
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.500
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(05/97)

SERIES Z: PROGRAMMING LANGUAGES

Methods for validation and testing

Framework on formal methods in conformance
testing

ITU-T Recommendation Z.500
(Previously CCITT Recommendation)

ITU-T Z-SERIES RECOMMENDATIONS

PROGRAMMING LANGUAGES

For further details, please refer to ITU-T List of Recommendations.

FORMAL DESCRIPTION TECHNIQUES (FDT) Z.100–Z.199

Specification and Description Language (SDL) Z.100–Z.109

Application of Formal Description Techniques Z.110–Z.119

Message Sequence Chart Z.120–Z.129

PROGRAMMING LANGUAGES Z.200–Z.299

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE Z.300–Z.499

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.399

QUALITY OF TELECOMMUNICATION SOFTWARE Z.400–Z.499

METHODS FOR VALIDATION AND TESTING Z.500–Z.599

Recommendation Z.500 (05/97) i

ITU-T RECOMMENDATION Z.500

FRAMEWORK ON FORMAL METHODS IN
CONFORMANCE TESTING

Source

ITU-T Recommendation Z.500 was prepared by ITU-T Study Group 10 (1997-2000) and was approved under the
WTSC Resolution No. 1 procedure on the 6th of May 1997.

ii Recommendation Z.500 (05/97)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected
by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this
may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation Z.500 (05/97) iii

CONTENTS

Page

1 Scope .. 1

2 Normative references.. 1
2.1 Conformance testing ... 1
2.2 Formal description techniques .. 2

3 Definitions .. 2
3.1 Terms from other related standards... 2
3.2 Terms defined in this Recommendation.. 3

4 Abbreviations ... 4

5 Mathematical concepts and notation conventions .. 5
5.1 Sets .. 5
5.2 Logic ... 5
5.3 Relations.. 6
5.4 Functions... 6

6 The meaning of conformance ... 6
6.1 Introduction... 6
6.2 Specifications .. 6
6.3 Implementations.. 7
6.4 Conformance of an implementation to a formal specification .. 8

7 Testing concepts ... 10
7.1 Introduction... 10
7.2 Test architecture .. 10
7.3 Formal model of the test architecture.. 11
7.4 Test execution ... 12

8 Conformance testing... 14
8.1 Introduction... 14
8.2 Definition of conformance testing .. 14
8.3 Test generation.. 14
8.4 Test suite size reduction .. 15
8.5 Fault coverage ... 16
8.6 Test suite cost.. 16

9 Compliance... 17
9.1 Introduction... 17
9.2 Compliance with clause 6: The meaning of conformance .. 17
9.3 Compliance with clause 7: Testing concepts .. 18
9.4 Compliance with clause 8: Conformance testing .. 18

Annex A... 18
A.1 Specifications .. 18
A.2 Implementation options and instantiated specifications.. 23
A.3 Implementations and models of implementations... 28
A.4 Conformance by implementation relations ... 30
A.5 Conformance by requirements .. 33
A.6 Test architecture .. 34
A.7 Specifications of tests.. 35
A.8 References... 42

iv Recommendation Z.500 (05/97)

Introduction

Many protocol and service specifications are nowadays described in formal notations called Formal Description
Techniques (FDTs). Examples of standardized FDTs are SDL, LOTOS, Estelle and ASN.1. There also exists a formal
notation for test suite specifications: TTCN. The use of FDTs has the following advantages:

– they describe the formats and behaviours in an unambiguous way;

– they give a basis for rigorous validation including conformance testing.

Conformance to a communication protocol or service standard is considered to be a prerequisite for the correct
interoperability of open systems. Conformance testing, i.e. the assessment by means of testing whether a product
conforms to its specification, is an important issue in product development, because it increases the confidence in correct
interoperability.

This Recommendation "Framework on Formal Methods in Conformance Testing" (FMCT) defines the meaning of
conformance if formal methods are used for the specification of a communication protocol or service. It is also meant to
guide computer aided test generation.

This Recommendation defines a framework for the use of formal methods in conformance testing. It is intended for
implementers, testers, and specifiers involved in conformance testing to guide in defining conformance and the testing
process of an implementation with respect to a specification that is given as a formal description.

Recommendation Z.500 (05/97) 1

Recommendation Z.500
Recommendation Z.500 (05/97)

FRAMEWORK ON FORMAL METHODS IN
CONFORMANCE TESTING

(Geneva, 1997)

1 Scope

This Recommendation is applicable where a formal specification of a communication protocol or service exists, from
which a conformance test suite shall be developed. It can guide the manual process as well as the development of tools
for computer aided test case generation.

This Recommendation defines a framework and does not prescribe any particular test case generation method, nor does
it prescribe any specific conformance relation between a formal specification and an implementation. It is supplementary
to the joint ITU-T/ISO standard "Conformance Testing Methodology and Framework" (CTMF) [ISO/IEC 9646], which
is applicable to a wide range of products and specifications, including specifications in natural language.
FMCT interprets conformance testing concepts in a formal context.

2 Normative references

The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; all users of this Recommendation are therefore
encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other
references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

2.1 Conformance testing

NOTE – The following set of references will be referred to as CTMF is this Recommendation.

– ITU-T Recommendation X.290 (1995) (equivalent to ISO/IEC 9646-1:1994), OSI conformance testing
methodology and framework for protocol Recommendations for ITU-T applications – General concepts.

– ITU-T Recommendation X.291 (1995) (equivalent to ISO/IEC 9646-2:1994), OSI conformance testing
methodology and framework for protocol Recommendations for ITU-T applications – Abstract test suite
specifications.

– CCITT Recommendation X.292 (1992) (equivalent to ISO/IEC 9646-3:1992), OSI conformance testing
methodology and framework for protocol Recommendations for CCITT applications – The Tree and Tabular
Combined Notation (TTCN).

– ITU-T Recommendation X.293 (1995) (equivalent to ISO/IEC 9646-4:1994), OSI conformance testing
methodology and framework for protocol Recommendations for ITU-T applications – Test realization.

– ITU-T Recommendation X.294 (1995) (equivalent to ISO/IEC 9646-5:1994), OSI conformance testing
methodology and framework for protocol Recommendations for ITU-T applications – Requirements on test
laboratories and clients for the conformance assessment process.

– ITU-T Recommendation X.295 (1995) (equivalent to ISO/IEC 9646-6:1994), OSI conformance testing
methodology and framework for protocol Recommendations for ITU-T applications – Protocol profile test
specification.

– ITU-T Recommendation X.296 (1995) (equivalent to ISO/IEC 9646-7:1995), OSI conformance testing
methodology and framework for protocol Recommendations for ITU-T applications – Implementation
conformance statements.

2 Recommendation Z.500 (05/97)

2.2 Formal description techniques

– ITU-T Recommendation Z.100 (1993), CCITT Specification and Description Language (SDL).

– ITU-T Recommendation Z.120 (1996), Message Sequence Charts (MSC).

– ISO/IEC 8807:1989, Information processing systems – Open Systems Interconnection – LOTOS – A formal
description technique based on the temporal ordering of observational behaviour.

– ISO/IEC 9074:1989, Information processing systems – Open Systems Interconnection – Estelle: A formal
description technique based on an extended state transition model.

3 Definitions

3.1 Terms from other related standards

NOTE – Although the following definitions are given in ITU-T X.290 and ISO/IEC 9646-1, they are repeated here because the
meanings of these terms are important for the formal interpretations in this Recommendation.

3.1.1 abstract test method: The definition of how an IUT is to be tested, given at an appropriate level of abstraction to
make the description independent of any particular realization of a Means of Testing, but with enough detail to enable tests to
be specified for this test method.

3.1.2 conformance test suite: A complete set of test cases, possibly combined into nested test groups, that is selected to
perform dynamic conformance testing for one or more protocols.

3.1.3 conformance testing: Testing the extent to which an IUT is a conforming implementation.

3.1.4 conforming implementation: An IUT which satisfies both static and dynamic conformance requirements,
consistent with the capabilities stated in the ICS(s).

3.1.5 dynamic conformance requirement: All those requirements (and options) which determine what observable
behaviour is permitted by the relevant specification(s) in instances of communication.

3.1.6 fail (verdict): A test verdict given when the observed test outcome either demonstrates non-conformance with
respect to (at least one of) the conformance requirements on which the test purpose of the test case is focused, or contains at
least one invalid test event, with respect to the relevant specification(s).

3.1.7 implementation conformance statement (ICS): A statement made by the supplier of an implementation or
system claimed to conform to a given specification, stating which capabilities have been implemented. The ICS can take
several forms: protocol ICS, profile ICS, protocol specific ICS, and information object ICS.

3.1.8 implementation under test (IUT): An implementation of one or more protocols in an adjacent user/provider
relationship, being that part of the real open system which is to be studied by testing.

3.1.9 implementation extra information for testing (IXIT): A statement made by the supplier or implementor of
an IUT which contains or references all of the information (in addition to that given in the ICS) related to the IUT and its
testing environment, which will enable the testing laboratory to run an appropriate test suite against the IUT. An IXIT can take
several forms: protocol IXIT, profile IXIT, profile specific IXIT, and information object IXIT, TMP implementation
statement.

3.1.10 means of testing (MOT): The combination of equipment and procedures that can perform the derivation, selection,
parameterization and execution of test cases, in conformance with a reference standardized ATS, and can produce a
conformance log.

Recommendation Z.500 (05/97) 3

3.1.11 parameterized abstract test suite: A selected abstract test suite in which all relevant parameters have been
supplied with values in accordance with the appropriate ICS(s) and IXIT(s).

3.1.12 pass (verdict): A test verdict given when the observed test outcome gives evidence of conformance to the
conformance requirement(s) on which the test purpose of the test case is focused, and when no invalid test event has been
detected.

3.1.13 point of control and observation (PCO): A point within a testing environment where the occurrence of test events
is to be controlled and observed, as defined in an Abstract Test Method.

3.1.14 reference standardized abstract test suite (ATS): The standardized ATS for which a Means of Testing is
realized.

3.1.15 static conformance requirement: One of the requirements that specify the limitations on the combinations of
implemented capabilities permitted in a real open system which is claimed to conform to the relevant specification(s).

3.1.16 test purpose: A prose description of a well defined objective of testing, focusing on a single conformance
requirement or a set of related conformance requirements as specified in the appropriate specification.

3.1.17 test verdict: A statement of "pass", "fail", or "inconclusive", as specified in an abstract test case, concerning
conformance of an IUT with respect to that test case when it is executed.

3.2 Terms defined in this Recommendation

3.2.1 compatibility: See 6.4.3.

3.2.2 complete (test suite): See 8.2.

3.2.3 conformance: See 6.4.

3.2.4 conformance testing: See 8.2.

3.2.5 dynamic conformance: See 6.4.2 and 6.4.3.

3.2.6 exhaustive (test suite): See 8.2.

3.2.7 fault model: See 8.4.1.

3.2.8 fault coverage: See 8.5.

3.2.9 formal specification: See 6.2.

3.2.10 implementation: See 6.3.

3.2.11 implementation access point: See 7.2.

3.2.12 implementation access point, (formal model of): See 7.3.

3.2.13 implementation option: See 6.2.

3.2.14 implementation relation: See 6.4.2.

3.2.15 implementation under test: See 3.1.

3.2.16 implementation under test, (formal model of): See 7.3.

3.2.17 instantiated specification: See 6.2.

3.2.18 interaction point: See 7.3.

3.2.19 looser specification: See 8.4.2.

3.2.20 model of implementation: See 6.3.

3.2.21 mutant: See 8.4.1.

3.2.22 observation: See 7.4.1.

4 Recommendation Z.500 (05/97)

3.2.23 parameterized specification: See 6.2.

3.2.24 point of control and observation: See 3.1.

3.2.25 point of control and observation, (formal model of): See 7.3.

3.2.26 satisfaction relation: See 6.4.3.

3.2.27 sound (test suite): See 8.2.

3.2.28 specification: See 6.2.

3.2.29 static conformance: See 6.4.1.

3.2.30 test architecture: See 7.2.

3.2.31 test case, (formal model of): See 7.3.

3.2.32 test case execution: See 7.4.1.

3.2.33 test context: See 7.2.

3.2.34 test context, (formal model of): See 7.3.

3.2.35 test generation: See 8.3.

3.2.36 test purpose: See 3.1 and 7.4.2.

3.2.37 test purpose, (formal model of): See 7.4.2.

3.2.38 test suite cost: See 8.6.

3.2.39 test suite, (formal model of): See 7.3.

3.2.40 test suite reduction: See 8.4.

3.2.41 tester: See 7.2.

3.2.42 tester, (formal model of): See 7.3.

3.2.43 weaker implementation relation: See 8.4.2.

