	ITU-T Video Coding Experts Group (ITU-T SG16 Q.6)

14th Meeting: Hong Kong, Jan 17-21, 2005.
	Document: VCEG-N19
Filename: JVT-N008.doc

	Title:
	H.264/MPEG-4 AVC Reference Software Enhancements

	Status:
	Input Document to VCEG

	Purpose:
	Information

	Author(s) or
Contact(s):
	Alexis Michael Tourapis
Docomo Labs USA
181 Metro Drive, Suite 300
San Jose, CA, 95110 USA

Karsten Sühring
Image Processing Department
Fraunhofer-Institute HHI
Einsteinufer 37

10587 Berlin, Germany

Gary Sullivan
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA
	Tel:
	+1 (408) 228-7983
+49 30 31002-209

+1 (425) 703-5308

	
	
	Email:
	alexismt@ieee.org
Karsten.Suehring@hhi.fraunhofer.de
garysull@microsoft.com

	Source:
	Docomo Labs USA, Fraunhofer-Institute HHI, Microsoft Corporation

I. Introduction
In this document we describe several of the new performance based tools incorporated in the JM reference software [2] starting from release 9.0. These new tools were introduced in an attempt of not only enhancing the performance of this software, but to mainly improve one’s understanding of the H.264 standard [1] and its capabilities through providing examples of how one could best exploit the various tools available in the standard. Simulation results demonstrate that the introduction of these tools could considerably improve the performance of the reference software, while it is suggested that further tuning of the various parameters could result in further benefits.
The new tools incorporated in the reference software include the following:

a) Pyramid Encoding Support.

b) Explicit Quantization offset selection

c) Explicit Lagrangian parameter selection

d) RD picture decision with Weighted Prediction Support
e) Bi-predictive Motion Estimation

II. Pyramid Encoding Support

The H.264 standard is quite different (and more flexible) compared to older standards such as MPEG 1/2 and H.263 in terms of the picture coding order, group of picture organization, assignment of reference pictures etc. More specifically, coding of pictures could be done in an almost arbitrary order, while there is little restriction of what slice types should be used for coding a picture. For example, it is quite valid to encode a sequence, and assuming a single slice per picture, in the following manner:

I0-P7-B1-B8-P9-B6-B2-I3-P4-B5,
where I is an I slice only coded picture, P is a P slice only coded picture, and B is a B slice only coded picture. A decoder can easily determine the display order of the above pictures through examining the picture order counts available in the bitstream. Obviously there are some limitations on how flexible these coding structures could be, which are mainly affected by the Profile/Level used, but these will not be discussed here. Furthermore, it should be noted that H.264 allocates referenced pictures independent of the slice type used (i.e. a picture containing B slices does not have to be disposable, while another with I slices could be immediately disposed).
Unfortunately, and although there were claims that certain coding orders could provide further performance benefits compared to commonly used ones (i.e. I0-P3-B1-B2-P6-B4-B5-P9-B7-B8-P12…) the JM reference software did not, until recently, provide any mechanism to allow testing this functionality. Interestingly enough, [3] presented a pyramid like coding order in the context of a subband extension to H.264, suggesting that coding improvements could be achieved by considering such orders within the JM reference software as well. More specifically, instead of considering the rather common 2 (disposable) B coding order mentioned above, one could consider to code the sequence using the coding pattern I0-P4-RB2-B1-B3-P8-RB6-B5-B7-P12-RB10-B9-B11-P16-… or even I0-P8-RB4-RB2-RB6-B1-B3-B5-B7-P16-RB12-RB10-RB14-B9-B11-B13-B15-P24… where now RB refers to a B slice only coded picture which can be used as a reference. The latter coding order is also shown in Figure 1, and which we will now refer to as the 4level-7B coding order. It can be observed that the use of these coding orders could provide not only a potential benefit in terms of objective performance, but also enhance certain functionalities such as temporal scalability and trick modes.

