	[image: image2.png][image: image3.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
2nd Meeting: Geneva, CH, 21-28 July, 2010
	Document: JCTVC-B034


	Title:
	Dynamic Source Selection

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Gergely Korodi, Da-ke He
295 Phillip Street

Waterloo, Ontario, Canada N2L 3W8
	
Tel:
Email:
	
+1 519 888 7465
{gkorodi, dhe}@rim.com

	Source:
	Research In Motion Limited


_____________________________
Abstract

A class of binary entropy coders processes the input sequence by encoding each binary symbol with a known probability from a discrete, finite set.  The compression efficiency of such a system is affected by the magnitude of the set, and the accuracy by which its values approximate the empirical probabilities.  This contribution provides a method for dynamically mapping the probability set to one of its subsets, with the objective of increasing compression efficiency. By coupling this method with parallel V2V coding, it becomes possible to achieve desired throughput  while at the same time provide competitive compression efficiency against CABAC as specified in ITU T Rec. H.264 | ISO/IEC 14496-10. 
1 Introduction
In this section we explain a method to estimate the probabilities of binary events, after which they are encoded with those probabilities.  Every binary symbol has an associated context model, which at any time is in one of a finite set of states.  A state is characterized by the value of the Least Probable Symbol (LPS), and the probability of the LPS.  In the present work, similarly to CABAC in ITU T Rec. H.264 | ISO/IEC 14496-10 (hereafter the AVC standard for brevity), this probability can take 63 distinct values of the form, approximately, 

pk = 0.949217148771k/2, for k = 0, …, 62.  

The context changes its state based on the input symbols it encounters.  This state transition is defined in the AVC standard.
The approach of CABAC in the AVC standard is to assign a context for each symbol, then encode or decode the symbol using the state associated with the context, and update this state using the state transition table in the AVC standard.  This approach has two problems in practice.  
· First, the empirical distribution of symbols observed in any state k may differ significantly from (1-pk, pk).  During an extensive testing, we have found that even for realistic video, the empirical LPS probability can be off pk by a factor of 2 for high orders k, with lower, but still significant deviations at low orders.  A specially created video sequence demonstrating the worst-case scenario would only exacerbate this problem.  If the relative entropy between the two distributions is high, then compressing one source with the probabilities of the other results in less than optimal performance, possibly leading to significant loss in compression efficiency.

· Second, some entropy coding methods, like the parallel V2V (variable-length to variable length) coding in the TMuC(Test model under consideration) [1] may impose to the encoded length a significant overhead, which is proportional to the number of states.  For 63 states the overhead, which may originate from terminating codewords, or encoding sequence lengths, can be too high for small slices.

A straightforward workaround to the first problem would be to determine the empirical probabilities for each state prior to encoding, select the best code set for each state, specify this dynamic selection in the encoded file, then proceed to encode the symbols in each state, but this time with the code set that achieves the lowest encoded size among all the candidates.  However, this still does not improve on the second problem; since we have 63 states and 63 code sets, encoding the best selection would only increase the overhead, especially for small encoded frame sizes, and in most cases ending up losing more on specifying the selection, than saving on the encoding.  We could reduce the number of states and codes for small frames, thereby reducing the overhead and still benefiting from dynamic code selection, but then the same selection would have a poorer performance on large slices, when the overhead is less significant than the finer resolution that a larger code set provides.
A workaround to the second problem would be to quantize the state space, as discussed in [2]. However, this does not address the first problem as explained above. 
In the following we present an algorithm, which addresses all of these problems, resulting in a marked improvement in compression efficiency.  The main idea of our approach, dubbed dynamic source selection, is to use subsets of the available states and code sets, based on the characteristics of each slice, or entropy coding unit.  We remark that the dynamic source selection algorithm can be used with any entropy coder that provides the H.264/CABAC interface, but in the following we are going to present it specifically for the V2V algorithm [1].

2 Algorithm overview

For each entropy coding unit, which is typically a slice, the encoding has two parts: 1) source analysis and 2) symbol coding.  In the source analysis part we collect information about the symbols, and determine a partitioning of the 63 sources, such that symbols belonging to sources in the same partition are interleaved, and processed as if coming from the same source.  The number of partitions typically varies, and to avoid confusion, we shall refer to the 63 sources as original sources, and to the partitions as dynamic sources.  Furthermore, this part also  assigns coding trees for the dynamic sources.  In the symbol coding part we encode the symbols based on the settings of the first part.  In our current implementation the source analysis takes place during mode selection, and its impact on computational load is negligible.