4 Abbreviations

This Recommendation uses the following abbreviations:

CTMF Conformance Testing Methodology and Framework

FDT Formal Description Technique

FMCT Formal Methods in Conformance Testing

IAP Implementation Access Point

ICS Implementation Conformance Statement

IUT Implementation Under Test

IXIT Implementation extra Information for Testing

LOTOS Language of Temporal Ordering Specifications

LTS Labelled Transition System

MSC Message Sequence Chart

PCO Point of Control and Observation

SDL Specification and Description Language

TTCN Tree and Tabular Combined Notation

Recommendation Z.500 (05/97) 5

5 Mathematical concepts and notation conventions

5.1 Sets

Any subset of a set is denoted with upper case letters (for example, A, B, C) or a series of upper case letters (for
example, SPECS, IMPLS, TESTS). Elements of a set are denoted with lower case letters (for example, a, b, c).

The following operations on sets are used in this Recommendation:

{a,b,c,...} The set containing elements a, b, c, ...; the order in which elements appear in a set is not
important.

Ø The empty set, i.e. the set with no elements.

a ∈ A a is an element of the set A.

{a ∈ A | P(a)} The set containing all elements of A which satisfy predicate P. Sometimes {a | P(a)} is used
when the set A can be deduced from the context.

A ⊆ B A is a subset of B, i.e. all elements of A are also elements of B.

A = B The set A is equal to the set B, i.e. A is a subset of B and B is a subset of A.

A ⊂ B A is a proper subset of B, i.e. A is a subset of B and A is not equal to B.

A ∩ B The intersection of A and B, i.e. the set containing all elements that are both in A and B.

i I
iA

∈
I

Generalized intersection, i.e. the intersection of all sets Ai: A1∩A2 ... ∩An, where n is a natural

number.

A ∪ B The union of A and B, i.e. the set containing all elements that are either in A or B (or in both of
them).

i I
iA

∈
U

Generalized union, i.e. the union of all sets Ai: A1∪A2 … ∪An, where n is a natural number.

A × B The Cartesian product of A and B denoting the set of all ordered pairs (a, b) such that a ∈ A
and b ∈ B.

A1 × A2 × ... × An The generalized Cartesian product of A1, A2, ..., An denoting the set of all ordered pairs (a1,
a2, …, an) such that a1 ∈ A1, a2 ∈ A2, ..., an ∈ An.

A – B The set difference of A and B, i.e. the set containing all elements of A that are not in B.

Powerset(A) The powerset of A, i.e. the set containing all subsets of A.

R ≥0 The set of the positive real numbers, including zero

The symbol ‘ ⁄ ’ superimposed on a (set) operator is used to denote the negation of the operator, e.g. a ∉ A (a is not element of
the set A), A ⊄ B (A is not a proper subset of B), etc.

5.2 Logic

The following logic notations are used in this Recommendation:

¬ p Not p, i.e. the negation of p

p ∧ q p and q, the conjunction of p and q

p ∨ q p or q, the disjunction of p and q

p ⇒ q p implies q, also read as: not p or q

6 Recommendation Z.500 (05/97)

p ⇔ q p is equivalent with q, i.e. (p ⇒ q) ∧ (q ⇒ p)

∀ a ∈A For all elements a of set A

∃ a ∈A There exists an element a in set A

5.3 Relations

Relations are denoted as lower case abbreviation, that are underlined (for example rel).

Let A and B be sets, then a binary relation rel between A and B is a subset of their Cartesian product: rel ⊆ A × B.
The element a ∈ A is related to b ∈ B if (a,b) ∈ rel (or alternatively a rel b). Analogously, an n-ary relation is a subset of
A1 × A2 × ... × An.

The domain dom(rel) of relation rel ⊆ A × B is defined as the set containing all elements in A that are related to
some b ∈ B, i.e.:

dom(rel) = {a ∈ A | ∃ b ∈ B : (a,b) ∈ rel}

A (binary) relation rel on A is a subset of A × A.

5.4 Functions

Function names are denoted as lower case abbreviation, that are underlined (e.g. func).

A partial function func is a relation between two sets A and B with the property that for each a ∈ A there exists at most
one b ∈ B such that 〈a,b〉 ∈ func, i.e.:

∀a ∈ A : ∀b1,b2 ∈ B : (〈a,b1〉 ∈ func ∧ 〈a,b2〉 ∈ func) ⇒ b1 = b2

When a function is introduced, its signature is given in the following style:

func : A → B

A (total) function func : A → B is a partial function satisfying dom(func) = A.

6 The meaning of conformance

6.1 Introduction

Conformance involves defining whether an implementation is a valid implementation of a given specification with respect to a
certain correctness notion. In order to formalize the concept of conformance, implementations will be modelled by formal
objects called models. Conformance can be characterized by relations between models of implementations and specifications,
or by satisfaction of specified requirements by models of implementations, or by both. This clause defines conformance,
which includes definitions of specifications, implementations, models of implementations, implementation relations and
conformance requirements.

6.2 Specifications

A (formal) specification prescribes the behaviour of a system using an FDT. If the FDT allows the use of parameters, a
specification with formal parameters is referred to as a parameterized specification. If the formal parameters are instantiated
with actual values or if there are no formal parameters, the specification is an instantiated specification.

The set of instantiated specifications is denoted by SPECS. A parameterized specification s is considered as a function from its
parameter space Ds (the set of all possible actual values for the formal parameters) to SPECS:

s : Ds → SPECS

Specifications often contain descriptions of features that are optional to support in a product that implements the standard. The
freedom to support certain features or not to support them is named implementation options. Specifications usually contain
such options. The implementation options are represented by the formal parameters of a specification, i.e. the specification is
parameterized over its implementation options.

Recommendation Z.500 (05/97) 7

A specification that contains implementation options defines a set of instantiated specifications; one instantiated specification
for each choice between the options. A specification shall clearly indicate which combinations of support of options are
allowed.

Information on implementation options is required to be included in the protocol/profile ICS proforma. The ICS describes a
specific choice of the implementation options in the ICS proforma. A specification parameterized over its ICS proforma is
instantiated by an ICS. The ICS shall contain sufficient information to provide actual values for the implementation options.

The term specification is used in the remainder of this Recommendation to denote an instantiated specification.

NOTE – CTMF requires the protocol/profile ICS to be published as an annex to the protocol/profile standard.

Example

Suppose a specification allows to implement different levels of support of features. The levels are numbered from 0 up to 3.
The standard, parameterized specification can then be represented as: s(level: 0...3). The Protocol ICS may contain the
information that level = 2 is claimed to be implemented. This means that the instantiated specification of the implementation
under test is, in fact, s(2).

6.3 Implementations

An implementation consists of a combination of hardware and/or software. The implementations have physical connectors or
programming interfaces for communication with their environment or end-users. The set of implementations is denoted
as IMPS.

A specification is a formal object while an implementation is a physical one. In order to formalize the concept of
conformance, these different kinds of objects have to be related. Implementations cannot be subject to formal reasoning as
they are not formal objects. Therefore, it is not possible to define directly a formal relation between implementations and
specifications.

In the remainder of this Recommendation, it is assumed that any implementation IUT ∈ IMPS can be modelled by an
element mIUT in a formalism MODS (e.g. labelled transition systems, finite state machines). This assumption is referred to as
the test assumption. The activity of testing consists of extracting information from IUT by testing it, such that from this
information the model mIUT can be constructed in sufficient detail to decide conformance about it.

NOTE 1 – Only the possibility to construct a model is assumed, not that the model is a priori known.

NOTE 2 – The formalism MODS used to model the behaviour of an implementation, may be the same as the formalism SPECS that is
used for the specification.

An implementation may have more than one model for a specific choice of MODS. The test assumption implies that it is not
possible to distinguish between these models by testing. Therefore, it is sufficient to model an implementation IUT by a single
element mIUT of the set of possible models MODS.

NOTE 3 – It is assumed that the IUT can be modelled with sufficient precision such that the model can represent the IUT with respect
to the properties that are prescribed by the specification.

T1010140-97/d01

modelled_by

Figure 1/Z.500 – The relation between elements of IMPS and MODS

MODS

IMPS

IUT2 IUT1

m
IUT1

mIUT2

FIGURE 1/Z.500...[D01] = 3 CM

8 Recommendation Z.500 (05/97)

6.4 Conformance of an implementation to a formal specification

Conformance between an implementation and a specification exists when the implementation is correct with respect to the
specification. Conformance is defined in two parts:

• static conformance; and

• dynamic conformance.

An implementation conforms to a specification if, and only if, it both statically and dynamically conforms.

6.4.1 Static conformance

Static conformance involves the correct instantiation of a parameterized specification. An implementation under test IUT
with corresponding implementation conformance statement ICSIUT conforms statically to a parameterized specification
s : Ds → SPECS if ICSIUT is contained in the domain of s, i.e. ICSIUT ∈ Ds; which means that s(ICSIUT) is defined. Checking
static conformance corresponds to type checking of the actual parameter ICSIUT with respect to the ‘type’ Ds.

Static conformance means that ICSIUT is accepted by the parameterized specification, hence that the specific combination of
implementation options described in ICSIUT is allowed.

The allowable combinations and ranges of implementation options in the ICSIUT, i.e. the specification of the set Ds, can be
described by static conformance requirements. A static conformance requirement is a requirement that specifies the
limitations on the ranges and the combinations of implemented options and capabilities permitted in an implementation by the
specification (refer to CTMF, Part 1, 3.4.4).

NOTE – If static conformance requirements extend beyond the normal type checking of actual parameter values in the FDT
employed, these requirements may be expressed in the behaviour part of the formal description (see Annex A).

6.4.2 Dynamic conformance

Dynamic conformance involves the permitted observable behaviour of an implementation in instances of communication as
described by the specification. Dynamic conformance between an implementation and a specification is formally
characterized by a relation between the model of the implementation and the specification. This relation is called an
implementation relation. It will be denoted as imp, where imp has the signature:

imp ⊆ MODS × SPECS

An implementation IUT conforms dynamically to an instantiated specification s with respect to relation imp, if mIUT imp s. In
this case mIUT is a conforming model of s with respect to imp. As such implementation relation imp expresses correctness
between specification s and implementation IUT.

An instantiated specification can have several conforming implementations. For a specification s ∈ SPECS an implementation
relation imp the set Ms denotes the set of all conforming models in MODS, and is given by:

Ms = {m ∈ MODS | m imp s}

NOTE – For defining conformance, it is a prerequisite that the following objects exist: a specification s ∈ SPECS, an implementation
IUT ∈ IMPS, documentation of choice between options ICSIUT, and an implementation relation. The implementation relation is not
universal; for different application areas, different implementation relations may be used. Example of implementation relation for
Estelle, LOTOS and SDL can be found in the example below and further elaboration is found in Annex A.

Figure 2 illustrates how an instantiated specification s ∈ SPECS determines a set of conforming implementations Is. The set Is
denotes the set of implementations that can be modelled by models in Ms. Therefore, the set Is is the set of implementations
that implement the specification s correctly.

Assuming that s is a protocol specification, elements of Is will be able to communicate using that protocol. If s is the
specification of a complete stack of protocols (a profile) and a distributed application, elements of Is will be able to
interoperate.

Recommendation Z.500 (05/97) 9

T1009980-97/d02

implements
correctly

modelled_by

Figure 2/Z.500 – Relations between IMPS, MODS, and SPECS

Ms

SPECS MODS

IMPS

imp

IUT

Is

mIUT
s

FIGURE 2/Z.500...[D02] = 3 CM

Example

Examples of implementation relations which are often used, if both MODS and SPECS are chosen to be Estelle or SDL, are
trace equivalence and trace preorder. If trace equivalence is required, the set of execution traces of the implementation shall
be equal to the set of traces of the specification. In case of trace preorder, the first set shall be included in the second. (This
means that only part of the specified behaviour has to be implemented.)

Examples of implementation relations which are often used for LOTOS are failure equivalence and failure preorder. If failure
preorder is required, the set of traces of the implementation shall be included in the set of traces of the specification, and the
implementation shall not produce deadlocks that are not specified.

6.4.3 Dynamic conformance requirements

In clause 6 conformance has been defined in an abstract way by means of an instantiated specification together with an
implementation relation between the sets MODS and SPECS. On the other hand, in CTMF, the definition of dynamic
conformance is based on the concept of a collection of dynamic conformance requirements. Both approaches can be used to
specify conforming observable behaviour. They can be used separately or in combination. Conformance by means of an
instantiated specification with an implementation relation was defined in 6.4.2. This subclause shows that the use of dynamic
conformance requirements is a possible refinement of this definition, and that both approaches define the same concept with
the same expressive power.

A dynamic conformance requirement is a requirement that specifies what observable behaviour is permitted in instances of
behaviour (refer to CTMF, Part 1, 3.4.3). It is a property that needs to be satisfied by (the model of) the implementation in
order for the implementation to conform.

