	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

14th Meeting: Hong Kong, China 18-21 Jan., 2005
	Document: JVT-N011
Filename: JVT-N011.doc

	Title:
	Adaptive quantization encoding technique using an equal expected-value rule

	Status:
	Input Document to JVT

	Purpose:
	Information / Non-normative proposal

	Author(s) or
Contact(s):
	Gary Sullivan
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA
	
Tel:
Email:
	
+1 (425) 703-5308
+1 (425) 706-7329
garysull@microsoft.com

	Source:
	Microsoft Cooperation

Abstract – We describe a method of adaptive adjustment of a rounding offset used in the encoding quantization process for scalar quantization. The method is based on adjusting the rounding offset to maintain an equal expected value for the input and output of the quantization process for the absolute value of the quantized data. Distinct offset values are computed for different statistically-relevant contexts relevant to the modeling of the source pdf and quantization process. The method provides up to about 1 dB of improvement in coding efficiency performance for high PSNR encoding when integrated into the JVT JM reference software. At lower levels of fidelity, little or no improvement is shown.
1.
Scalar quantization classification and reconstruction rules
A scalar quantizer for a real-valued scalar input random variable X can be decomposed into a function C[X] called a classification rule that selects an integer-valued class identifier called the quantization index and a second function R[k] called a reconstruction rule that produces a real-valued decoded output Q[X] = R[C[X]] called a reconstruction value.

The operation of the quantizer in a system typically involves the application of the classification rule to produce quantization indices in an encoder, then applying entropy coding to the quantization indices and conveying them through a communication channel (or storage medium) to a decoder. The decoder then applies the reconstruction rule to produce the decoded representation of each input value.

A quantizer reconstruction rule that is especially simple for decoding, and that can be very nearly optimal for typical sources such as the Laplacian source that is often used to model transform coefficients for the compression of images and video, is what we herein call a nearly-uniform-reconstruction quantizer (NURQ). The reconstruction rule for a NURQ uses two parameters – a step-size parameter s and a non-zero region offset parameter p, such that if the quantized value C[X] of the input variable X is k, the reconstruction rule is

R[k] = sign(k) * s * ((|k| + p)

(1)

where we define the function sign(k) as a function equal to 1 when k > 0; 0 when k = 0; and -1 when k < 0. (Note the special treatment of the zero value in this definition.)
Important examples of the use of a NURQ design are the well-known JPEG, H.26x, and MPEG international image and video coding standards. Typically, p (0, and an important special case of a NURQ is the uniform reconstruction quantizer (URQ), which we define as a NURQ with p equal to 0. The most recent international standard for video coding, H.264/AVC, as well as the earlier JPEG (1992) standard, uses a URQ. Another important special case of NURQ, due to its prevalence in some older standards for image and video coding standards, such as H.261, MPEG-1, MPEG-2/H.262, H.263, JPEG-2000, and MPEG-4 Part 2, is the case in which p = 1/2.

The classification region corresponding to C[X] equal to 0 (and thus R[k] equal to 0) is often called the dead-zone. One effective classification rule for quantizing data for the NURQ reconstruction rule is dead-zone plus uniform threshold quantization (DZ+UTQ). A DZ+UTQ classification design for a NURQ can be characterized as follows

[image: image1.wmf]÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

-

-

+

*

=

z

p

s

x

x

x

C

1

|

|

floor

,

0

max

)

sign(

]

[

(2)
where the additional parameter z controls the width of the dead-zone, which is equal to 2 s (p + z), and we define the function floor(() as the largest integer less than or equal to its argument. Whenever p + z > 1/2, the size of the dead-zone is larger than the size of the other classification regions of the quantizer, and this would ordinarily be the case for a well-designed quantizer with a relatively large value of s. Typically, z would be chosen such that 1/2 (z < 1. When z = 1/2, the quantizer would be a nearest-neighbor quantizer. This value of z would have the benefit of minimizing distortion, but when s is large it would produce a quantizer having greater index entropy than would be desirable for the corresponding amount of expected distortion (i.e., a larger value of z in combination with a smaller value of s could have a lower bit rate for the same expected distortion).
We focus in particular on the use of a DZ+UTQ for a NURQ as shown on a real number line in Figure 1 below, where the crosses on the number line indicate the location of the NURQ reconstruction values and the solid vertical lines indicate the threshold values that form the decision regions.

[image: image2.emf]s(1+p)

s(z+p)

s2s(z+p)

szsz

s(1-z)

s

s(2+p)s(3+p)0

s(z+p)

s(1-z)s(1-z)

-s(1+p)-s(2+p)-s(3+p)

ss

szsz

s(1-z)s(1-z)s(1-z)

Figure 1: Example quantizer structure
Some background on the subject is covered in our prior publications [1]-[3] and, in the video codec test model context, has been discussed in some of our prior VCEG and JVT contributions including [4] (we have not listed all such contributions as it would take time and effort to look them up) and in prior test model documents including at least those for H.263 and H.264/AVC.

