	[image: image16.wmf]å

=

-

<<

=

N

i

i

w

depth

bit

pred

w

1

)

_

1

(

_

[image: image17.png][image: image18.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
2nd Meeting: Geneva, CH, 21-28 July, 2010
	Document: JCTVC-B064

	Title:
	A parallel adaptive loop filter

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Tomohiro Ikai, Tomoyuki Yamamoto, Yoshihiro Kitaura
1-9-2 Nakase, Mihama-ku, Chiba-shi,

Chiba 261-8520 JAPAN
	Tel:
Email:
	Tel: +81-43-299-8475
ikai.tomohiro@sharp.co.jp

	Source:
	SHARP Corporation

Abstract
This contribution is related to the In-loop filtering ad hoc group. In this contribution a new adaptive Wiener-based filter technique is introduced. The proposed technique improves coding efficiency by using two inputs: de-blocking filtered reconstruction signal and unfiltered reconstruction signal. The proposed technique also provides the functionality to process the two inputs in parallel. The experimental result shows the proposed technique provides 1.19% bitrate reduction (equivalently 0.043 dB gain) on average over all test conditions (CS1 and CS2) , compared with QALF.
1 Introduction

In KTA, the input to the adaptive loop filtering (ALF) is the de-blocking filtered reconstruction signal [1]. In response to Call for Proposal [2], an adaptive loop filtering approach with various input signals was proposed [3], where three input signals - de-noising filtered reconstruction signal, prediction signal and prediction error signal are used. In TMuC [4], the augmented signal approach was included. This contribution is a kind of various input technique where two input signals - de-blocking filtered reconstruction signal (post-DF signal) and unfiltered reconstruction signal (pre-DF signal) are used.
In the past contribution [5], ALF using pre-DF signal was tested and it is recognized that in many cases the coding efficiency is less than the ALF using post-DF signal. At present, the ALF using post-DF signal is used in KTA. However, one problem of the ALF using post-DF signal is that the two time-consuming filters, DF and ALF, shall be processed sequentially. Considering these situations, we developed a parallel adaptive loop filter. In the proposed system, instead of using post-DF signal, the spatial filtering using pre-DF signal is used to achieve parallel DF and ALF processing capability. The proposed system also uses one post-DF signal component in order to achieve high coding efficiency while keeping the parallel processing capability. The details of the proposed system are described in chapter 2 and the experimental result is shown in chapter 3. It is important to mention that although this system mainly uses pre-DF signal, the coding efficiency is better than ALF using post-DF signal.
2 Parallel adaptive loop filter
The ALF in the proposed system is defined by the following formula and it is shown in figure 1.
[image: image1.emf]cswsws

post

N

i

iiout

1

post-DF signal is weightedpre-DF signal is spatially filtered

Where,
[image: image2.wmf]out

s

 is ALF output,
[image: image3.wmf]i

s

 is pre-DF signal, and
[image: image4.wmf]post

s

 is post-DF signal. And
[image: image5.wmf]i

w

and
[image: image6.wmf]w

 are ALF coefficients and c is dc-offset. (
[image: image7.wmf]i

w

,
[image: image8.wmf]w

, and c are signaled in the bitstream.) Note that, although the proposed system utilizes both pre-DF and post-DF signals, it is parallel-processing friendly due to the following feature.
· pre-DF signal is mainly used (spatial filtered)

· post-DF signal is merely weighted.

[image: image9.emf]DFALFpost-DF

signal

pre-DF

signal

proposed in-loop filter system

out

s

s)(

post

s

Figure 1: Proposed system diagram

Parallel processing of this proposal is shown in Figure 2. The two filters DF and ALF-spatial filter are independent. ALF-weighting is dependent on DF but independent of ALF-spatial filer. From these relations, DF plus ALF-weighing (green part) and ALF-spatial filter (blue part) can be processed in parallel.
[image: image10.emf]DF

pre-DF signalpost-DF signal

+

DF

sw

ALF

weighting

loop filter

spatial filter

Figure 2: Parallel processing diagram
From the ratio of pre-DF pixels to total reference pixels (pre-DF and post-DF), it can be said over 96% of ALF can be processed in parallel. Specifically when 9x9 spatial filter is used, the ratio is 99% {=81 / (81+1)}. When 5x5 and 7x7 is used, the ratio is 96% {=25 / (25+1)} and 98% {=49 / (49+1)} respectively.
The system comparison with KTA system is shown in Figure 3, where the upper figure depicts KTA system and the lower one depicts the proposed system. In KTA system, spatiel filter#1 (DF) and spatial filter#2 (ALF) are processed sequentially. In contrast with KTA system, the two spatial filters #1 and #2 can be processed in parallel.
[image: image11.emf]weighting