Dynamic conformance requirements are expressed in a requirements language. REQS denotes the set of all requirements that
can be expressed in that particular language. In the requirement approach, an instantiated specification s ∈ SPECS is
expressed as a set of requirements Rs ⊆ REQS, that is SPECS = Powerset(REQS). An element of r ∈ Rs represents a single
dynamic conformance requirement. In general, the set Rs can be infinite.

Dynamic conformance between an implementation and a specification in the requirement approach is formally characterized
by a relation between the model of the implementation and the specification. This relation is called a satisfaction relation. It
will be denoted as sat, where sat has the signature:

sat ⊆ MODS × REQS

10 Recommendation Z.500 (05/97)

An implementation IUT conforms dynamically to specification Rs ⊆ REQS if the model mIUT of IUT satisfies all conformance
requirements in Rs. The set MRs

 of models of conforming implementations in the requirements approach is given by:

MRs
 = {m ∈ MODS | ∀r ∈ Rs : m sat r}

For a particular conformance requirement ri ∈ Rs, the set Mri
 denotes the set of all models in MODS satisfying requirement ri,

i.e. Mri
 = {m ∈ MODS | m sat ri}. Figure 3 shows how intersection of the sets Mri

 determines the set MRs
 of conforming

implementations.

T1009990-97/d03

SPECS

s
imp

MODS

Mr1

Ms

Mr

Mr

2

3

Figure 3/Z.500 – Conformance requirements and conforming implementations

FIGURE 3/Z.500...[D03] = 3 CM

6.4.4 Combining specifications

Different formal specifications, not necessarily expressed in the same formal language, can be combined to define one single
set of models of conforming implementations. If the specifications s1, s2, s3, .. sn with implementation relations imp1, imp2,
imp3, ... impn, defined over the same class of models of implementations MODS, define the set of
conforming implementations Ms1

, Ms2
, Msn

, respectively, then the set of conforming implementations defined by s1, s2, s3, .. sn
is Ms1

 ∩ Ms2
 ∩ .. ∩ Msn

.

The specifications s1, s2, s3, .. sn are consistent if this intersection is not empty. Consistency implies that the collection of
specifications is implementable. It is a requirement for combining specifications.

A particular case of combination of specifications is to combine an instantiated behaviour specification s (with implementation
relation imp) with a requirement specification R (with satisfaction relation sat). The requirement in R can specify additional
requirements of conforming implementations, or they can serve as an alternative specification for exactly the same set of
conforming implementations. In the latter case, s (with imp) and R (with sat) are said to be compatible:

∀ m ∈ MODS : m imp s ⇔ ∀ r ∈ R : m sat r

7 Testing concepts

7.1 Introduction

Testing is a means to extract knowledge about a system by experimenting with it. The experimentation is carried out by
executing test cases. The execution of a test case leads to an observation from which it can be concluded whether a system has
a certain property or not. This clause defines the basic concepts employed to describe the execution of test cases – no
reference is made to a notion of conformance or to a property being tested. These basic concepts include the environment in
which the test cases are executed, the formal modelling of this environment, test cases and test suites, the execution of test
cases, the observations that can be made during test execution, the interpretation of observations, and the test purpose related
to a test case and to a test suite.

7.2 Test architecture

The test architecture is a description of the environment in which the IUT is tested. It describes the relevant aspects of how
the IUT is embedded in other systems during the testing process, and how the IUT communicates via these embedding
systems and with the tester. Figure 4 gives an abstract view of the test architecture.

Recommendation Z.500 (05/97) 11

T1010000-97/d04

Tester Test context

IUT

Point of Control and Observation (PCO)

Implementation Access Point (IAP)

Figure 4/Z.500 – Test Architecture

FIGURE 4/Z.500...[D04] = 3 CM

A test architecture consists of:

– a tester;

– an Implementation Under Test (IUT) (see 3.1);

– a test context;

– Points of Control and Observation (PCO) (see 3.1);

– Implementation Access Points (IAP).

The tester is the implementation of a test suite (see 7.3). It carries out the experiments by executing the test cases and
observing the results. The tester communicates with the test context via the PCOs, and indirectly with the IUT via the test
context. The tester can be sub-structured in different components (e.g. in a Lower Tester and an Upper Tester, CTMF).

The test context is the system in which the IUT is embedded, and via which the IUT communicates with the tester. It relates
events that occur at PCOs in the communication between the test context and the tester, to events that occur at the IAP’s in the
communication between the test context and the IUT.

An Implementation Access Point (IAP) is an interaction point in the test architecture where the IUT interacts with its
environment, i.e. the test context, and via the test context (indirectly) with the tester.

NOTE – In certain cases, IAPs and PCOs may coincide.

7.3 Formal model of the test architecture

In order to be able to reason about the testing process in a formal setting, the entities of the test architecture must be formally
modelled.

Test suite – The formal description of the tester is given by a test suite. A test suite specifies the entire set of experiments
which are to be executed by the tester. The tester is the implementation of the test suite.

The experiments that constitute a test suite are called test cases. Each test case specifies the behaviour of the tester in a
separate experiment that tests an aspect of the IUT, and that leads to an observation and a verdict (see 7.4.1).

The formal language in which a test case is expressed is called the test notation. The test notation is denoted by TESTS. It
follows that a test suite, being a set of test cases, is an element of Powerset(TESTS).

It is assumed that specifications of test cases and test suites are correctly implemented in the tester according to the semantics
of the test notation. This assumption is reasonable, since such specifications are far less complex than system specifications.

12 Recommendation Z.500 (05/97)

Implementation under test – Following the test assumption (see 6.3), the IUT is formally expressed by its model
mIUT ∈ MODS.

Test context – The formal model of a test context is a transformation of behaviour as it is observed at the IAPs to behaviour as
it is observed modelled at the PCOs. It is described as a function C on MODS:

C : MODS → MODS

It follows that the behaviour of the IUT as observed at the PCOs is formally expressed as C(mIUT).

Point of control and observation and implementation access point – The PCOs and IAPs are formally modelled as
interaction points in MODS. The properties of these interaction points depend on how interactions between entities are defined
in the formalism MODS that has been chosen. Care must be taken that the modelling of interactions in MODS faithfully
models the interactions as they occur at the PCOs and IAPs in the test architecture.

7.4 Test execution

Test execution of a test suite T ⊆ TESTS consists of running the tester that implements T in combination with the IUT and the
test context for each test case t ∈ T. The run of one test case is called test case execution. The objective of test case execution
is to experiment with the IUT in order to investigate whether or not the IUT responds correctly to a certain behaviour.

7.4.1 Test case execution

Test case execution is the running of the implementation of one test case t ∈ TESTS in combination with the IUT and the test
context. During the run an observation is made. It can include a log of occurring interactions, a (preliminary) verdict, or
anything which is considered important for determining the result of the test case execution. When a test case execution leads
to an observation – σ ∈ OBS – the result is defined by a verdict assignment verdt which may depend on the test case t ∈ T:

verdt : OBS → {pass, inconclusive, fail}

An implementation under test IUT passes a (correctly) implemented test case t (in a particular given test context) if, and only
if, the test execution of the IUT with t leads to an observation σ for which the verdict pass is assigned:

IUT passes t ⇔ verdt (σ) = pass

Example

The following table exemplifies observations. Each row in the table contains results of measurements. The sequence of
measurements comprises the observation of one test run.

The measurement of an event is denoted as the type of the observed event at (@) the location of the observed interaction.

Time Event Parameters

0003 Connect
@ PCO-1

sender = "1223"
address = "4545"
level = 3

0005 Accept
@ PCO-1

sender = "4545"
address = "1223"
level = 2

0012 Disconnect
@ PCO-1

sender = "1223"
address = "4545"
reason = 5

Recommendation Z.500 (05/97) 13

7.4.2 Formal model of test case execution

For the interpretation of the result of a test case execution, a model of test case execution must be defined by a function. The
function exec calculates the observations for models of IUT’s (mIUT) contained in a model of a test context (C):

exec: TESTS × MODS → OBS

The expression exec(t,C(mIUT)) models the observation that is made by the test case t of the IUT modelled as mIUT in the test
context C.

If exec correctly models test execution, i.e. test execution leads to an observation σ if, and only if, exec(t,C(mIUT)) = σ, then it
can be concluded from test execution of an IUT with a test case t that:

IUT passes t ⇔ verdt (exec(t,C(mIUT))) = pass

The subset of MODS for which verdt (exec(t,C(m))) = pass, is called the formal test purpose Pt :

Pt = {m ∈ MODS | verdt (exec(t,C(m))) = pass}

Hence, the objective of testing an IUT with test case t is to conclude whether the model of the IUT is a member of its formal
test purpose Pt, i.e. IUT passes t if, and only if, mIUT is an element of Pt .

A prose description may accompany the formal test purpose of a test case. Such a prose description of the objective of testing
is called the (informal or natural language) test purpose (see 3.1).

A formal test purpose as a subset of MODS can be specified using the same methods as the ones used to specify sets of
conforming implementations, i.e. either by an instantiated behaviour specification together with an implementation relation, or
by a requirement or a set of requirements with a satisfaction relation. Such a formal expression denoting a formal test purpose,
may also itself be referred to as a formal test purpose.

Example

A Message Sequence Chart (MSC) describes a sequence of behaviour. Together with the implementation relation inverse
trace preorder (all sequences of behaviour of the MSC shall be contained in the implementation) and MSC specify a formal
test purpose, namely the set of models of implementations that contain the behaviour specified by the MSC.

NOTE – The formal test purpose Pt is related to the test case t. It is not prescribed which of them follows from the other; given a test
case t its formal test purpose Pt can be calculated, or given a formal test purpose p (e.g. given as a formal requirement) a test case tp
can be developed such that Ptp = p. Such a test case may not exist.

7.4.3 Test suite execution

The process of executing a test suite consists of executing each test case which belongs to the test suite consecutively. Each
single test case execution is assigned a verdict, as stated in 7.4.1. To be executable, a test suite needs to be finite. However,
when modelling test suite execution with exec, finiteness is not required.

An implementation under test IUT passes a test suite T ⊆ TESTS if, and only if, it passes all the test cases in the test suite:

IUT passes T ⇔ ∀t ∈T : IUT passes t

If IUT passes a test suite, then it follows that the model of IUT is contained in all the formal test purposes of the test cases of
the test suite:

IUT passes T
⇔ ∈

∈
m PIUT t T tI

The set It T∈ Pt is the formal test purpose of T. It is denoted by PT. Like for formal test purposes of test cases an (informal or
natural language) test purpose may accompany the formal test purpose to give a prose description of the objective of testing
with T.

14 Recommendation Z.500 (05/97)

8 Conformance testing

8.1 Introduction

This clause employs the testing concepts defined in clause 7 to test the property of conformance defined in clause 6. This
clause includes definitions of conformance testing, test generation from the formal specification, test suite coverage and ways
to limit the size of the test suite.

8.2 Definition of conformance testing

Conformance testing is the assessment by means of testing, whether an implementation conforms to its specification.
Conformance testing is aimed at collecting information for building a model mIUT of the behaviour of implementation IUT.
This model is used to decide whether mIUT is an element of the set of models of conforming implementations,
i.e. whether mIUT ∈ Ms.

In general it is not possible to obtain certainty concerning conformance between implementations and specifications due, for
example, to non-determinism in the implementation, restrictions in the observability and controllability of the implementation
and the practical limitation of only being able to execute a finite number of tests. A test suite T can have the following
properties depending on the relation between PT and Ms.

Exhaustive: Test suite T is exhaustive if the set PT of all models that pass test suite T is a subset of the set of conforming
models Ms: PT ⊆ Ms. This means that all passing implementations are compliant.

Sound: Test suite T is sound if the set of conforming models Ms is a subset of the set PT of models that pass implementation
IUT: Ms ⊆ PT. That means that all implementations that do not pass are not compliant.

Complete: Test suite T is complete if it is both sound and exhaustive, that is, the set of conforming models equals the set of
models that pass the implementation: PT = Ms.

If test suite T is neither sound nor exhaustive, then nothing concerning conformance can be concluded by means of testing.

Ideally a test suite is complete. In general it is not possible to construct a finite exhaustive test suite.

NOTE – Exhaustive test suites are not likely to be encountered in practice. Exhaustiveness is a useful concept for theoretical
argumentation about (infinite) model of test suites, and as a means of comparison for realistic test suites (see 8.5: Coverage).

8.3 Test generation

In the test generation process a test suite (i.e. a set of test cases) is generated from a formal specification. The use of an FDT
for the specification is a prerequisite for automatic test generation.

Test generation is defined as a function gen that provides a test suite for an instantiated specification, given an implementation
relation imp and a test context C:

genC,imp : SPECS → Powerset(TESTS)

The generated test suite is expressed in a test notation (see 7.3: test notation).