[image: image1.wmf]P

B

P

B

B

B

B

B

B

Figure 1. 4 Level Pyramid structure.
Considering the potential benefits, we have incorporated the above functionality in the reference software through the introduction of several new encoder input parameters. These include:
a) PyramidCoding
b) ExplicitPyramidFormat
c) PyramidRefReorder

d) PocMemoryManagement

We will refer the reader to [4] for further information of how to set these parameters. However, (a) and (b) in conjuction with FrameSkip and NumberBFrames specify the coding order/structure to be used. (c) and (d) on the other hand are two refinement methods suggested from the use of this functionality. More specifically, since reference management and the default ordering for P slices is based on coding order and not display order this could potentially impair performance since it is possible that we might not be using/retaining the best pictures (in terms of temporal correlation) as references. For (c) reordering commands are used to reorder the reference list based on POC distances, while for (d) MMCO commands are used to dispose the oldest reference in terms of POC distance and not by coding order (frame_num). This new code could potentially be used as an example for introducing more advanced MMCO (i.e. assignment of long term references or removal of unnecessary references, enhancements for temporal scalability/trick modes etc) and reordering mechanisms (i.e. one could perform a dual pass encoding or somehow initially compute the temporal correlation of each reference and then reorganize each list in possibly a truly optimal manner).
III. Explicit Quantization offset selection
The quantization process is a very critical component with regards to the performance of an H.264 encoder. In general terms this is performed within the reference software as:

[image: image2.wmf](

)

{

}

(

)

j

i

j

i

j

i

j

i

W

QP

QP

f

j

i

QP

Matrix

LevelScale

W

Z

,

,

,

,

sgn

)

6

/

15

(

)

(

)

,

,

6

%

(

×

+

>>

+

´

=

Where Wi,j is the transformed coefficient at position i,j, LevelScaleMatrix() is a weighted matrix and quantization (QP) dependent look-up table and fi,j is the quantization rounding offset. In general, apart from the selection of the appropriate quantization parameters and, if defined, quantization weighting matrices [5], encoding performance, both objectively and subjectively, can be considerably affected by the selection of the fi,j parameter [6]. fi,j essentially determines the quantization bias towards zero that should be given to a coefficient. In [6] it was suggested that tuning the parameter fi,j based on transform coefficient position, content, and quantization value could lead to considerably enhanced performance, especially at higher bitrates. This essentially depends on the transform coefficient characteristics and their behavior under quantization. We should point out here that rounding offset selection is an encoder only decision and these rounding parameters need not be known at the decoder. However, the reference software did not provide the flexibility of adaptively or at least explicitly setting these offsetting parameters, while a single offset for all transform coefficients was used. This offset was computed as:

 f = {1 << (15 + QP/6)}(d
with d set equal to 1/3 for intra slices, and 1/6 for inter.

To enhance the rounding offset functionality we have modified the encoder to support explicit offsets using a very similar interface as that integrated for quantization weighted matrices support. More specifically, a new optional configuration file can be specified which defines a set of 12 Matrices (9 of 4x4 size, and 3 of 8x8), more specifically INTRA4X4_LUMA_INTRA, INTRA8X8_LUMA_INTRA, INTRA4X4_CHROMAU_INTRA, INTRA4X4_CHROMAV_INTRA, INTRA4X4_LUMA_INTER, INTRA8X8_LUMA_INTER, INTRA4X4_CHROMAU_INTER, INTRA4X4_CHROMAV_INTER, INTER4X4_LUMA, INTER8X8_LUMA, INTER4X4_CHROMAU, INTER4X4_CHROMAV. The first four essentially specify the rounding offsets that are to be used within Intra (I) slices, the next 4 specify the rounding offsets for intra coded Macroblocks in Inter (P and B) slices, while the last 4 are the rounding offsets for Inter macroblock types. These matrices, and in an attempt to avoid divisions, specify the numerator of d while the denominator is set equal to 1024 (28). That is, now computation of fi,j will be equal to

f i,j = { OffsetMatrixi,j << (15 + QP/6)}
The above computation can also now be shifted at the slice level where we could compute all possible variations of f i,j based on QP. Therefore, and similar to quantization weighting matrices, only a lookup table needs to be accessed for selecting the offset during quantization.

Although currently the code appears to be somewhat less flexible in terms of the offset computation depending on QP or picture (i.e. only a single set of offsets is currently supported for the entire sequence), it is easy to modify the implementation and modify the offsets based on QP or to alter them for every coded picture. Offsets could for example be computed adaptively based on the transform coefficient characteristics/distribution and the content coded. We will refer the reader to references [7] through [15] for more details on the quantization process and transform coefficient distributions.
In general, we should mention that for lower quantization values (QP 24 and below), it might be appropriate to select a rounding offset that is larger than 1/3, and closer to 1/2 for intra blocks, especially since the distribution for intra residuals may not follow the Laplacian. This is especially true for highly textured content. This consideration could result in considerable subjective and objective improvements compared to the fixed rounding offset parameter.