2.
The equal expected (absolute) value concept
We now focus on the optimization of the quantizer performance for the mean-squared error distortion measure. One way to design a DZ+UTQ classification rule is to select z such that the mean of the absolute value of the input random variable |X| is equal to its expected reconstruction value, i.e.

E{ |Q[X]|] } = E{ Q[|X|]] } = E{ |X| }

(3)

Indeed it can be shown that if the reconstruction value for every classification region of the quantizer is mean-square optimal for the classification rule, the quantizer will have this property. Furthermore, for the important Laplacian source often used to model transform coefficients for image and video coding, it can be shown that an NURQ reconstruction rule with a DZ+UTQ classification rule is the optimal structure for a scalar quantizer in the rate-distortion sense, and, further, that using a URQ (i.e., p = 0) with a DZ+UTQ classification rule having this property is effectively optimal for practical purposes (within 0.0023 dB of mean-square rate-distortion optimality among all scalar quantizer designs). However, note that the application of this concept does not depend on the specific pdf of the source random variable X. In particular, there is no inherent assumption involved in deriving this rule that the pdf is Laplacian.
3.
A simple adaptive mean estimator
Given a (not necessarily stationary) sequence of random variables Yi for i = 0,…, an adaptive mean estimator can be formed by use of a simple geometrically-decaying weighted sum of the sequence of samples. Such a sequence of estimates Mi can be formed by setting M0 equal to some a priori guess for the actual mean (e.g., 1) and then forming subsequent estimates as more samples arrive, as follows

Mi+1 = Mi + wi * (Yi – Mi)

(4)

where 0 (wi (1 is a weighting factor. For example, wi can be a constant value of 2-7 (noting that using a power of 2 for wi can help make the computation simple in fixed-point arithmetic). However, the value of wi need not be static with i (for example w could start out relatively large and then be reduced as more samples arrive and the estimate stabilizes). For lowering computational requirements, wi could be set to zero for some values of i (i.e., not always updating the estimator).

Other basic methods of estimating a mean are also, of course, feasible. However, this method has the desirable properties of reasonable computational requirements and backward adaptivity (i.e., not requiring the use of subsequent samples in the sequence when forming the estimate).

4.
Adaptive dead-zone adjustment using the equal expected value concept
In this particular design problem, we know that z should be in the range 1/2 (z < 1, so a rough guess somewhere in that range can be used as an initial estimator of the proper value for z, denoted as z0. Then the value of z can be updated adaptively as the quantization process operates on a sequence of input random variables. For example, the initial value z0 could be set to 1/2, 2/3, 3/4, or 5/6.

We can also separate out the samples that fall into the dead-zone from the method of selecting the optimal value of z, because if we assume that the input pdf is symmetric about zero, then the value of z does not affect the optimality of the dead-zone reconstruction value of 0 for the dead-zone region.

This leads to an encoding rule for the operation of the quantization process for a sequence of input random variables Xi using a sequence of different values of z that are equal to random variables Zi, so that zi = Zi is the threshold used in the classification rule for quantization of Xi. This leads to the following formulation for computing the thresholds (using a capital letter to indicate the random nature of the result)

Zi+1 = Zi + wi * ((Q[X] ≠ 0) * (|Q[Xi]| – |Xi|) / s

(5)

where the function ((() is the indicator function defined to be equal to 1 when its argument is true, and zero when its argument is false.
5.
Contexts and adjustments for different sources
For best performance, each distinct source and each distinct type of quantizer (e.g., effective step size) should have its own adaptive rounding offset.

One suggested rule of thumb is that any statistical dependencies used as a basis for the design of the entropy coding should also be used as the basis for the design of contexts for the adaptive dead-zone size determination.

One key issue is what will happen when the step size for quantization changes (e.g., due to rate control during operation of H.264/AVC encoding). Ideally, the selected value of z should depend on the step size in use. However, when the value of s is relatively stable, the above method of determining z may be sufficient for practical purposes even when s is changing somewhat.

Although the above formulation was derived based on determining z, it could equivalently be derived for determining some other parameter that has a simple relationship with z. For example, instead of deriving z, it might be better under some circumstances to use equivalent methods to determine the value of p + z or 1 – p – z or 1 – z or s z or s (p + z) or s (1 – p – z) or s (1 – z) instead of z. Some of these alternative formulations may simplify the computation of the classification rule or the method of updating its control parameter under some circumstances.
6.
Adaptive Rounding for JVT Encoder

We have tested our simple encoding rule using JM8.6 encoder.

We defined a rounding offset f = (1-z) for each of the following frequency components:

- 16 frequency components for luma 4x4 block in Intra 4x4 mode;

- 15 AC components for luma 4x4 block in Intra 16x16 mode;

- 16 2nd-level DC components for luma MB Intra16x16 mode;

- 15 AC components for chroma 4x4 block in Intra mode;

- 4 2nd-level DC components for chroma in Intra MB;

- 16 frequency components for luma 4x4 block of Inter mode in P pictures;

- 15 AC components for chroma 4x4 block of Inter mode in P pictures;

- 4 2nd-level DC components for chroma of Inter MB in P pictures;

- 16 frequency components for luma 4x4 block of Inter mode in B pictures;

- 15 AC components for chroma 4x4 block of Inter mode in B pictures;

- 4 2nd-level DC components for chroma of Inter MB in B pictures.