KTAsystemProposed system

spatial filter#2

(ALF)

ALFspatial fitler#1

(DF)

spatial fitler#1

(DF)

spatial filter#2

(ALF)

+

Figure 3: System comparison
Signaling of ALF coefficients

In this proposal, alf_parallel_mode is introduced to the corresponding ALF syntax of KTA in slice header. If alf_parallel_mode is disabled, the process of ALF is the same as KTA. In that case, the decoded filter coefficients are used for filtering post-DF signal. If alf_parallel_mode is enabled, the proposed parallel adaptive loop filtering is used. In that case, the decoded filter coefficients include spatial filter coefficients for pre-DF signal and one filter coefficient for post-DF signal. The detailed syntax changes introduced by the proposed parallel adaptive loop filter are shown in Annex B.
The filter coefficient can be signaled either by inter frame prediction method (alf_pred_mode is 0) or by intra frame prediction method (alf_pred_mode is 1).
If alf_parallel_mode is enabled and alf_pred_mode = 0, the filter coefficients for pre-DF signal are predicted using the decoded filter coefficients of a previous frame. The filter coefficient for post-DF signal is predicted by the filter coefficients for pre-DF signal of the current frame. That is expressed by the following formula.
[image: image19.wmf]å

=

-

<<

=

N

i

i

w

depth

bit

pred

w

1

)

_

1

(

_

Where, bit_depth is a precision of filter coefficients.

If alf_parallel_mode is enabled and alf_pred_mode = 1, the filter coefficients for pre-DF signal is not predicted. The filter coefficient for post-DF signal is predicted by the above formula in the same way.
3 Experimental results
The proposed parallel adaptive loop filter system has been implemented into KTA2.6r1, and the simulation has been carried out based on the ad hoc group common test condition as shown in Table 1. The reference for performance test is QALF (alf_pred_mode=0). The average bitrate reduction (ΔBitrate) and PSNR gain (ΔPSNR) are calculated using BD-PSNR [6].
Figure 4 shows additional 1.55% bitrate reduction could be achieved on average over all test sequences with the maximum reduction of 3.09% in CS1 condition. Figure 5 shows that additional 0.84 % bitrate reduction could be achieved in CS2 condition. CS1 and CS2 average is 1.19% bitrate reduction.
Figure 5 includes examples of RD performance of CS1. In summary, the proposed system is efficient in CS1 (specifically Intra frame) and in high bitrate.
The detailed results are included in Annex A.
Table 1: Experimental conditions
	qp
	26, 30, 34, 38

	MVCompetition
	1

	UseIntraMDDT
	1

	UseHPFilter
	4

	UseExtMB
	2

	BitDepth
	12

	BitDepthChroma
	12

	SearchRange
	128

	alf_pred_mode
	0

[image: image12.emf]00.511.522.533.5TrafficPeopleOnStreetKimonoParkScene Cactus BasketballDrive BQTerrace BasketballDrill BQMall PartyScene RaceHorses BasketballPass BQSquare BlowingBubbles RaceHorses_wqvga Averagebdrate [%]

CS1

Figure 4: Performance results in CS1
[image: image13.emf]-0.500.511.522.5TrafficPeopleOnStreetKimono1 ParkScene Cactus BasketballDrive BQTerrace BasketballDrill BQMall PartyScene RaceHorses BasketballPass BQSquare BlowingBubbles RaceHorses_wqvga vidyo1 vidyo3 vidyo4 Averagebdrate [%]

CS2

Figure 5: Performance results in CS2
[image: image14.emf]303132333435363738390500010000150002000025000PSNR [dB]bitrate [kbps]ProposedQALFALF off