A somewhat related modification in the software was the introduction of a parameter that can explicitly disable all thresholding considerations in the software. Especially at higher bitrates, thresholding may be undesirable, could result in quality degradation, and therefore having the capability to disable this functionality when needed was deemed as necessary.

IV. Explicit Lagrangian parameter selection

The Lagrangian optimization is a very important element of the JM reference software. This affects both motion estimation and mode decision where for the first, motion vectors for each partition are determined by minimizing a cost function of the form:

[image: image3.wmf])

(

))

(

,

(

)

,

(

p

m

m

m

-

×

+

=

R

c

s

SAD

J

MOTION

MOTION

l

l

with
[image: image4.wmf]T

y

x

m

m

)

,

(

=

m

 being the motion vector,
[image: image5.wmf]T

y

x

p

p

)

,

(

=

p

 being the prediction for the motion vector, and (MOTION being the Lagrange multiplier. The rate term R(m-p) only represents motion information and could be easily computed through a table lookup. The SAD represents the Sum of Absolute Difference distortion measure and can be computed as

[image: image6.wmf]å

=

=

-

-

-

=

2

1

,

1

,

1

,

[

]

,

[

))

(

,

(

B

B

y

x

y

x

m

y

m

x

c

y

x

s

c

s

SAD

m

with s being the original video signal and c being the coded video signal. B1 and B2 are the vertical and horizontal dimensions of a block and can be equal to 16, 8, or 4. The Hadamard transform could also be used during sub-pixel refinement to further enhance performance.

After motion estimation for all block types and the decision of references, the MB mode decision is performed by minimizing a different Lagrangian functional, which is equal to:

[image: image7.wmf])

|

,

,

(

)

|

,

,

(

)

,

|

,

,

(

QP

MODE

c

s

R

QP

MODE

c

s

SSD

QP

MODE

c

s

J

MODE

MODE

×

+

=

l

l

where QP is the MB quantizer, (MODE is the Lagrange multiplier for mode decision, and MODE indicates a mode chosen from a set of potential predictions for each different slice type. More specifically MODE is defined as follows:

I-slices:

[image: image8.wmf]{

}

16

16

,

8

8

,

4

4

´

´

´

Î

INTRA

INTRA

INTRA

MODE

,

P-slices:

[image: image9.wmf]þ

ý

ü

î

í

ì

´

´

´

´

´

´

´

Î

8

8

,

16

8

,

8

16

,

16

16

,

,

16

16

,

8

8

,

4

4

Tree

SKIP

INTRA

INTRA

INTRA

MODE

,

B-slices:

[image: image10.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

´

´

´

´

´

´

´

´

-

´

´

´

Î

8

8

,

16

8

,

8

16

,

16

16

,

8

8

,

16

8

,

8

16

,

16

16

,

,

16

16

,

8

8

,

4

4

,

_

,

_

TreeBWD

BWD

BWD

BWD

TreeFWD

FWD

FWD

FWD

PREDICTIVE

BI

INTRA

INTRA

INTRA

DIRECT

B

SKIP

B

MODE

.

The SSD is the sum of the squared differences between the original block
[image: image11.wmf]s

 and its reconstruction
[image: image12.wmf]c

 and is calculated as

[image: image13.wmf][

]

[

]

(

)

[

]

[

]

(

)

,

|

,

,

,

|

,

,

,

)

|

,

,

(

}

,

{

8

,

8

1

,

1

2

16

,

16

1

,

1

2

å

å

å

=

=

=

=

=

þ

ý

ü

î

í

ì

-

+

-

=

V

U

cr

y

x

cr

U

y

x

Y

Y

QP

MODE

y

x

c

y

x

s

QP

MODE

y

x

c

y

x

s

QP

MODE

c

s

SSD

and
[image: image14.wmf])

|

,

,

(

QP

MODE

c

s

R

is the actual number of bits associated with choosing MODE and QP including the bits for the MB header, the motion, and all DCT blocks.
[image: image15.wmf]]

|

,

,

[

QP

MODE

y

x

c

Y

 and
[image: image16.wmf]]

,

[

y

x

s

Y

represent the reconstructed and original luminance values, while cU, cV and sU, sV represent the corresponding chrominance values. The Lagrangian multiplier (MODE is given by:

[image: image17.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

´

==

´

´

=

-

-

used

are

slices

B

if

QP

Slice

B

currslice

used

are

slices

B

no

if

QP

QP

MODE

3

12

3

12

2

1)

:

))

6

min(4,

max(2,

?