The rounding offset parameter is then updated during encoding as

fi+1 = fi + wi * I(Q[X] ≠ 0) * (|Xi| – |Q[Xi]|) / s

(6)

The offset value is clipped within [0, 1/2] after each update. Based on a Monte Carlo simulation, we select the parameter wi to be a constant equal to 0.001.

Experiments are conducted using several CIF and 4CIF format sequences with 300 frames in each sequence and a frame rate of 30 fps for all sequences. The encoder configurations are the following:

- IBBP, 15 frames per GOP;

- CABAC;

- Search range (16 for CIF, (32 for 4CIF;

- RDOPT;

- Reference picture number 5;

- Fixed QP, QP(IP)= 10, 16, 22, 28, 34, and 40; QP(B)=QP(IP)+2.

RD curves for JM8.6 encoder and JM8.6 encoder with our new adaptive quantization rounding technique are shown in the following plots (where the abbreviation "E.E." is used to denote the use of an "equal expectation" rule). Up to 1.0 dB performance improvement has been achieved (particularly at high bit rates) by use of the new adaptive rounding method.

[image: image3.wmf]35

37

39

41

43

45

47

49

0

1000

2000

3000

4000

5000

6000

7000

bitrate (kbps)

PSNR(Y)

jm86

adaptive rounding (E.E.)

Figure 2: Performance comparison for Mobile CIF
[image: image4.wmf]35

37

39

41

43

45

47

49

0

1000

2000

3000

4000

5000

6000

bitrate (kbps)

PSNR(Y)

jm86

adaptive rounding (E.E.)

Figure 3: Performance comparison for Coastguard CIF
[image: image5.wmf]35

37

39

41

43

45

47

49

0

1000

2000

3000

4000

bitrate (kbps)

PSNR(Y)

jm86

adaptive rounding (E.E.)

Figure 4: Performance comparison for Foreman CIF
[image: image6.wmf]35

37

39

41

43

45

47

49

0

2000

4000

6000

8000

bitrate (kbps)

PSNR(Y)

jm86

adaptive rounding (E.E.)

Figure 5: Performance comparison for Football CIF
[image: image7.wmf]35

37

39

41

43

45

47

49

0

5000

10000

15000

20000

25000

bitrate (kbps)

PSNR(Y)

jm86

adaptive rounding (E.E.)

Figure 6: Performance comparison for City 4CIF
[image: image8.wmf]35

37

39

41

43

45

47

49

0

5000

10000

15000

20000

25000

bitrate (kbps)

PSNR(Y)

jm86

adaptive rounding (E.E.)

Figure 7: Performance comparison for Crew 4CIF
[image: image9.wmf]35

37

39

41

43

45

47

49

0

5000

10000

15000

20000

25000

30000

bitrate (kbps)

PSNR(Y)

jm86

adaptive rounding (E.E.)

Figure 8: Performance comparison for Harbour 4CIF
[image: image10.wmf]35

37

39

41

43

45

47

49

0

5000

10000

15000

20000

bitrate (kbps)

PSNR(Y)

jm86

adaptive rounding (E.E.)

Figure 9: Performance comparison for Soccer 4CIF
7.
Conclusion

An adaptive quantization rounding rule has been introduced, showing a significant improvement in coding performance. We believe it would be beneficial to include support of this quantization rule in the JM reference encoder.

Acknowledgement

The author wishes to thank Shijun Sun for helpful discussion relating to this work and for his kind support to the experiments.

References

[1] G. J. Sullivan, "On embedded scalar quantization", in Proc. of IEEE ICASSP, May 2004.

[2] G. J. Sullivan, "Efficient scalar quantization of exponential and Laplacian random variables", IEEE Transactions on Information Theory, vol. 42, no. 5, pp. 1365-1374, Sept. 1996.
[3] G. J. Sullivan, "Optimal entropy constrained scalar quantization for exponential and Laplacian random variables", in Proc. IEEE ICASSP, vol. V, pp. V/265-V/268, April 1994.

[4] G. J. Sullivan, "On Rounding, QP Value Origin, Dynamic Range, and |f|", JVT standards contribution JVT-C136, Section 8, May, 2002.
File: JVT-N011.doc
Page: 1
Date Saved: 2005-01-11

_1167045039.unknown

_1163858650.vsd
s(z+p)

s(1+p)

s(3+p)

0

-s(2+p)

-s(3+p)

s

s(2+p)

s(1-z)

s(z+p)

sz

s

s(1-z)

2s(z+p)

sz

sz

sz

s(1-z)

s(1-z)

s(1-z)

-s(1+p)

s(1-z)

s

s