Figure 6: RD Performance of PeopleOnStreet in CS1
4 Conclusion

In this contribution, a parallel adaptive loop filter is proposed, which use both pre-DF signal and post-DF signal as inputs. The proposed approach introduces parallel processing capability of in-loop filtering process and achieves high coding efficiency. Specifically, the spatial filter in the proposed adaptive loop filter and DF can be processed in parallel while the spatial filter in the traditional ALF and DF cannot be processed in parallel. As for the coding efficiency, the experiments show that the proposed approach provides 1.19% bitrate reduction (equivalently 0.043 dB gain) on average over all test sequences in the ad hoc group test condition(CS1 and CS2), compared with QALF.
Reference

[1] Takeshi Chujoh, Naofumi Wada and Goki Yasuda, “Quadtree-based adaptive loop filter”, VCEG-C181, Jan. 2009
[2] ITU-T Q6/16 and ISO/IEC JTC1/SC29/WG11, Joint call for proposals on video compression technology, MPEG Document N11113, Kyoto, Japan, January 2010.
[3] I. Amonou, N. Cammas, G. Clare, J. Jung, L. Noblet, S. Pateux, S. Matsuo, S. Takamura, C.S. Boon, F. Bossen, A. Fujibayashi, S. Kanumuri, Y. Suzuki, J. Takiue, T.K. Tan, V. Drugeon, C.S. Lim, M. Narroschke, T. Nishi, H. Sasai, Y. Shibahara, K. Uchibayashi, T. Wedi, S. Wittmann, P. Bordes, C. Gomila, P. Guillotel, L. Guo, E. François, X. Lu, J. Sole, J. Vieron, Q. Xu, P. Yin, Y. Zheng, “Description of video coding technology proposal by France Telecom, NTT, NTT DOCOMO, Panasonic and Technicolor,” JCTVC Contribution JCTVC-A114, Dresden, Germany, April 2010.
[4] JCT-VC, “Draft Test Model under Consideration”, JCTVC-A205, 1. JCT-VC Meeting, Dresden, April 2010.
[5] Yu Liu, Yan Huo, and Ka-Man Cheng, "Unified Loop Filter for Video Coding", Hong Kong Applied Science & Technology Research Institute, MPEG M17171, Video Proposal, 91st MPEG Meeting, Kyoto, Japan, Jan. 2010
[6] G. Bjøntegaard, “Calculation of average PSNR differences between RD-Curves,” ITU-T Q.6/SG16 Doc., VCEG-M33, Austin, Apr. 2001.

5 Patent rights declaration(s)
SHARP Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Annex A
Experimental Results
Table-2: Bitrate reduction and PSNR gain of the proposed method (CS1, HierB)

	Resolution
	Sequence
	NumFrames
	ΔBitrate(%)
	ΔPSNR(dB)

	A
	Traffic
	65
	3.09
	0.119

	
	PeopleOnStreet
	65
	2.77
	0.131

	B
	Kimono
	49
	0.93
	0.033

	
	ParkScene
	49
	2.6
	0.086

	
	Cactus
	97
	1.14
	0.033

	
	BasketballDrive
	97
	2.61
	0.074

	
	BQTerrace
	129
	1.95
	0.037

	C
	BasketballDrill
	97
	2.11
	0.084

	
	BQMall
	129
	0.61
	0.027

	
	PartyScene
	97
	0.82
	0.035

	
	RaceHorses
	65
	0.38
	0.015

	D
	BasketballPass
	97
	1.8
	0.082

	
	BQSquare
	129
	1
	0.042

	
	BlowingBubbles
	97
	0.89
	0.035

	
	RaceHorses
	65
	0.46
	0.022

	
	Average (all)
	-
	1.55
	0.057

Table-3: Bitrate reduction and PSNR gain of the proposed method (CS2, IPPP)

	Resolution
	Sequence
	NumFrames
	ΔBitrate(%)
	ΔPSNR(dB)

	A
	Traffic
	65
	1.37
	0.048

	
	PeopleOnStreet
	65
	0.94
	0.044

	B
	Kimono
	49
	0.28
	0.01

	
	ParkScene
	49
	1.55
	0.048

	
	Cactus
	97
	0.76
	0.022

	
	BasketballDrive
	97
	2.03
	0.056

	
	BQTerrace
	129
	1.64
	0.032

	C
	BasketballDrill
	97
	0.53
	0.019

	
	BQMall
	129
	0.38
	0.016

	
	PartyScene
	97
	-0.19
	-0.005

	
	RaceHorses
	65
	0.13
	0.006

	D
	BasketballPass
	97
	1.27
	0.06

	
	BQSquare
	129
	0.03
	0.002

	
	BlowingBubbles
	97
	0.5
	0.019

	
	RaceHorses
	65
	0.52
	0.024

	E
	Vidyo1
	129
	1.19
	0.041

	
	Vidyo3
	129
	1.47
	0.055

	
	Vidyo4
	129
	0.74
	0.023

	
	Average (all)
	-
	0.84
	0.029

Annex B
Syntax and semantics
Table 4: Syntax of the proposed system

[image: image15.emf]alf_param() {

C Descriptor

 adaptive_loop_filter_flag

2 u(1)