_

(

68

.

0

2

85

.

0

l

 where QP is the MB quantization parameter. (MOTION is calculated as
[image: image18.wmf]MODE

MOTION

l

l

=

. Some small adjustments are made based on whether the current slice is a B slice and belongs to a reference frame (i.e. (MODE= 0.8((MODE) or depending on the pyramid mode used.
However, the above Lagrangian multiplier computation is provided mainly as a reference and does not mean that it is optimal. In general, and similar to the quantization rounding offsets, these parameters have a high dependency on the content characteristics, and the proper selection of these parameters could have a significant impact in coding performance. We will refer the reader to [14] for further reading upon this issue.

As an enhancement, we have introduced a set of new parameters in the encoder which allow the user to modify the Lagrangian multiplier through explicitly specifying the scaling parameter (LambdaWeight) in an equation of the form:

[image: image19.wmf]3

12

2

]

_

[

-

´

=

QP

MODE

type

slice

ht

LambdaWeig

l

.
V. RD picture decision with Weighted Prediction Support
One of the most known features of H.264 which was not well considered in the reference software was Weighted Prediction. The reference software only provided parameters for enabling the same weighted prediction method (explicit for P and B or implicit for B) for all slices of the same type. This, unfortunately, did not fully exploit the benefits of these concepts since weighted prediction may not be always useful.
To resolve this issue, we have implemented instead a picture based multipass encoding strategy in the encoder. This implies that the same picture may be coded multiple times using various modes, and more specifically without weighted prediction, using explicit weights or offsets for P slices, and implicit and explicit weights for B slices. To support this functionality multiple picture parameter sets had to also be supported by the encoder since the different weighting prediction methods are enabled through these parameter sets. During each encoding set the encoder has to essentially switch between the appropriate parameter set and potentially determine any additional parameters (i.e. weights) if needed. We should mention that explicit weights and offsets are computed based on DC ratios and differences respectively.
Since, however, there are cases where weighted prediction might be unnecessary, i.e. if for example all weights or offsets are equal to the default values and therefore would result in identical performance as the non weighted case, we have also implemented in the code several alternative picture coding modes that could be instead tested. More specifically, instead of performing weighted prediction using weights for P slices, the encoder could optionally consider to code the same frame using a lower QP (QP-1). Similarly, instead of performing weighted prediction using offsets for P slices, the encoder could optionally consider to code the same frame using a higher QP (QP+1). Another condition for P slices is to examine whether it might be better to encode this slice as a I slice based on the ratio of Intra macroblocks after the first two possible coding modes. For B slices on the other hand, no weighted prediction and implicit weighted prediction were always tested (the later might be unnecessary for some cases where 1 reference is used for both list0 and list1), while if the explicit weighted prediction resulted in default weights an alternative optional coding could be performed using QP + 1 for non reference pictures, and QP – 1 for referenced ones. These alternative modes could be explicitly enabled or disabled using appropriate parameters. We should point out that we have found that these alternative QP based coding modes appear to be more useful when coding B slices and not as useful for P Slices.
The above scheme could be described using the following pseudo code:

Void RDPictureCoding()

{

// First Encoding pass

code_picture(enc_pic_v1, no_weight, QP, img_type);

// Second Encoding pass

if (img_type == I_SLICE && RDIntraEnabled)

{

code_picture(enc_pic_v2, no_weight, QP – 1, img_type);

enc_pic_v1v2 = select_best_picture(enc_pic_v1, enc_pic_v2);

}

else if (img_type == P_SLICE)

 {

if (test_wp_P_slice(use_weights) == TRUE)

{

code_picture(enc_pic_v2, use_weights, QP, img_type);

enc_pic_v1v2 = select_best_picture(enc_pic_v1, enc_pic_v2);

}

else if (!RDPSliceWeightOnly)