The generated test suite is required to be sound (see 8.2). Therefore, a generated test suite has to fulfill the following property:

∀m ∈ MODS, m imp s ⇒ m ∈ PT

where:

T = genC,imp (s)

Test generation, as defined above, works on instantiated specifications: genC,imp : SPECS → Powerset(TESTS). A test suite

for a specification s : Ds → SPECS and ICS is obtained by genC,imp (s (ICS)).

Recommendation Z.500 (05/97) 15

Instantiating the parameterized specification s : Ds → SPECS with the ICS can be postponed until after test generation. This
means that test generation works on parameterized specifications, generating a test suite parameterized over the ICS:

pgenC,imp : (D → SPECS) → (D → Powerset(TESTS))

where D is the domain of all possible implementation statements.

A test suite for a specification s : Ds → SPECS and implementation conformance statement ICS is obtained by:

(pgenC,imp : (s : Ds → SPECS))(ICS)

It is required that the generated parameterized test suites are sound for each possible instantiation with an ICS.

8.4 Test suite size reduction

Each test suite used for conformance testing shall be sound (see 8.3), which means that each test execution resulting in a
fail-verdict indeed indicates an error in the implementation under test (see 8.2). Exhaustiveness of test suites is not
required, which means that not necessarily all errors in an implementation under test will be detected (see 8.2). Usually
the number of test cases that would be required to test exhaustively, is very large, or even infinite, implying that
exhaustive testing is not feasible in practice. To reduce the size of a test suite with respect to the size of an ideal,
exhaustive test suite, in order to make test suite execution feasible in practice, different test-suite size reduction strategies
are identified.

8.4.1 Fault model

The test-suite size reduction strategies can be presented in terms of a fault model. A fault model F is a set of models of
non-conforming implementations. It is expressed as a subset of MODS – Ms:

F ⊆ MODS – Ms

A fault model can be described as a modification (mutant) of the specification s ∈ SPECS. Let ∆s ∈ SPECS contain a
modification with respect to the original specification s, then the fault model described by ∆s is (M∆s – Ms).

The largest fault model is the set of all non-conforming implementations MODS – Ms.

Example

Suppose both the set of specifications SPECS and the set of models MODS are equal to the set of Input/Output Finite State
Machines. For a particular specification s two types of mutants may be recognized:

a) mutants with transfer faults, i.e. the final state of tested transitions may be different from the final state specified by
specification s;

b) mutants with output fault, i.e. the observed output after a specific input may not be the one specified by the
specification.

8.4.2 Test-suite size limiting strategies

The test-suite size reduction strategies guarantee to obtain a sound test suite, either starting from a sound, but probably too

large test suite T, or starting from a specification s, an implementation relation imp , and a test generation function genC,imp

that generates sound, but probably too large test suites genC,imp (s). The following strategies are identified:

1) Take any subset T ′ of the test suite T. The fault model for which T ′ tests is the complement of its formal test
purpose: F = MODS – PT ′.

2) Loosen the specification s to s′ such that Ms ⊂ Ms ′ (i.e. put less requirements on the implementation), and generate a

sound test suite for this looser specification: genC,imp (s′) is a sound test suite for s with respect to imp.

16 Recommendation Z.500 (05/97)

A special case for a requirement specification R ⊆ REQS is the looser specification R′ ⊂ R consisting of a selection
of dynamic conformance requirements.

3) Weaken the implementation relation imp to imp′ such that {m ∈ MODS | m imp s} ⊂ {m ∈ MODS | m imp′ s} (i.e.
allow more implementations as being correct), and generate a sound test suite for this weaker implementation

relation: genC,imp′ (s)is a sound suite for s with respect to imp′.

4) Make a stronger test assumption (see 6.3), i.e. instead of assuming mIUT ∈ MODS, assume mIUT ∈ MODS ′ with
MODS ′ ⊂ MODS.

5) Specify explicitly a fault model F ⊂ MODS – Ms, e.g. by considering mutants ∆s of s, and generate a sound test
suite that at least detects all non-conforming implementations in F, i.e. PT ∩ F = Ø.

Different test-suite size reduction strategies of this (not necessarily exhaustive) list can be combined to reduce the size of
a test suite.

Example

If we have a state-machine specification ranging over the integers, hence with (theoretically) infinite state space,
MODS = SPECS, and if the implementation relation requires that all sequences of behaviour (traces) of the specification
are exhibited by the implementation, then the following sequence of test-suite size limiting strategies can be applied
sequentially:

• make the stronger test assumption that the number of states in any implementation is constrained to a particular
number n;

• consider the weaker implementation relation: all traces of the specification up to length l must be exhibited by the
implementation relation;

• consider the looser specification s′ such that s′ contains only a finite subset of the traces of s.

Now any test generation function that generates sound test suites for the weaker implementation relation, generates,
when applied to s′, a sound test suite for the original specification with respect to the original implementation relation.

NOTE – Note the difference between a mutant ∆s and a looser specification s′ of s. A mutant describes the expected faults for which
tests are generate (the fault model is a subset of the set of implementations specified by ∆s). A looser specification specifies
implementations that are not tested (the fault model is a subset of the complement of the implementations specified by s′).

8.5 Fault coverage

Fault coverage is a normalized measure of the extent that a test suite approximates exhaustiveness with respect to a fault
model F. This means that it expresses a quantification of the quality of a test suite in terms of its error-detecting capabilities. A
coverage measure can be used to compare test suites; a high coverage expresses a high quality.

Fault coverage is expressed as a function with the following signature:

covF : Powerset(TESTS) → [0,1]

with the requirement that the coverage must increase if more erroneous implementations in F are detected [PT is the formal
test purpose of test suite T (see 7.4.1); F – PT is the subset of F of all models of implementations that fail with T]:

F – PT1
 ⊆ F – PT2 ⇒ covF (T1) ≤ covF (T2)

If F is omitted, it is assumed to be the set of all erroneous implementations: cov(T) = covMODS – Ms
(T).

8.6 Test suite cost

The costs that are made to generate, maintain, implement, and execute a test suite are expressed as the cost of that test suite.
This means that cost expresses a quantification of the efforts in terms of money, time, etc. needed for a test suite. A cost
measure can be used to compare test suites; a low cost expresses low efforts.

Recommendation Z.500 (05/97) 17

Cost can be expressed as a function with the following signature:

cost : Powerset(TESTS) → R ≥0

with the requirement that cost increases with the size of a test suite:

T1 ⊆ T2 ⇒ cost (T1) ≤ cost (T2)

The cost usually depends on the number and the length of the test cases in the test suite.

9 Compliance

9.1 Introduction

The term compliance refers to meeting the requirements specified in this Recommendation. The term is used to
distinguish between compliance with this Recommendation and conformance of an implementation under test to a
specification (refer to CTMF).

This Recommendation defines a framework for the use of formal methods in conformance testing. It is intended for
implementers, testers, and specifiers involved in conformance testing to guide in defining conformance and the testing
process of an implementation with respect to a specification that is given as a formal description.

The framework in this Recommendation is presented at a high level of abstraction, e.g. it abstracts from specific test
generation algorithms, even from a specific formal description technique. The framework defines terminology, abstract
concepts, and minimal requirements on, and relations between these concepts. Hence, use of the framework requires
instantiating these concepts with specific choices for the formal description technique (SPECS), for the set of
models (MODS), for the implementation relation (imp), for test generation algorithms, etc., while demonstrating the
requirements on, and the relations between them.

This clause explicitly gives the requirements for such an instantiation to comply with this Recommendation. Moreover, it
identifies assumptions underlying the conformance testing process, whose validation is outside the scope of the
conformance testing process itself. The requirements for each of the previous clauses are given in separate subclauses of
this clause. Annex A provides possible instantiations for formal description techniques.

9.2 Compliance with clause 6: The meaning of conformance

To comply with clause 6, the parties involved in the conformance testing process shall identify and agree on the
following:

1) A parameterized specification, referred to as s : Ds → SPECS in clause 6 – The parameter space Ds identifies all
possibilities for implementation options of the specification. SPECS is a formalism of instantiated specifications.
The parameterized specification is assumed to be correct and validated, and serves as the reference point for the
conformance testing process.

2) An implementation under test IUT, together with its corresponding implementation conformance statement, referred
to as ICSIUT in clause 6 – The IUT with corresponding ICSIUT shall conform statically to s : Ds → SPECS,
i.e. ICSIUT ∈ Ds.

3) A modelling formalism, referred to as MODS in clause 6, such that any possible implementation under
consideration can be assumed to be modelled by an element of MODS.

4) An implementation relation, referred to as imp in clause 6, such that imp ⊆ MODS × SPECS, or, if
SPECS = Powerset(REQS), with REQS a logical or property language, a satisfaction relation, referred to as sat in
clause 6, such that sat ⊆ MODS × REQS.

It is understood that the IUT conforms to s : Ds → SPECS if, and only if, ICSIUT ∈ Ds and the model of the IUT, mIUT,
is imp-related to s(ICSIUT), i.e. mIUT imp s(ICSIUT).

If more than one specification is used to define the set of models of implementations, then the specifications shall be
consistent (see 6.4.4). The IUT conforms to the collection of specifications if, and only if, it conforms to each of the
specifications.

18 Recommendation Z.500 (05/97)

9.3 Compliance with clause 7: Testing concepts

To comply with clause 7, the parties involved in the conformance testing process shall identify and agree on the
following:

1) a tester, an implementation under test IUT, a test context, and their mutual interfaces referred to as Implementation
Access Points IAPs (between IUT and test context), Points of Control and Observation PCOs (between IUT and
tester);

2) a test suite, referred to by T in clause 7, such that T ⊆ TESTS, where TESTS is a test notation;

3) a function C : MODS → MODS modelling the test context;

4) for each t ∈ T: a verdict assignment verdt : OBS → {pass, fail}, where OBS is a set of possible observations made
during test execution;

5) a test execution modelling function exec : TESTS × MODS → OBS, that is assumed to correctly model the test
execution of a test case with an IUT contained in test context.

It is understood that the test execution of T on IUT passes – IUT passes T – if, and only if, mIUT ∈ PT (see 7.4.2).

9.4 Compliance with clause 8: Conformance testing

To comply with clause 8, the parties involved in the conformance testing process shall identify and agree on the
following:

1) a test generation function genC,imp : SPECS → Powerset(TESTS), such that the generated test suites are sound for
the applicable domain;

2) zero, one, or more test-suite size reduction strategies (see 8.4.2);

3) optionally, a coverage function covF : Powerset(TESTS) → [0,1] with respect to a fault model F ⊆ MODS. The
function covF shall be demonstrated to be a coverage function (see 8.5);

4) optionally, a cost function cost : Powerset(TESTS) → R ≥0: the function cost shall be demonstrated to be a cost
function (see 8.6).

It is understood that a generated test suite, when executed in compliance with 9.3, gives an indication about the conformance
of an IUT in compliance with 9.2. If ¬ (IUT passes T), the IUT is not conforming; but if IUT passes T, then only the absence
of an indication of non-conformance can be concluded.

Annex A

This Annex is concerned with an interpretation of terminology in the FDTs Estelle, LOTOS and SDL. It does not define
new terms which are not already in the main part of this Recommendation. It gives a language specific interpretation to
those terms for which it is useful to consider them within the specific context of one of the FDTs.

NOTE – This annex only gives examples to support the general definitions and is not meant to give a recommended style of
specification for testability. It is descriptive in nature rather than prescriptive, and informative rather than normative.

A.1 Specifications

A.1.1 Introduction

Specifications are behaviour descriptions in one of the standardized FDTs: Estelle, LOTOS or SDL. The set SPECS
denotes the set of all instantiated specifications written in one particular FDT.

Recommendation Z.500 (05/97) 19

A common example is used to illustrate most of the terminology in this Recommendation for the FDTs Estelle, LOTOS
and SDL. This enables comparison between the different FDTs and their interrelation with the terminology in this
Recommendation.

The common example describes the behaviour of an initiator-entity in a connection oriented protocol, i.e. first a
connection is built before data can be sent. In the following, an informal description of the protocol is given. This
informal description is not meant to give a precise and complete description of the protocol behaviour. It describes the
protocol behaviour to an extent that is sufficient for instantiation as a common example in the different FDTs.

Common example

The common example describes an initiator entity in a connection oriented protocol. The architecture is given in
Figure A.1.

T1010010-97/d05

DatReq
ConReq ConConf

Upper interface

Protocol

 Lower interface
CC
Ack

CR
DT Environment interface

Channel

Figure A.1/Z.500 – Common example architecture

FIGURE A.1/Z.500...[D05] = 3 CM

Two phases can be distinguished: the connection phase (this phase deals with the connection set-up) and the data phase
(in this phase, data is sent by the initiator). The following constraints apply to the connection phase:

– In the initial state, the initiator waits for an upper level connect request (ConReq) to occur.