 if (adaptive_loop_filter_flag) {

 alf_pred_coef_mode

2 u(1)

 if(disable_deblocking_filter_idc != 1) {

 alf_parallel_mode

2 u(1)

 }

 alf_length_luma_minus5_div2

2 ue(v)

 for(i = 0; i < AlfNumCoeffLuma; i++) {

 alf_coeff_luma[i] 2 se(v)

 }

 alf_block_control()

 alf_chroma_idc

2 ue(v)

 if (alf_chroma_idc) {

 alf_length_chroma_minus5_div2

2 ue(v)

 for(i = 0; i< AlfNumCoeffChroma; i++) {

 alf_coeff_chroma[i] 2 se(v)

 }

 }

 }

 }

adaptive_loop_filter_flag specifies whether adaptive loop filter applies or not for the current slice
alf_parallel_mode specifies the pixels used in adaptive loop filter.

If alf_parallel_mode is 0, post-DF pixels are used, otherwise pre-DF pixels and a post-DF pixel is used.
alf_length_luma_minus5_div2 specifies the filter length for luma component used in the adaptive loop filter process. From this value, the filter length used to decide the number of coded filter cofficients shall be computed as
AlfLengthLuma = (alf_length_luma_minus5_div2 << 1) + 5

From this value, the number of coded filter coefficients for luma shall be computed as
If alf_parallel_mode is enabled
AlfNumCoeffLuma = ((AlfLengthLuma * AlfLengthLuma + 1) >> 1) + 2
Otherwise

AlfNumCoeffLuma = ((AlfLengthLuma * AlfLengthLuma + 1) >> 1) + 1
alf_coeff_luma[i] specifies the ith filter coefficient for luma component.
alf_chroma_idc specifies which chroma components are to be filtered.
alf_length_chroma_minus5_div2 specifies the filter length for chroma components used in the adaptive loop filter process. From this value, the filter length used to decide the number of coded filter cofficients shall be computed as
AlfLengthChroma = (alf_length_chroma_minus5_div2 << 1) + 5

From this value, the number of coded filter coefficients for chroma shall be computed as
If alf_parallel_mode is enabled
AlfNumCoeffChroma = ((AlfLengthChroma * AlfLengthChroma + 1) >> 1) + 2
Otherwise

AlfNumCoeffChroma = ((AlfLengthChroma * AlfLengthChroma + 1) >> 1) + 1
alf_coeff_chroma[i] specifies the ith filter coefficient for chroma components.

� EMBED Equation.3 ���

Page: 8
Date Saved: 2010-07-16

_1340780574.unknown

_1340793286.unknown

_1340793311.unknown

_1340793151.unknown

_1338809719.unknown

_1340779239.unknown

		alf_param() {

		C

		Descriptor

		 adaptive_loop_filter_flag

		2

		u(1)

		 if (adaptive_loop_filter_flag) {

		

		

		 		alf_pred_coef_mode

		2

		u(1)

				if(disable_deblocking_filter_idc != 1) {

		

		

		 		alf_parallel_mode

		2

		u(1)

		 }

		

		

		[bookmark: OLE_LINK3][bookmark: OLE_LINK4] 		alf_length_luma_minus5_div2

		2

		ue(v)

				for(i = 0; i < AlfNumCoeffLuma; i++) {

		

		

				alf_coeff_luma[i]

		2

		se(v)

				}

		

		

		 alf_block_control()

		

		

		 		alf_chroma_idc

		2

		ue(v)

		 		if (alf_chroma_idc) {

		

		

		 		alf_length_chroma_minus5_div2

		2

		ue(v)

				for(i = 0; i< AlfNumCoeffChroma; i++) {

		

		

		 		alf_coeff_chroma[i]

		2

		se(v)

		 		}

		

		

		 		}

		

		

			}

		

		

			}

		

		