{

code_picture(enc_pic_v2, no_weight, QP - 1, img_type);

enc_pic_v1v2 = select_best_picture(enc_pic_v1, enc_pic_v2);

}

}

else if (img_type == B_SLICE)

{

code_picture(enc_pic_v2, implicit_weights, QP, img_type);

enc_pic_v1v2 = select_best_picture(enc_pic_v1, enc_pic_v2);

}

// Final Encoding pass

if (img_type == I_SLICE && RDIntraEnabled)

{

code_picture(enc_pic_v3, no_weight, QP + 1, img_type);

enc_pic_v1v2v3 = select_best_picture(enc_pic_v1v2, enc_pic_v3);

}

else if (img_type == P_SLICE)

 {

if (enc_pic_v1v2->IntraPercentage > = 75)

{

code_picture(enc_pic_v3, no_weight, QP, I_SLICE);

enc_pic_v1v2v3 = select_best_picture(enc_pic_v1v2, enc_pic_v3);

}

else if (test_wp_P_slice(use_offsets) == TRUE)

{

code_picture(enc_pic_v2, use_offsets, QP, img_type);

enc_pic_v1v2v3 = select_best_picture(enc_pic_v1v2, enc_pic_v3);

}

else if (!RDPSliceWeightOnly)

{

code_picture(enc_pic_v2, no_weight, QP + 1, img_type);

enc_pic_v1v2v3 = select_best_picture(enc_pic_v1v2, enc_pic_v3);

}

}

else if (img_type == B_SLICE)

{

if (test_wp_B_slice(explicit_weights) == TRUE)

{

code_picture(enc_pic_v3, explicit_weights, QP, img_type);

enc_pic_v1v2v3 = select_best_picture(enc_pic_v1v2, enc_pic_v3);

}

else if (!RDPSliceWeightOnly)

{

code_picture(enc_pic_v3, enc_pic_v1v2->WP_method, QP - 1, img_type);

enc_pic_v1v2v3 = select_best_picture(enc_pic_v1v2, enc_pic_v3);

}

}

Final_picture_mode = enc_pic_v1v2v3;
}

Picture decision is based on a very similar mechanism as the one used for Frame/Field adaptive coding that is by selecting the picture coding Mode (PictureMODE) which results in a minimum cost J

[image: image20.wmf])

(

)

(

)

(

E

PictureMOD

R

E

PictureMOD

SSD

E

PictureMOD

J

E

PictureMOD

×

+

=

l

Where now SSD corresponds to the Sum of Square Differences for the entire picture, R is the total number of bits used for this mode, and (PictureMODE is the lagrangian multiplier computed as:

[image: image21.wmf]3

12

2

1)

:

))

6

min(4,

max(2,

?

_

(

68

.

0

-

´

==

´

=

QP

E

PictureMOD

QP

SLICE

B

currslice

l

Note that the above assumes one slice per picture, and a single QP (for Rate control a reference QP, i.e. the initial or average QP of the first encoding, could be used instead).

We should point that the selection of this parameter was not done on any specific test. We have observed for example that for some content having a larger (PictureMODE (i.e. content with very little motion and detail) could actually lead to better performance, while for content with high motion and high detail, a smaller value may be more appropriate.

We should also mention that additional alternative coding modes could also be introduced. For example one may wish to examine if a B slice provides a better performance than a P, or vice versa, whether temporal direct could be a better choice (especially at very low rates) than spatial direct, use a different number (i.e. use only 1 reference for both lists or all available ones) or set of references (using reordering), or to consider different rounding offsets or mode decision lagrangian parameters. It should be noted however that these additional coding steps could be quite costly, while one may also introduce intelligent decisions to eliminate or determine which sets or conditions are more reasonable to consider. In a real encoder one may also decide to reuse certain common processes such as the motion estimation process.