– An upper level connect request (ConReq) is followed by a lower level connect request (CR).

– After a lower level connect request (CR) a lower level connect confirm (CC) is received from the receiving entity.

– A lower level connect confirm (CC) is followed by an upper level connect confirm (ConConf).

– At any time the initiator entity can receive a disconnect request (DisReq) at the upper level. A disconnect request
brings the protocol back to the initial state.

The data phase is entered after a connection has been set up. In the data phase, data can be sent from initiator to receiver.
The following constraints hold for the data phase:

– Data phase can only begin after an upper level connect confirm (ConConf) has been sent.

– An upper level data request (DatReq) is followed by a lower level data (DT).

– After a lower level data (DT), a lower level acknowledgment (AK) can occur.

– Only after the reception of a lower level acknowledgement (AK) a new upper level data request (DatReq) can occur.

– During the data phase, the initiator entity can receive a disconnect request (DisReq) at the upper level, which brings
the protocol back to the initial state.

20 Recommendation Z.500 (05/97)

The common example also incorporates a description of a test architecture, in order to illustrate the concepts of 7.2. The
upper interface of the initiator entity can be directly accessed by the tester, while the lower interface can be accessed
only through a medium. This medium is assumed to transmit only correctly or loose messages. It cannot create, duplicate
or reorder messages.

A.1.2 Specifications in Estelle

An Estelle description of the common example described in A.1.1 can be found in Figure A.2. Note that
non-determinism is used in order to model the fact that the channel can lose messages.

specification Example; module Channel_M
default individual queue; ip E: MSAP(Protocol)
timescale seconds; L: MSAP(Channel_S);

end;
channel ISAP(User, Protocol);

by User : ConReq;DatReq;Dis; body Channel_B for Channel_M
by Protocol: ConConf;

state empty;
channel MSAP(Protocol, Channel_S);

by Protocol : CR;DT; initialize to empty begin end;
by Channel_S: CC;Ack;

trans
module Protocol_M

ip U: ISAP(Protocol); when L.CR
L: MSAP(Protocol) begin output E.CR end;

end; begin end;

body Protocol_B for Protocol_M when E.CC
begin output L.CC end;

state disconnected, wait, connected, sending; begin end;

initialize to disconnected begin end; when L.DT
begin output E.DT end;

trans begin end;

from disconnected to wait when E.Ack
when U.ConReq begin output L.Ack end;

begin output L.CR end; begin end;

from wait to connected end;
when L.CC

begin output U.ConConf end; modvar Protocol_I: Protocol_M;
Channel_I: Channel_M;

from connected to sending
when U.DatReq initialize

begin output L.DT end; begin
init Protocol_I with Protocol_B;

from sending to connected init Channel_I with Channel_B;
when L.Ack connect Protocol_I.L to

Channel_I.L
begin end; end;

from wait, connected, sending to disconnected end.
when U.Dis

begin end;

end;

Figure A.2/Z.500 – Estelle specification of the common example

In order to define conformance, implementation relations will be defined in A.4.2. However, it is not convenient to
define meaningful implementation relations based on the Estelle syntactic description. The usual way to define them is to
express first the semantics of the Estelle specification in some kind of more fundamental (mathematical) model, and then
to define implementation relations based on such a mathematical model.

The semantics of the Estelle specification is expressed in some kind of labelled transition systems in which input actions
and output actions are distinguished. We call such systems Input-Output State Machines (IOSM).

Recommendation Z.500 (05/97) 21

Definition 1 (IOSM): an input-output state machine (IOSM) is a 4-tuple M S L T s= , , , 0 where:

– S is a finite non-empty set of states;

– L is a finite non-empty set of interactions;

– T ⊆ S × (({?,!} × L) ∪ {τ}) × S is the transition relation. Each element from T is a transition, from an origin state to
a destination state. This transition is associated either to an observable action (input ?a or output !a), or to the
internal action τ.

– s0 is the initial state of the IOSM.

The set SPECS is chosen to be the set of all IOSM. Figure A.3 shows the IOSM model of the Estelle specification of the
common example. Note that the IOSM model does not allow to indicate at which interaction point a given message
occurs. This is why messages have to be renamed to indicate different interaction points.

T1010020-97/d06

Protocol

Channel

Figure A.3/Z.500 – IOSM model of the Estelle specification from Figure A.2

?Dis

?Dis

?Dis

?Ack

?ConReq !CR ?CC !ConConf ?DatReq !DT

?ECC !CC

!ECR

?CR

?DT

!EDT

?Eack

τ

τ τ

τ
!Ack

FIGURE A.3/Z.500...[D06] = 3 CM

NOTE – There is no well-accepted established work yet on this subject. The presentation above is based on the work described in
[Phalippou 92] and [Phalippou 94], which is one of the currently available works in this field. Other mathematical models could be
used to describe the semantics of the Estelle specification in a way suitable for a definition of implementation relations.

We can mention:

– Mealy machines [Hopcroft 79] on which are based most classical test generation methods for input-output systems (W, UIO,
DS, etc.);

– a derived model of Mealy machines called PNFSM (partially-specified and non-deterministic extensions of Mealy machines)
[Luo 93].

A.1.3 Specifications in LOTOS

A LOTOS specification is a language construct satisfying the syntax described in [ISO 8807]. The purpose of a LOTOS
specification is to describe system behaviour. System specifications at different abstraction levels can be obtained by
abstraction from irrelevant internal system details.

The following restrictions are inherent to LOTOS specifications:

– LOTOS assumes that communication is synchronous, i.e. entities participate synchronously in interactions;

– communication is atomic, i.e. either communication between participating entities is successful for all entities, or
for none of them;

– LOTOS is only able to describe temporal timing aspects; absolute time aspects cannot be described.

A LOTOS specification of the common example described in A.1.1 is given in Figure A.4.

22 Recommendation Z.500 (05/97)

(* specification : Initiator (BASIC LOTOS)

This specification describes the Initiator Protocol *)

specification Initiator_Protocol[ConReq, ConConf, DatReq, CR, CC
DT,Ack, Dis] : exit

behaviour
Initiator [ConReq, ConConf, DatReq, CR, CC, DT, Ack, Dis]

where
process Initiator [ConReq, ConConf, DatReq, CR, CC, DT, Ack, Dis] : exit :=

Connection_Phase [ConReq, CR, CC, ConConf, Dis] >>
Data_Phase[ConReq, ConConf, DatReq, CR, CC, DT, Ack, Dis]

endproc (* Initiator *)

process Connection_Phase [ConReq, CR, CC, ConConf, Dis] : exit :=
ConReq ; CR; (CC ; ConConf ; exit

[]
Dis; Connection_Phase [ConReq, CR, CC, ConConf, Dis])

endproc (* Connection_Phase *)

process Data_Phase [ConReq, ConConf, DatReq, CR, CC,
DT, Ack, Dis] : exit :=

DatReq ; DT ; (Ack ; Data_Phase[ConReq, ConConf, DatReq, CR, CC,
DT, Ack, Dis]

[] Dis; Initiator [ConReq, ConConf, DatReq, CR,
CC, DT, Ack, Dis])

[]
Dis; Initiator [ConReq, ConConf, DatReq, CR, CC, DT, Ack, Dis]

endproc (* Initiator *)
endspec (* Initiator_Protocol *)

Figure A.4/Z.500 – LOTOS specification of the initiator protocol

The semantics of LOTOS specifications is given as labelled transition systems (LTSs). Labelled transition systems are
represented by directed graphs where edges are labelled.

Definition 2 (labelled transition system): A labelled transition system is a 4-tuple TS S L T s= , , , 0 such that:

– S is a (countable) non-empty set of states;

– L is a (countable) set of observable actions;

– T ⊆ S × (L ∪ {τ}) × S is the transition relation, where the special label τ ∉ L represents a non-observable (or
internal) action;

– s0 ∈ S is the initial state.

No distinction is made between input actions and output actions since communication is synchronous, and therefore the
notion of inputs and outputs does not exist. Asynchronous communication is modelled in LOTOS by explicitly
modelling the intermediate medium between communicating entities (see A.6.3).

The formalism of labelled transition systems is very basic to behaviour description formalisms. A lot of other formalisms
(e.g. FSMs, EFSMs, IOSMs) can be expressed in terms of labelled transition systems.

For specifications written in LOTOS, the set SPECS is instantiated by the set of all labelled transition systems LTS that
can represent LOTOS specifications. In Figure A.5 the labelled transition system corresponding to the common example
described in A.1.1 is depicted. The initial state is indicated by a grey dot.

A.1.4 Specifications in SDL

A specification in SDL of the common example described in A.1.1 is given in Figures A.11, A.12, A.13, A.14,
and A.15.

Dynamic conformance is concerned only with the external behaviour of a system. An SDL specification does not
explicitly express the external behaviour of a system. So, to test for dynamic conformance a representation of the
observable behaviour derived from the SDL specification is needed. A suitable representation for the external behaviour
for an SDL specification is by an Asynchronous Communication Tree (ACT) or a Labelled Transition System (LTS).
For a formal definition of ACTs, confer to [Hogrefe 88].

Recommendation Z.500 (05/97) 23

T1010030-97/d07

Figure A.5/Z.500 – LTS model of LOTOS specification

ConReq

Dis

Dis

ConConf

CR
Dis

CC

Ack
DatReq

DT

FIGURE A.5/Z.500...[D07] = 3 CM

Then, when SDL is used for specification of systems the set SPECS is the set of all ACTs or LTSs which can be derived
from any SDL specification. For the example, a small part of an ACT representation of the observable behaviour is
illustrated in Figure A.6. The ACT representation associates to each state information on signals in the different
channels. In Figure A.6 only channels that convey a signal in the current state are mentioned. If all channels of the
system are empty, this is denoted by Qi = 〈 〉. The state information is however not needed when test cases are defined
from the ACT representation.

The term SDL specification in this context only refers to instantiated specifications. Generic SDL specifications
represent a number of different instantiated specifications, i.e. a generic SDL specification represents a set of
representations in the set SPECS.

A.2 Implementation options and instantiated specifications

A.2.1 Introduction

The ICS Proforma (IPf) of a formal protocol specification is described as its formal parameters, and the ICS of an
implementation as actual parameters. Ideally, the parameterization of the formal specification should be done in such a
way that the Static Conformance Review amounts to type-checking in the FDT. This would give a well-studied
semantics to these concepts.

There are two aspects to implementation options:

– Variables, that are used, for example, to denote options (e.g. answers to Yes/No questions).

– Restrictions on the possible values of these variables.

The first aspect is easily modelled in any FDT that allows specifications to be parameterized by values. As to the second
aspect, these restrictions can be checked by a predicate (Boolean function/expression) using the parameters. However, it
is difficult to model the restrictions in a way that would reduce the Static Conformance Review to type-checking.

24 Recommendation Z.500 (05/97)

T1010040-97/d08

Figure A.6/Z.500 – An ACT representation of part of the observable behaviour

s1, Q
i = <>

s2, Q
MSAP

= <CR>

s3, Q LSAP = <CR>

= <>s4, Q i

= <CC>s5, Q
MSAP

= <ConConf>s6, Q
LSAP

= <>s7, Q
i

?ConReq

?CC

!CR

!ConConf

= <>s8, Q i

= <>s9, Q i

?CC

τ

τ

τ

FIGURE A.6/Z.500...[D08] = 3 CM

The next subclause gives (limited) examples which, for the moment, support the following conclusion:

The IPf of a formal protocol specification can be described as its formal parameters and the ICS of an
implementation as actual parameters, such that the Static Conformance Review is described by a predicate in
the formal specification.

As an example, a simplified version of the Transport Protocol is treated. In this version only the requirements on
supported classes are taken into account. The requirements are taken from Table D.5.2 of the Transport Protocol PICS
Proforma [ISO 8703] (restricted to classes 0 until 4).

Each row of this table identifies a single option, the value of which can be either Yes or No (Support column). The O in
the status field means that the capability is optional. The implementor can fill in either Yes or No. The O.1 in C0 and C2
means that both are optional, but at least one of them should be supported by the implementor (so at least one of them
should have the answer Yes). Status C0:O in row C1 means that C1 is optional if C0 is supported, otherwise C1 is
prohibited.

Table A.1/Z.500 – Supported classes of the Transport Protocol

To summarize, the following restrictions are imposed by this table:

– at least Class 0 or Class 2 must be implemented;

– Class 1 requires Class 0; and

– both Class 3 and Class 4 require Class 2.

Index Class References Status Support

C0 Class 0 14 O.1 Yes No

C1 Class 1 14 C0:O Yes No

C2 Class 2 14 O.1 Yes No

C3 Class 3 14 C2:O Yes No

C4 Class 4 14 C2:O Yes No

Recommendation Z.500 (05/97) 25

The next subclauses contain specifications in the FDTs Estelle, LOTOS and SDL, which only show the main ingredients
as far as modelling the PICS Proforma is concerned.