Before starting symbol coding, the source selector writes some header information about the mappings for the current slice in the encoded file; the size of this header is 40 bits.  This header is processed by the decoder, after which it starts decoding the symbols.  Again, the impact on decoding complexity is negligible.

2.1 Source analysis

In the analysis part, the encoder receives a sequence of input symbols, each in its appropriate context.  The encoder maintains 32 counters S0[0], …, S0[15], S1[0], …, S1[15], which count the input symbols prior to encoding.  When the symbol b is received in state (s, k), the encoder increments S0[Q[k]] if (b==s), or S1[Q[k]] otherwise.  The static mapping Q[k] is specified by the following table:

	k
	Q[k]

	0, 1
	0

	2
	1

	3
	2

	4, 5
	3

	6―8
	4

	9―11
	5

	12―14
	6

	15―18
	7

	19―22
	8

	23―27
	9

	28―33
	10

	34―40
	11

	41―47
	12

	48―54
	13

	55―61
	14

	62
	15


At the end of this process, S0[k] shows how many times we encountered an MPS in a state that Q maps to k; S1[k] is the count of LPS in those states.

Once mode selection is complete, and before encoding of the symbols starts, the analysis part determines a dynamic mapping based on the S0 and S1 values.  As a result of this, the 63 original sources, which are now mapped to 16 sources by way of Q, may be merged even further, by combining neighboring sources together.  This results in a new, dynamic mapping R, which must be specified in the encoded file.  This is done by an array of 16 bits, in which a value 1 shows that the current source is the last one in its group.

Example: the mapping R=1111111111111111 indicates that none of the 16 sources are merged; the original sources are mapped only by the static mapping Q.  The mapping R=0101000100100011 indicates that apart from applying Q, the resulting 16 states must be further merged: sources 0 and 1, 2 and 3, 4 to 7, 8 to 10, 11 to 14, 15 are mapped to 6 different sources.  The two mappings Q and R can be conveniently specified by a single dynamic mapping RQ, which maps the 63 original sources to 6 dynamic sources.  For instance, in this example we have RQ[30] = 3, since Q[30] = 10 and according to the bit array R, entry 10 belongs to group 3.

Next, the encoder specifies which coding tree to assign to each merged source.  We use 24 predefined codes, sorted in decreasing LPS probability, and they are assigned in order, that is, for sources j and k, where j < k, j is assigned a code with strictly higher LPS probability than that of k.  The code assignment T is specified in the encoding file in an array of 24 bits, in which a value 1 shows that the corresponding code is used for the next source.  That is, the number of 1's in T equals to the number of 1's in R.

Example: for R=0101000100100011, let T=101100001000010000001000.  This means that trees 0, 2, 3, 8, 13, 20 are assigned to the merged sources 0, 1, 2, 3, 4, 5, respectively.  Hence the symbol from the original source 30 is encoded with tree 8, since RQ[30] = 3 and tree 8 is assigned to the dynamic source 3.

In the following we overview the method by which we carry out source selection.  To carry out these procedures, the encoder specifies three arrays, tree probability TreeProb, loss TreeLoss, and flush cost TermCost, for each of the 24 coding trees.  These values for the given trees are shown in the following table:

	Index
	TreeProb
	TreeLoss
	TermCost

	0
	0.500000
	0.0000
	3.0

	1
	0.456599
	0.0025
	2.7

	2
	0.445655
	0.0026
	2.7

	3
	0.424254
	0.0015
	3.0

	4
	0.403321
	0.0016
	1.9

	5
	0.373195
	0.0014
	2.5

	6
	0.341510
	0.0010
	3.0

	7
	0.320856
	0.0002
	2.8

	8
	0.303128
	0.0010
	1.9

	9
	0.271684
	0.0006
	3.7

	10
	0.243670
	0.0012
	2.7

	11
	0.227195
	0.0008
	2.8

	12
	0.192243
	0.0008
	2.5

	13
	0.171467
	0.0006
	3.4

	14
	0.147829
	0.0009
	3.3

	15
	0.108593
	0.0004
	3.2

	16
	0.084085
	0.0011
	2.4

	17
	0.050032
	0.0006
	3.6

	18
	0.026314
	0.0005
	3.9

	19
	0.019695
	0.0033
	2.9

	20
	0.015832
	0.0038
	2.8

	21
	0.011296
	0.0020
	4.0

	22
	0.007818
	0.0034
	3.3

	23
	0.004773
	0.0027
	3.6


The merging and code selection procedures are done in an iterative manner, where in each step we merge those two neighboring sources, which yield the largest reduction in code length, or terminate the source selection, when no such pair exists.

We start out with the initial mapping R=1111111111111111, and for each source k=0, …, 15, as determined by the Q mapping, we determine its best tree using the empirical entropy from the counts S0[k] and S1[k].  Since each of the coding trees j=0, …, 23 has a known probability TreeProb[j], the best expected tree for source k is the one that minimizes

D({S0[k], S1[k]} || TreeProb[j]) = (S0[k] * log((S0[k] / (S0[k] + S1[k])) / TreeProb[j]) + S1[k] *  log((S1[k] / (S0[k] + S1[k])) / (1 – TreeProb[j]))) / (S0[k] + S1[k])

Once the best expected tree with index j is determined for source k, we determine its total cost for all symbols as

L(k, j) = (1 + TreeLoss[j]) * (- S0[k] * log(TreeProb[j]) - S1[k] *  log(1 – TreeProb[j])) + TermCost[j] + 4,

which, when adding the overhead for the coded lengths, becomes

TotalCost(k, j) = L(k, j) + 8          (if L(k, j) < 128)

                            L(k, j) + 16        (else if L(k, j) < 16512)

                            L(k, j) + 24        (else if L(k, j) < 2113664)

                            L(k, j) + 32        (otherwise)

We note, that as an alternative solution, we may search for the best tree by minimizing directly TotalCost(k, j), rather than the relative entropy D({S0[k], S1[k]} || TreeProb[j]), though in practice both approaches produce similar results.  Minimizing TotalCost(k, j) is more accurate, but it can be done only with exhaustive linear search.  Minimizing the relative entropy is faster, because its function is convex, so a logarithmic gradient search is guaranteed to find the global minimum.

Now that we have the cost for each source, we compute the cost that we would have if we merged the neighboring sources k and k+1.  This quantity, which we call MergedCost({k, k+1}, j), or simply MergedCost(k, j), is computed similarly to TotalCost(k, j), only we have to replace S0[k] by (S0[k] + S0[k + 1]) and S1[k] by (S1[k] + S1[k + 1]).

After this, the best source k, which reduces the overall code length by the most, when merged with its neighbor (k+1), is the one that maximizes the expression

TotalCost(k, j) + TotalCost(k+1, j) – MergedCost(k, j).

If this expression is negative for all sources k, we cannot merge any more sources, and source selection terminates.  Otherwise, source k is merged with its neighbor, and this is indicated by setting in R the bit corresponding to k, to 0.  At this point we update the code selection list T accordingly, and start the next iteration.

2.2 Symbol Encoding

Once the mappings R and T are available, the encoder can start consuming symbols in the same manner as H.264/CABAC.  Each binary symbol b is passed along with state (s, k), s indicating the LPS of the state, and k selecting one of the 63 original sources, and the encoder encodes the event (b == s) with the tree that T assigns to RQ[k].  Everything else from this point is done as specified by the entropy coding algorithm.

2.3 Symbol Decoding

At the beginning of each slice, the decoder reads the arrays R and T from the header, from which it reconstructs the dynamic sources RQ[k] and determines which tree is used for each source.  When the decoder receives a request for a symbol in the specified state (s, k), s indicating the LPS of the state, and k selecting one of the 63 original sources, it produces a bit b from the tree that T assigns to RQ[k], and returns s if (b == 1), 1-s otherwise.

