
BMPString(SIZE(1))
wstring See note GraphicString universal charstring

NOTE — Mapping of this type was not considered.

Rec. ITU-T Z.168 (11/2007)

21

[b-1]

[b-2]

[b-3]

[b-4]

[b-5]

[b-6]

22

Bibliography

M. Ebner, A. Yin, and M. Li (2002): "Definition and Utilization of OMG IDL to TTCN-3
Mappings'. In testing of communicating systems XIV — Application to I nternet
Technologies and Services, ed. |. Schieferdecker, H. Konig and A. Wolisz. IFIP, Kluwer
Academic Publishers, pp. 443-458. ISBN 0-7923-7695-1.

M. Ebner (2001): "A Mapping of OMG IDL to TTCN-3". SIIM Technical Report
SIIM-TR-A- 01-11, Institute for Telematics, Medical University of Libeck, Germany.
Schriftenreihe der Ingtitute fur Informatik/Mathematik.

M. Ebner (2001): "Mapping CORBA IDL to TTCN-3 based on IDL to TTCN-2 mappings’.
In Proceedings of the 11th GI/ITG Technical Meeting on Formal Description Techniques
for Distributed Systems, Bruchsal, Germany, 21-22. June 2001. International University in
Germany.

A.Yin (2001): "Testing Operation-Based Interfaces Exemplified for CORBA with ADL
and TTCN-3". Diplomarbeit, Telecommunication Network Group, Faculty of Electrical
Engineering and Computer Science, Technical University Berlin, Germany.

A.Yin, |. Schieferdecker and M. Li (2001): "Mapping of IDL to TTCN-3". Technical
Report, Fraunhofer Institute for Open Communication Systems (FOKUS), Germany.

Recommendation ITU-T X.292 (2002), OS conformance testing methodol ogy and
framework for protocol Recommendations for ITU-T applications— The Tree and Tabular
Combined Notation (TTCN).

Rec. ITU-T Z.168 (11/2007)

Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

L anguages and general softwar e aspects for telecommunication systems

Printed in Switzerland
Geneva, 2009

	ITU-T Rec. Z.168 (11/2007) - Testing and Test Control Notation version 3: TTCN-3 mapping from CORBA IDL
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Abbreviations
	4 Approach
	5 Lexical conventions
	5.1 Comments
	5.2 Identifiers
	5.3 Keywords
	5.4 Literals

	6 Pre-processing
	7 IDL specification
	7.1 Module declaration
	7.2 Interface declaration
	7.3 Value declaration
	7.4 Constant declaration

	8 Type declaration
	8.1 IDL basic types
	8.2 Constructed types
	8.3 Template types
	8.4 Complex declarator

	9 Exception declaration
	10 Operation declaration
	11 Attribute declaration
	12 Names and scoping
	Appendix I - Examples
	I.1 Example
	Appendix II - Mapping lists
	II.1 IDL keyword and concept mapping list
	II.2 Comparison of IDL, ASN.1, TTCN-2 and TTCN-3 data types
	Bibliography