A.2.2 Implementation options and instantiated specifications in Estelle

Estelle does not provide built-in constructs for modelling options, but the ICS and PICS proforma can be modelled using
standard language constructs. This can be done in several ways. The example below illustrates one way of modelling
implementation option and instantiated specifications in Estelle.

The ICS proforma is modelled by a record with Boolean fields which represent the index fields of the ICS proforma. The
constraints on these fields (i.e. the status fields of the ICS proforma) are checked by a function called
Static_conformance_review. The parameterized specification being modelled by a parameterized Estelle module,
then the instantiated specification is created by assigning a value to this parameter in the initialize transition.

specification Transport_Protocol;

type PICS_Proforma =
record

C0 : boolean; (* ref. 14 *)
C1 : boolean; (* ref. 14 *)
C2 : boolean; (* ref. 14 *)
C3 : boolean; (* ref. 14 *)
C4 : boolean; (* ref. 14 *)

end;

var PICS : PICS_Proforma;

function Static_Conformance_Review (P : PICS_Proforma) : boolean;
(* check static conformance requirements: *)
(* (C0 or C2) and (C1 => C0) and ((C3 or C4) => C2) *)
begin

Static_Conformance_Review := ((P.C0 or P.C2) and
(not(P.C1) or P.C0) and
(not(P.C3 or P.C4) or P.C2));

end;

procedure Get_PICS_Value (var P : PICS_Proforma);
primitive; (* get PICS value *)

(* Channel, Module header, Module body and Module variable definitions *)

initialize
begin

Get_PICS_Value(PICS);
if (Static_Conformance_Review(PICS)) then
begin
(* instantiate appropriate modules *)
...

end
end;

end.

A.2.3 Implementation options and instantiated specifications in LOTOS

A LOTOS specification can be explicitly parameterized. The data types ("sorts") used in the parameter list are defined
globally. In the example, the only data type used is bool which is taken from the standard library of predefined types.
Future enhancements to LOTOS may enable the description of the static conformance requirements in such a way that
the Static Conformance Review amounts to type-checking.

SPECIFICATION Transport_Protocol [t,n] (c0,c1,c2,c3,c4 : bool) : NOEXIT

LIBRARY Boolean
ENDLIB

BEHAVIOUR ...

ENDSPEC (* Transport_Protocol *)

Parameters may be used in Boolean expressions in so-called guards to select/restrict further behaviour.

26 Recommendation Z.500 (05/97)

SPECIFICATION Transport_Protocol [t,n] (c0,c1,c2,c3,c4 : bool) : NOEXIT

LIBRARY Boolean
ENDLIB

BEHAVIOUR TPEntity[t,n](c0,c1,c2,c3,c4)

WHERE

PROCESS TPEntity [t,n] (c0,c1,c2,c3,c4 : bool) : NOEXIT :=
...
[c4] -> Splitting[t,n]
[]
[not(c4)] -> NoSplitting[t,n]
...

ENDPROC (* TPEntity *)

ENDSPEC (* Transport_Protocol *)

The next example illustrates the use of static conformance requirements.

SPECIFICATION Transport_Protocol [t,n] (c0,c1,c2,c3,c4 : bool) : NOEXIT

LIBRARY Boolean
ENDLIB

BEHAVIOUR [ClassesConform(c0,c1,c2,c3,c4)] -> TPEntity[t,n](c0,c1,c2,c3,c4)

WHERE

TYPE StaticConformance IS Boolean
OPNS ClassesConform : bool, bool, bool, bool, bool -> bool
EQNS FORALL c0, c1, c2, c3, c4 : bool

OFSORT bool
ClassesConform(c0,c1,c2,c3,c4) = (c0 or c2) and

((c3 or c4) implies c2) and
(c1 implies c0)

ENDTYPE (* StaticConformance *)

PROCESS TPEntity [t,n] (c0,c1,c2,c3,c4 : bool) : NOEXIT :=
...

ENDPROC (* TPEntity *)

ENDSPEC (* Transport_Protocol *)

NOTE – A draw-back of this way of specifying the static conformance requirements is that if the actual parameters do not satisfy
ClassesConform, then the behaviour specified is STOP. This means that an implementation that does nothing at all would be
conforming! Something similar may also hold for the examples in the other FDTs. One solution to this problem is to use one of the
enhancements to LOTOS, viz. the module concept. Next an alternative is given, which is certainly not recommended, since it yields
very obscure specifications. It is only shown as an example that the above problem may be circumvented. A data type is used whose
values are all possible combinations of values that are statically conforming. This solution is also possible in the other FDTs.

SPECIFICATION Transport_Protocol [t,n] (classes : ValidClasses) : NOEXIT

LIBRARY Boolean
ENDLIB

TYPE ValidClasses
SORTS ValidClasses
OPNS only0, only01, only2, only23, only24, only234,

only02, only023, only024, only0234,
only012, only0123, only0124, only01234: -> ValidClasses

ENDTYPE (* ValidClasses *)

BEHAVIOUR

LET c0:bool = has0(classes),
c1:bool = has1(classes),
c2:bool = has2(classes),
c3:bool = has3(classes),
c4:bool = has4(classes)

IN TPEntity[t,n](c0,c1,c2,c3,c4)

Recommendation Z.500 (05/97) 27

WHERE
TYPE SupportedClasses IS ValidClasses, Boolean
OPNS has0, has1, has2, has3, has4 : ValidClasses -> bool
EQNS OFSORT bool

has0(only0) = true
has0(only01) = true
...

ENDTYPE (* SupportedClasses *)

...

ENDSPEC (* Transport_Protocol *)

A.2.4 Implementation options and instantiated specifications in SDL

In the FMCT framework, specifications can be parameterized to allow for different implementation options. For a
specific implementation, the selected options are defined in the ICS document. When these parameter values are applied
to the parameterized specification, the result is an instantiated specification.

In SDL generic system specifications are used to specify parameterized systems. When the parameters have been
applied, the instantiated specification is denoted a specific system specification.

In the following example, parameters are indicated by declaring them EXTERNAL. In order to check the ICS on static
conformance, a special channel is introduced: the error channel. If the specification is parameterized by a not statically
conforming ICS, the boolean value FALSE is sent on this channel, otherwise nothing is sent on this channel.

SYSTEM TransportProtocol

SYNONYM C0 Boolean = EXTERNAL;
SYNONYM C1 Boolean = EXTERNAL;
SYNONYM C2 Boolean = EXTERNAL;
SYNONYM C3 Boolean = EXTERNAL;
SYNONYM C4 Boolean = EXTERNAL;

CHANNEL ErrorChannel
/* Channel to convey FALSE if the static conf. review fails */
FROM StatConfReview TO ENV
WITH Boolean;

ENDCHANNEL;

BLOCK StatConfReview;
/* This block contains only one process which performs

the static conformance review */

SIGNALROUTE ErrorRoute
FROM StaticReviewer TO ENV
WITH Boolean;

CONNECT ErrorChannel AND ErrorRoute;

PROCESS StaticReviewer (1, 1);
DCL correct Boolean;

START;
TASK correct := (C0 OR C2) AND ((C3 OR C4) => C2) AND (C1 => C0);
/* if correct = true, then the PICS conform */
DECISION correct;

(TRUE) : STOP; /* conforming: do nothing */
(FALSE): OUTPUT FALSE; /* not conf: send FALSE via

channel ErrorChannel */
ENDDECISION;

ENDPROCESS;
ENDBLOCK;

BLOCK
...

ENDBLOCK;

...

ENDSYSTEM;

The example illustrates how the ICS can be encoded in the SDL specification in terms of parameterization of the
SDL specification.

28 Recommendation Z.500 (05/97)

System specifications may be defined to allow for different options to be implemented. There may be dependencies
between the implementation options. The implementation options and their possible dependencies are defined in the
ICS Proforma. In [ISO 9646], the actual options implemented in an implementation are specified in the Implementation
Conformance Statement. The example illustrates how the ICS can be encoded in the SDL specification in terms of
parameterization of the SDL specification.

A.3 Implementations and models of implementations

A.3.1 Introduction

An implementation is a physical, non-formal object. For all FDTs the set IMPS denotes the set of all implementations.
Because implementations are non-formal objects mathematical reasoning over implementations is not possible. A model
is a formal abstraction of the implementation that is suitable for mathematical reasoning over implementations.

Testing aims at building a model of an implementation based on the observations that can be made from experiments
performed on the implementation. The kind of observations that can be made from the implementation after
experimentation, determines the abstraction level of the model that is constructed. In general, the more can be observed
from the implementation, the more detailed a model can be constructed of that implementation.

In practice, only a limited number of experiments are performed on the implementation. Due to practical feasibility, it is
not possible to exactly model every aspect of the implementation. The model obtained by means of testing should only
reflect the behaviour of the implementation for the experiments that were performed.

A.3.2 Implementations and models of implementations in Estelle

Implementations are physical objects, the set of which is denoted by IMPS. However, for test study at a theoretical level,
implementations need to be modelled by mathematical objects. For modelling implementations, we have similar choices
as in the case of specifications. One possibility would be to describe implementations in Estelle. However, for the
purpose of testing (with the aim of defining implementation relations) it is more convenient to represent implementations
by IOSMs. Therefore, the set MODS is chosen to be the set of all IOSMs IOSM.

Examples of some implementations of the protocol of Figure A.3 are given in Figure A.7. We have limited ourselves to
implementations which are "close" to the specification, because when developing products, it is unlikely to produce
something that is very far from what is expected. However, as will be explained in the next subclause, some of these
implementations are conformant and some others are not conformant.

T1010050-97/d09

Protocol
implementation 1

Protocol
implementation 2

Protocol
implementation 3

Figure A.7/Z.500 – IOSM models of implementations

?Dis
?Dis

?Dis

?Ack

?ConReq !CR ?CC !ConConf ?DatReq !DT

?ConReq

?Dis

!CC

?Dis

?Dis

?Ack

?CC !ConConf ?DatReq !DT

?Dis

?ConReq !CR ?CC !ConConf ?DatReq !DT

?Dis

?Dis

?Ack

?DatReq

FIGURE A.7/Z.500...[D09] = 3 CM

Recommendation Z.500 (05/97) 29

A.3.3 Implementations and models of implementations in LOTOS

A prerequisite for building a model of an implementation of which it is claimed to implement a system described by a
LOTOS specification is the existence of a suitable formalism to express the model (e.g. the formalism must be able to
express all relevant details that is tested for). The formalism must also be chosen in such a way that it is easy to establish
whether the implementation satisfies the LOTOS specification [that is, whether the model of the implementation is
related to the LOTOS specification by the implementation relation (see A.4.3)].

Many formalisms can be used to describe models of implementations (e.g. transition systems). However, for
implementations of systems described by LOTOS specifications, it is common practice to choose the model formalism
MODS equal to the set of labelled transition system LTS.

Figure A.8 depicts some models of implementations of the system described by the specification of Figure A.5.

T1010060-97/d10

Figure A.8/Z.500 – LTS models of implementations

ConReq

Dis

CR

Dis

CC

Dis

ConConf

Ack

DatReq

DT

ConReq

CC

Dis

CC

DatReq

DT

Ack

Dis

ConConf

Dis
ConReq

CR

Dis

CC

Ack

ConConf

Dis

Dis

DT

Dis

a) b) c)

DatReq

FIGURE A.8/Z.500...[D10] = 3 CM

A.3.4 Implementations and models of implementations in SDL

Implementations denote executable or physical systems that implement systems specified in SDL. The set IMPS contains
all such implementations.

Formal methods in the conformance testing process can be applied only when the elements of the process are elements
with a formal semantics. Then the implementations of the set IMPS cannot be used for this purpose. However, it is
assumed that for every implementation in IMPS there exists a formal model that represents the properties of the
implementation. This assumption is denoted a test assumption and the acceptance of the assumption is basic to the whole
formal approach.

For each implementation in IMPS there exists at least one model in the set of models MODS. If more models exist for a
particular implementation, these are similar to the extent that they cannot be distinguished by test. The set MODS must
also consist of models that can be basis for definition of formalized relations to the set specifications SPECS. It may
even be that the formalisms used in the two sets are the same, e.g. ACT or LTS.

30 Recommendation Z.500 (05/97)

In order to illustrate the concepts of the formal framework, the following implementations of the protocol block of the
example specification are assumed. The implementations are denoted I1, I2, and I3:

• I1 is an implementation that has a model that is identical with the model of the specification. This means that the
block description of the protocol shown in Figures A.12 and A.13 can be seen as a model also for this
implementation.

• I2 implements the protocol as specified in Figure A.13 as well, except for the behaviour that can be expressed
in SDL as shown in Figure A.9. This is, the implementation sends a signal DT instead of a CR when a connect
request is received.