The main components of the presented source selection algorithm are illustrated in the Figure 1 below.
[image: image1.png]
Figure 1: An illustration of the source selection algorithm. 
3 Results

We illustrate the performance of the dynamic source selection algorithm using the 24 dynamic trees described earlier, against a version that uses 12 static trees, both for the parallel V2V algorithm [1].  Since we have improved our code sets ever since we submitted our source code, we include the source selection results for both the old codes and the new codes, marked accordingly.  The static tests use only the more efficient new trees. Also, we have implemented a new serial version of our algorithm, which is added below. The performance of CABAC with 64 static trees is included for comparison.  The test was carried out on the first 9 frames of RaceHorses_416x240 at QP=32 (IPBB structure), BQMall_832x480 at QP=20 (IPBB structure), and BQTerrace_1920x1080 at QP=20 (IPPP structure).  The following tables show for each frame the encoded length in bits, using the static method, the just presented dynamic method with the old and new code sets, and CABAC.  We note that the dynamic method results in a lower size than the static one in each case, even though it has an additional 40-bit header that the static version does not have.  We also note that the running time for the dynamic and static versions were essentially the same, since the computational overhead for the dynamic source selection is negligible compared to other parts of the video encoder and decoder.

	Racehorses
	Parallel V2V, static, new codes
	Parallel V2V, dynamic, old codes
	Parallel V2V, dynamic, new codes
	Serial V2V, dynamic, new codes
	CABAC

	0 (I-Slice)
	80232
	80024
	80008
	79832
	79792

	1 (P-Slice)
	47736
	47576
	47576
	47464
	47408

	2 (B-Slice)
	15184
	15072
	15064
	14976
	14920

	3 (B-Slice)
	8768
	8712
	8688
	8632
	8592

	4 (B-Slice)
	8512
	8488
	8456
	8392
	8328

	5 (B-Slice)
	3744
	3688
	3688
	3624
	3584

	6 (B-Slice)
	3424
	3344
	3352
	3288
	3248

	7 (B-Slice)
	2768
	2712
	2712
	2672
	2600

	8 (B-Slice)
	2920
	2880
	2880
	2824
	2760


	BQMall
	Parallel V2V, static, new codes
	Parallel V2V, dynamic, old codes
	Parallel V2V, dynamic, new codes
	Serial V2V, dynamic, new codes
	CABAC

	0 (I-Slice)
	698000
	696648
	696544
	696312
	696440

	1 (P-Slice)
	350936
	350528
	350432
	350216
	350120

	2 (B-Slice)
	102280
	102128
	102120
	101920
	101912

	3 (B-Slice)
	56880
	56792
	56768
	56664
	56568

	4 (B-Slice)
	59784
	59720
	59720
	59616
	59488

	5 (B-Slice)
	16504
	16432
	16424
	16336
	16272

	6 (B-Slice)
	17608
	17528
	17512
	17432
	17336

	7 (B-Slice)
	18064
	18008
	18008
	17904
	17824

	8 (B-Slice)
	18024
	17936
	17928
	17848
	17776


	BQTerrace
	Parallel V2V, static, new codes
	Parallel V2V, dynamic, old codes
	Parallel V2V, dynamic, new codes
	Serial V2V, dynamic, new codes
	CABAC

	0 (I-Slice)
	3808896
	3793328
	3792040
	3791632
	3799592

	1 (P-Slice)
	2205008
	2200840
	2200408
	2200128
	2202248

	2 (P-Slice)
	2258632
	2254216
	2254128
	2253792
	2255520

	3 (P-Slice)
	2267376
	2262832
	2262656
	2262344
	2264008

	4 (P-Slice)
	2272488
	2267888
	2267792
	2267472
	2269408

	5 (P-Slice)
	2218560
	2214144
	2214048
	2213744
	2215320

	6 (P-Slice)
	2202104
	2197920
	2197608
	2197336
	2199192

	7 (P-Slice)
	2226048
	2221272
	2221032
	2220744
	2222816

	8 (P-Slice)
	2275192
	2270504
	2270360
	2270040
	2272080


2 References

[1] “Test Model under Consideration”, JCTVC-A205, April 2010. 

[2] D. Marpe, H. Schwarz, T. Wiegand, ``Novel entropy coding concept,’’ JCTVC-A032, April 2010. 
3 Patent rights declaration(s)
Research In Motion Ltd. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 1
Date Saved: 2010-07-16