• I3 similarly implements the protocol as defined in the SDL specification. In addition, in state connected, it may
receive a new connect request and initiate again the connection phase as shown in Figure A.9.

T1010070-97/d11

Implementation I2 Implementation I3

disconnected

ConReq

DT

wait

connected

ConReq DatReq

CR DT

wait sending

Figure A.9/Z.500 – The changed behaviour of implementations I2 and I3

FIGURE A.9/Z.500...[D11] = 3 CM

A.4 Conformance by implementation relations

A.4.1 Introduction

An implementation conforms to its specification if the model of the implementation is related to the specification by
some implementation relation imp. As such, the relation imp ⊆ MODS × SPECS constitutes the notion of correctness of
an implementation with respect to the specification.

A.4.2 Conformance by implementation relations in Estelle

As stated above, the definition of the implementation relations is based on the IOSM model rather than on the Estelle
syntactic description. Well-accepted implementation relations for input-output automata include trace equivalence or
inclusions, or a variant of trace equivalence which is adapted for incompletely specified automata, named
quasi-equivalence (defined on PNFSM). When quasi-equivalence is adapted to the IOSM model, this relation becomes
the following one [the outputs allowed after a given trace σ in IOSM S are denoted by O(σ, S)]:

R5(I,S) iff (∀ σ ∈ Tr(S)) (σ ∈ Tr(I) ⇒ (O(σ,I) = O(σ,S)))

Recommendation Z.500 (05/97) 31

We chose to take this R5(I,S) relation as an example of imp relation. According to this implementation relation:

– the implementation 1 of Figure A.7 is conformant, which is not surprising, since this implementation is equal to the
specification;

– the implementation 2 of Figure A.7 is not conformant: there is a bug in the program of the protocol, and a CC PDU
is sent instead of a CR PDU when a ConReq is received by the protocol entity;

– the implementation 3 of Figure A.7 is conformant. This may be surprising, since this implementation has a strange
behaviour: if a DatReq is received by the protocol entity before the link has been established, then the connection is
broken (this has the same effect as a disconnection request). The conformance can be explained in the following
way: this behaviour belongs to the non-specified part of the protocol, and the chosen implementation relation says
that the implementation is free to do anything in the unspecified parts of the specification. However, a different
implementation relation may be chosen with a different interpretation of non-specified parts.

A.4.3 Conformance by implementation relations in LOTOS

In case specifications are described in the language LOTOS, an implementation relation is a relation between elements
of the set LTS (the set chosen to instantiate MODS with) and elements of the set LTS (the set chosen to instantiate SPECS
with). Numerous proposals for implementation relations catching an intuitive understanding of correctness have been
done. These proposals will not be discussed here. The use of implementation relations in LOTOS will be illustrated by
considering one particular example of such relation.

A well-accepted implementation for LOTOS specifications is the conformance relation, denoted by conf. The
conf-relation captures the idea that an implementation I is a correct implementation for specification S if, and only if,
implementation I does not contain deadlocks that were not specified in S.

A definition of the conf relation is given below, where Tr(S) denotes the set of traces of S, L denotes the universe of

observable actions, a denotes an observable action and ⇒
σ

 denotes the sequence σ of observable actions:

I S Tr S A L

I I I a A I

S S S a A S

a

a

conf def , :

if : and :

then : and :

= ∀σ ∈ ∀ ⊆

∃ ′ ⇒ ′ ∀ ∈ ′ /⇒

∃ ′ ⇒ ′ ∀ ∈ ′ /⇒

()
σ

σ

If the conf relation is chosen as the implementation relation (that is as the notion of correctness), then it can be checked
which of the models given in Figure A.8 are correct implementations of specification model A.5.

– Model a) in Figure A.8 is a correct model (of the implementation) of the specification under implementation conf.
In particular, the model equals the specification in all its behavioural aspects. Therefore, any implementation
satisfying this model is a correct implementation of the specification depicted in Figure A.5 under implementation
relation conf.

– Any implementation satisfying model b) of Figure A.8 does not conform to specification of Figure A.5. The reason
is that the specification is able to perform the sequence of actions ConReq ⋅ CR, while the implementation is not.
Because the conf-relation does not allow this to be a correct model of an implementation, the implementation itself
is non-conformant.

– Any implementation satisfying model c) of Figure A.8 does conform to specification of Figure A.5. Although the
implementation can perform the sequence:

ConReq CR CC ConConf DatReq DT Dis Dis⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

and the specification cannot, no deadlocks are introduced in the implementation that are not specified. Hence, under
implementation relation conf, it can be concluded that all implementations with model c) of Figure A.8 are correct
implementations of specification.

A.4.4 Conformance by implementation relations in SDL

An implementation relation defines a criterion for conformance of an implementation. An implementation is a
conforming implementation when the pair of models of the implementation and the SDL specification is a member of the
implementation relation.

32 Recommendation Z.500 (05/97)

Several of the implementation relations defined are based on the existence of similar sequences of events in the
implementation and the specification. Sequences of observable events can be derived both from ACT and LTS
representations of an SDL specification. A sequence of observable events is denoted a trace and a trace set Tr(S)
denotes the set of all possible traces of a specification S. A trace of the ACT shown in Figure A.6 is
〈ConReq⋅CR⋅CC⋅ConConf 〉.

Only a very limited class of SDL specifications specify a behaviour that is expressed by a finite set of traces. The reason
is the unbounded queue property of SDL channels and input queues of processes. Even for simple systems specified
in SDL, it should be possible to send any number of signals conveyed by the channel from the environment to the
system. E.g. in the example specification, it should be possible to send any number of ConReq signals to the system.
Hence, in practice, exhaustive test of the observable behaviour of an SDL system is not possible. Still the trace models
are useful in the definition of a formal requirement for conformance of the dynamic behaviour of an implementation.

A relation that is often used as an implementation relation is the trace inclusion relation ≤tr (trace pre-order). Two
models S1 and S2 satisfy the relation S1 ≤tr S2 if, and only if, the trace set of S1 is a subset of the trace set of S2.

The trace inclusion relation may be used as an implementation relation in two ways dependent on how the requirements
of the specification are interpreted. If the specification is assumed to specify the maximal allowed behaviour of an
implementation, the trace set of a conforming implementation is a subset of the trace set of the specification. For a
conforming implementation I and a specification S this is denoted by I ≤tr S or (I,S) ∈ ≤tr.

The other interpretation of requirements specified by an SDL specification is that it defines the minimal required
behaviour of an implementation. In this case, the trace set of a specification S is a subset of a conforming
implementation I, I ≥tr S.

The maximal allowed behaviour implementation relation implies a very weak requirement on a conforming
implementation. An implementation that cannot perform any external action is a conforming implementation of any
specification, as the empty set is a subset of any trace set. It is not possible to test for the minimal required behaviour
implementation relation due to the infinite trace sets of most SDL specifications.

In Table A.2 it is shown which implementations conform with respect to the specified example (here denoted by S) and
the two implementation relations.

Table A.2/Z.500 – Overview of the conformance of I1, I2, and I3 with respect to
different implementation relations

As the trace set of implementation I1 is identical to that of the specification, both the maximal allowed behaviour and
minimal required behaviour relation are satisfied for I1. Implementation I2 does not satisfy ≤tr as the trace 〈ConReq⋅DT 〉
is not a member of the trace set of the specification. Similarly, the implementation relation ≥tr is not satisfied either, as
the trace set of I2 does not include the trace 〈ConReq⋅CR〉. For implementation I3 the implementation relation ≤tr is not
satisfied as the implementation can, for example, perform the trace 〈ConReq⋅CR⋅CC⋅ConConf⋅ConReq⋅CR〉, that is not a
trace of the specification. As I3 can perform every trace of the specification it conforms according to the implementation
relation ≥tr.

The model of an implementation is not known in advance for conformance testing. It can only be approximated by
performing experiments on the implementation and observing responses. Non-deterministic system specifications make
it impossible to ensure that an implementation model is a complete description of the possible behaviour.

(Impl, Spec)
satisfies

≤tr ≥tr

(I1,S) true true

(I2,S) false false

(I3,S) false true

Recommendation Z.500 (05/97) 33

In the example specification it may not be possible to determine if an implementation can perform a specific trace. This
is the case for trace 〈ConReq⋅CR〉. The unreliable channel may always discard the signal CR such that it never occurs as
an observable event in the environment. However, it is not possible to derive from a number of experiments in which the
signal CR has not been observed whether the trace has been implemented. So the trace preorder implementation relations
may provide a sound basis as a conformance criterion only if an additional assumption is made on the specification
and/or implementation. For instance, it may be assumed that information is provided on how non-determinism of the
specification is resolved in the implementation.

Another approach is to define implementation relations that take into account limitations of real conformance testing of
systems specified in SDL. The relations asco and aconf are two such implementation relations proposed in [TrVe 92] for
implementation relations that can be used for SDL systems that communicate with the environment via a single channel.

To satisfy these implementation relations only a subset of the trace set is considered. This subset includes only traces
that are minimal with respect to adding signals to a channel and reordering of external events due to delays on channels.
For instance, the trace 〈ConReq⋅CR〉 is a minimal trace that the implementation is to be tested for. Examples of traces for
which this trace is minimal are 〈ConReq⋅CR⋅ConReq〉 where an input signal is appended and 〈ConReq⋅ConReq⋅CR〉
where the input signal ConReq is shifted in front of output signal CR.

The asco relation is satisfied if for each minimal trace with the last action being an output signal, the implementation can
perform only a subset of the actions possible according to the specification. For aconf this must be true also for all prefix
traces of the minimal traces. How the three implementations are distinguished by the two relations is shown in
Table A.3.

Table A.3/Z.500 – Conformance of I1, I2, and I3 with respect to
the implementation relations asco and aconf

For implementation I1 both of the implementation relations are satisfied as for every trace the same set of events may be
observed for the specification and the implementation. For implementation I2 the minimal trace 〈ConReq⋅CR〉 where the
set of events after 〈ConReq〉 for the implementation is {deadlock,DT} while the specification event set is {deadlock,CR}.
As the implementation event set is not a subset of the specification, I2 is a non-conforming implementation for both
relations. Finally, as the implementation is tested only for minimal traces of the specification, the kind of additional
behaviour as in implementation I3 is not considered and I3 is a conforming implementation.

A.5 Conformance by requirements

Conformance between an implementation and a specification can alternatively be characterized by means of
requirements. For the denotation of requirements, a requirement language REQS is used. An implementation conforms to
its specification if the properties in languages REQS which hold for the specification are satisfied by the implementation.

For instance, the language REQS can be instantiated by logical languages, e.g. Hennessy-Milner Logic, CTL. Checking
whether a model of an implementation satisfies a certain requirement is called model checking. Model checking can only
be performed as the model of an implementation is explicitly available.

As another example, we introduce below a simple property language. This property language can be used to express
properties on labelled transition systems.

(Impl, Spec)
satisfies

asco aconf

(I1,S) true true

(I2,S) false false

(I3,S) true true

34 Recommendation Z.500 (05/97)

For σ ∈L* and A L⊆ the set REQS is instantiated by REQS = { after σ from A | σ ∈ L* and A ⊆ L }. A labelled

transition system T satisfies property after σ from A if ∃ ′ ⇒ ′T T T:
σ

 and ∀ ∈ ′⇒a A T
a

: .

In Figure A.8 models a) and c) satisfy property after ConReq from {CR}, but model b) does not satisfy this property.

A.6 Test architecture

A.6.1 Introduction

The test architecture is a description of the environment in which the IUT is tested. It is necessary to model the
environment of the IUT because the behaviour of the IUT may not be directly observable by the tester due to possible
limitations in observability imposed by, e.g. an intermediate communication medium between tester and IUT.

Each FDT has facilities for modelling the environment of an IUT.

A.6.2 Test architecture in Estelle

Test architecture is described in Estelle through the following constructs:

– module constructs are used to describe the components (tester, IUT, test context);

– body constructs describe the behaviour of the various components;

– interaction points represent the PCOs and the IAPs.

Since Estelle modules are linked by channels which have an FIFO queue semantics, these modelling choices are
compatible with the PCO semantics as described by ISO 9646 (and which corresponds to the TTCN PCO semantics).

This approach provides an explicit modelling of the test context as a component by its own. Some attempts have been
made to represent the test context in a way closer to what is described in the main body of this Recommendation, i.e. as a
transformation function on the MODS set (in our case: on the set of IOSM): see [Phalippou 92] for instance.

A.6.3 Test architecture in LOTOS

LOTOS does not provide special constructs for modelling the behaviour of system environments. Instead, the
environment is specified just like any other process. No distinction is made between modelling environments and
modelling systems within environments.

Since communication in LOTOS is synchronous, asynchronous communication is modelled by explicitly modelling the
intermediate communication medium (e.g. FIFO queues). In the specification below, a basic LOTOS specification
communicating through a queue is given. In this example, all inputs for the system occurring at gate a must travel
through a reliable queue. Communication between the queue and the system is hidden. Note that the queue is not an
FIFO queue.

specification QueueCommunication[a, b, x, y] : noexit

behaviour

hide ia in System [ia, b, x, y] |[ia]| Queue [ia, a]

where

process System [a, b, x, y] : noexit:=

a ; x ; stop [] b ; (x ; stop [] y ; stop)

endproc (* System *)

process Queue[ia, a] : noexit:=

a ; (ia ; stop ||| Queue [ia, a])

endproc (* Queue *)

endspec (* QueueCommunication *)

In LOTOS, the tester, the IUT and the test context are modelled by LOTOS processes. PCOs and IAPs are modelled by
gates (i.e. constructs in LOTOS to model interaction points).

Recommendation Z.500 (05/97) 35

A.6.4 Test architecture in SDL

The only requirement an SDL specification puts on the environment of a system is that it obeys the constraints given by
the system specification. Then, in order to model the properties of an environment in which an implementation is to be
tested, the test context must be specified as part of the system specification. In the common example the unreliable
medium (Channel) can be seen as such a test context for the protocol.

The entities of the test architecture are defined in an SDL specification using the same constructs as for the original
system specification. The tester, the test context and IUT can be specified using the block construct. The behaviour of
the entities are defined by the processes of the blocks. Communication between the test architecture entities (blocks) is
modelled by channels. As channels in SDL are FIFO-queues, they can be used to model PCOs in accordance
with [ISO 9646]. Channels are used also to specify IAPs.

Referring to the common example, the entities of the test architecture can be identified as follows in the system diagram
Figure A.13. The block Protocol_M specifies the IUT and the properties of the test context are specified by the
block Medium_M. The PCOs of the test architecture are the channels ISAP and LSAP while the IAPs are the
channels ISAP and MSAP. In this example, both the IUT and test context are specified by a single block, in general a set
of blocks may be used to specify either of these entities.

A.7 Specifications of tests

A.7.1 Introduction

The tests are the procedures which are used to check conformance of the implementations with respect to the
specification. Test systems can be seen as distributed components which interact with the implementations. Since they
are just particular kind of distributed systems, tests can be described using the standard FDTs Estelle, LOTOS and SDL.
This is studied in A.7.2, A.7.3 and A.7.4.

However, the conformance testing framework of [ISO 9646] makes use of some particular concepts (such as test
architecture, PCOs, test suite structure, verdicts) which are not built-in constructs of the standard FDTs Estelle, LOTOS
and SDL. On the contrary, TTCN language has been specifically designed to formally describe test cases. It is studied
in A.7.5.

A.7.2 Specifications of tests in Estelle

Estelle has been designed as a specification language, not as a test description language. Therefore, contrary to TTCN,
Estelle has no built-in constructs which represent the test concepts which appear in the main body of this
Recommendation (test case, test suite, test event, verdicts). Of course Estelle can be seen as a programming language,
and it is possible to describe in Estelle the behaviour part of the test cases (which, in an input-output framework,
correspond to outputs and inputs of messages). Moreover, the above mentioned test concepts can be modelled in Estelle
by making some particular choices (e.g. use a variable to code the verdict, use one body to represent the behaviour of
one test case, etc.). But these are only particular tricky modelling choices. As a consequence, Estelle will not be used in
this Annex as a test description language. When specifications are described in Estelle, TTCN will be used as the test
description language. Since both languages use FIFO queue input-output communication mechanism, there is no
problem to relate them for test execution (see A.8).

A.7.3 Specifications of tests in LOTOS

LOTOS itself can be used for the specification of tests [Bri 88, Tre 92]. A test case can be modelled by a LOTOS
process where each state is labelled by one of the elements {pass, fail, inconclusive}. An example of such a test is given
in Figure A.10.

It is not easy to model verdicts in LOTOS. One possibility is to use the special label σ (successful termination) for
passing a verdict.

Similar to Estelle and SDL, LOTOS is not designed to describe test cases. The language TTCN has been designed for
the denotation of tests. However, TTCN expressions represent test cases that are asynchronous by nature. Because
LOTOS communication is synchronous, this can be a problem in case tests are described by TTCN expressions.

36 Recommendation Z.500 (05/97)

T1010080-97/d12

Inconclusive

ConReq

Inconclusive

CC

Fail

CR

Inconclusive

CC

Inconclusive

ConConf

Inconclusive

DatReq

Inconclusive

DT

Inconclusive

Dis

Inconclusive

Dis

Fail

Figure A.10/Z.500 – Test case representation as labelled transition system

FIGURE A.10/Z.500...[D12] = 3 CM

A.7.4 Specifications of tests in SDL

SDL is a general purpose specification technique for modelling communication systems. It may be used also for
specification of test cases for conformance testing. However, it is not designed specifically for this application area. So
to use SDL for test case specification as defined in [ISO 9646], the concepts of this Recommendation must be defined in
terms of SDL constructs.

Most of the [ISO 9646] concepts can be modelled in SDL directly. The concepts of PCOs and message exchanges can be
modelled by channels and signal instances. A test case may be modelled as an SDL procedure and a test suite as a
process. Then the order of test case execution is defined in the process definition. The verdict assignments can be
modelled by variables associated to each test case. The verdict assignments that result from test case executions may be
passed to the environment via signals. This approach is defined in [R1072]. As ASN.1 may be used in combination with
SDL for data definitions [Z105] rules for data in [ISO 9646] can be used directly.

A few concepts defined in the test methodology of [ISO 9646] cannot be specified in SDL. This is the case for real time
requirements and handling of unforeseen messages. In SDL real time requirements cannot be modelled as the
SDL semantics defines only a discrete model for time and nothing is stated on the time taken to perform a transition. In
an SDL specification meaning is given only to declared signals. Then, handling of unforeseen messages that in TTCN is
covered by the otherwise construct can be modelled only through explicit declaration of signals to represent such
messages.

Recommendation Z.500 (05/97) 37

A.7.5 Specification of tests in TTCN

The standardized language Tree and Tabular Combined Notation (TTCN), has been designed for the denotation and
specification of conformance test cases which can be expressed abstractly in terms of control and observation of protocol
data units and abstract service primitives. TTCN is provided in two forms:

– a graphical form suitable for human readability;

– a machine-processable form suitable for transmission of TTCN descriptions between machines.

The test cases described by TTCN expressions denote abstract test cases, which are compiled into executable test cases
to be run on the physical test machine.

TTCN is a high level language for specifying the test cases. However, just as in the case of specifications (see A.1), it is
easier to define the formal things on a more basic model. Since TTCN has an input-output semantics, we use IOSM as a
semantic model of TTCN test cases.

T1010090-97/d13

System Example

[ConConf]

ISAP

[(User)]

Protocol_M

[CC, Ack]

MSAP

[CR, DT]

Medium_M

[CC, Ack]

LSAP

[CR, DT]

 ConReq, DatReq, Dis,
 ConConf, CR, DT, CC, Ack;

signal

signallist
User = ConReq, DatReq, Dis;

1(1)

Figure A.11/Z.500 – The system diagram of the protocol

FIGURE A.11/Z.500...[D13] = 3 CM

38 Recommendation Z.500 (05/97)

T1010100-97/d14

Block Protocol_M

connect ISAP and U;
connect MSAP and L.

Protocol_B

[ConConf]

U

[User]

[CR, DT]

L

[CC, Ack]

1(1)

(1,1)

Figure A.12/Z.500 – The block of the sending process

FIGURE A.12/Z.500...[D14] = 3 CM

Recommendation Z.500 (05/97) 39

T1010110-97/d15

1(1)Process Protocol_B

disconnected

ConReq

CR

wait

CC

ConConf

connected

connected

connected

disconnected

*

DatReq

DT

sending

Ack

dis

Figure A.13/Z.500 – The sending process

FIGURE A.13/Z.500...[D15] = 3 CM

40 Recommendation Z.500 (05/97)

T1010120-97/d16

1(1)Block Medium_M

connect MSAP and E;
connect LSAP and L.

Medium_B

[CC, Ack]

E

[CR, DT]

[CC, Ack]

L

[CR, DT]

(1,1)

Figure A.14/Z.500 – The block modelling the unreliable medium

FIGURE A.14/Z.500...[D16] = 3 CM

Recommendation Z.500 (05/97) 41

T1010130-97/d17

1 (1)Process Medium_B

empty

CR CC DT Ack

any any any any

CR via L CC via E DT via L Ack via E

empty empty empty empty

Figure A.15/Z.500 – The behaviour of the unreliable medium

FIGURE A.15/Z.500...[D17] = 3 CM

42 Recommendation Z.500 (05/97)

A.8 References

[Bri 88] BRINKSMA (E.): A theory for the derivation of tests, Protocol Specification, Testing and Verification
VIII, p. 63-74, North Holland, 1987.

[Hogrefe 88] HOGREFE (D.): Automatic generation of test cases from SDL specifications, SDL Newsletter,
No. 12, 1988.

[Hopcroft 79] HOPCROFT (J.) and ULLMAN (J.): Introduction to automata theory, languages and computation,
Addison-Wesley publishing company, 1979.

[ISO 8073] Information technology – Telecommunications and information exchange between systems – Open
Systems Interconnection – Protocol for providing the connection-mode transport service, International
Standard IS-8073, 3rd edition, 1992.

[ISO 8807] Information processing systems – Open Systems Interconnection – LOTOS – A formal description
technique based on the temporal ordering of observational behaviour, International Standard IS-8807,
ISO, 1989.

[ISO 9646] Information technology – Open Systems Interconnection – Conformance testing methodology and
framework, International Standard IS-9646, ISO.

[Luo 93] LUO (G.), PETRENKO (A.) and BOCHMANN (G.V.): Selecting test sequences for partially-specified
nondeterministic finite state machines, Publication No. 864, Université de Montréal, février 1993.

[Phalippou 92] PHALIPPOU (M.): The limited power of testing, Proceedings of the 5th International Workshop on
Protocol Test Systems, Montréal, September 1992.

[Phalippou 94] PHALIPPOU (M.): Relations d'implantation et hypothèses de test sur des automates à entrées et
sorties, Thèse de l'Université de Bordeaux I, September 1994.

[R1072] ITACA, IBCN Testing Architecture for Conformance Assessment, R1072 ITACA – No. 365, 1992.

[Tret 92] TRETMANS (J.), A Formal Approach to Conformance Testing, PhD thesis, University of Twente,
1992.

[TrVe 92] TRETMANS (J.) and VERHAARD (L.): A queue model relating synchronous and asynchronous
communication, Memorandum INF-92-04, University of Twente, Enschede, The Netherlands.
TFL RR 1992-1, Tele Danmark Research, 1992.

[Z105] ITU-T Recommendation Z.105, SDL Combined with ASN.1 (SDL/ASN.1), ITU, 1995.

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside
plant

Series M TMN and network maintenance: international transmission systems, telephone
circuits, telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communication

Series Z Programming languages

	ITU-T Rec.Z.500 (05/97) FRAMEWORK ON FORMAL METHODS IN CONFORMANCE TESTING
	Source
	FOREWORD
	NOTE
	INTELLECTUAL PROPERTY RIGHTS
	CONTENTS
	FRAMEWORK ON FORMAL METHODS IN CONFORMANCE TESTING
	1 Scope
	2 Normative references
	2.1 Conformance testing
	2.2 Formal description techniques

	3 Definitions
	3.1 Terms from other related standards
	3.2 Terms defined in this Recommendation

	4 Abbreviations
	5 Mathematical concepts and notation conventions
	5.1 Sets
	5.2 Logic
	5.3 Relations
	5.4 Functions

	6 The meaning of conformance
	6.1 Introduction
	6.2 Specifications
	6.3 Implementations
	6.4 Conformance of an implementation to a formal specification

	7 Testing concepts
	7.1 Introduction
	7.2 Test architecture
	7.3 Formal model of the test architecture
	7.4 Test execution

	8 Conformance testing
	8.1 Introduction
	8.2 Definition of conformance testing
	8.3 Test generation
	8.4 Test suite size reduction
	8.5 Fault coverage
	8.6 Test suite cost

	9 Compliance
	9.1 Introduction
	9.2 Compliance with clause 6: The meaning of conformance
	9.3 Compliance with clause 7: Testing concepts
	9.4 Compliance with clause 8: Conformance testing

	Annex A
	A.1 Specifications
	A.2 Implementation options and instantiated specifications
	A.3 Implementations and models of implementations
	A.4 Conformance by implementation relations
	A.5 Conformance by requirements
	A.6 Test architecture
	A.7 Specifications of tests
	A.8 References