Finally, we should also point out that weighted prediction is still not yet optimal. One for example may wish to provide multiple offsets or weights (with the use of reordering) which could be beneficial for coding certain content (i.e. content with variable illumination changes such as flashes). Although we cannot provide with such feature in the current implementation, we believe that this should be quite straightforward for anyone to add if referring to the existing code available in the reference software.
VI. Bi-Predictive Motion Estimation
Motion estimation is one of the most, if not the most, significant components of any video encoder and could considerably affect coding performance. The accuracy of the Motion estimation scheme used could impact the correlation between the current picture and it’s reference and therefore the bits required to compress that image. However, most encoder implementations including the JM mainly consider motion estimation for single prediction, and do not properly make any special consideration for bi-predictive slices. Motion vectors for bi-prediction are usually selected through combining the best single prediction motion vectors which in many cases might be far from being optimal. This is especially true for example in the presence of cross-fades or fades. Considering that the H.264 standard relies more than ever in the efficacy of B slices, it is therefore desirable to improve motion estimation in B slices by making special considerations for bi-prediction.
In [17] and later also in [18] it was suggested that instead of performing motion estimation independently for each prediction, an iterative joint motion estimation is performed instead which considers both predictions at the same time. More specifically, distortion is computed as

[image: image22.wmf]å

=

=

-

-

´

-

-

-

´

-

=

2

1

,

1

,

1

1

1

1

1

0

0

0

0

1

1

0

0

]

,

[

]

,

[

]

,

[

))

(

),

(

,

(

B

B

y

x

y

x

y

x

m

y

m

x

c

a

m

y

m

x

c

a

y

x

s

c

c

s

SAD

m

m

where c0 and c1 are the two references,
[image: image23.wmf]T

y

x

m

m

)

,

(

0

0

0

=

m

 and
[image: image24.wmf]T

y

x

m

m

)

,

(

1

1

1

=

m

 their associated motion vectors, and a0 and a1 the corresponding weights for each reference. During each iteration, one of the motion vectors for a reference is fixed, and the encoder tries to find the motion vector for the second reference that minimizes the above distortion. More specifically the algorithm for this process can be described as follows:
Step 1. Initialize motion vectors m0 and m1 (i.e. by setting them to zero or equal to the single prediction mvs). Set n = 0;

Step 2. Form reference pictures a0(c0 and a1(c1.
Step 3. Perform motion estimation in a0(c0 to refine motion vectors m0 using the above joint distortion
[image: image25.wmf]))

(

),

(

,

(

1

1

0

0

m

m

c

c

s

SAD

 while keeping m1 constant.

Step 4. If (has_changed(m0) && n !=0) exit;

Step 5. Perform motion estimation in a1(c1 to find motion vectors m1 using the above joint distortion
[image: image26.wmf]))

(

),

(

,

(

1

1

0

0

m

m

c

c

s

SAD

 while keeping m0 constant.

Step 6. If (has_changed(m1) || n == max_iterations) exit

Step 7. n++
Step 8. Goto Step 3.
The above scheme has been implemented within the latest JM code. To minimize complexity, considering the number of possible references and block sizes that the H.264 standard supports, we have only considered the 16x16 block size and the combination of only the two references in lists 0 and 1 with reference index 0. Initialization (step 1) is performed by considering the mvs computed through single prediction motion estimation after the first list0 and first list1 references have been tested, while essentially two independent iterations are performed based on these two different initial values. Our code allows performing up to 5 refinements, while it also supports biprediction at the subpixel level. Weighted prediction is also supported for both implicit and explicit biprediction.
VII. Other Enhancements

A minor tool that was incorporated in the reference software was the concept of selective Hadamard motion estimation. Considering that, especially in the presence of a fast integer motion estimation scheme, subpixel motion estimation occupies a considerable percentage of the overall complexity of the encoder it would be desirable that such is reduced. Complexity is further increased due to the consideration of the Hadamard transform considered within this process. To reduce complexity, instead of performing the Hadamard transform for all subpixel positions, Hadamard transform can be performed instead only during the quarter pixel refinement step. We have observed that this step could reduce overall complexity of the encoder around 10-20% when a fast integer motion estimation scheme is used with negligible if any performance loss. To also further alleviate some of this loss, one can also tune the lagrangian multipliers (essentially slightly decrease them).
Another parameter that also appears to have a significant impact in complexity was the introduction of the ChromaIntraDisable flag which only allows DC Chroma prediction for Intra coded macroblocks. Unfortunately, the current structure of the codec forces all intra decisions to be performed for each possible chroma intra prediction mode. This can result in a significant complexity increase while achieving a very minor improvement in terms of coding efficiency. Although there is an intention of fixing the software in an attempt to avoid performing these unnecessary computations, due to lack of time this flag can be used as an alternative for reducing complexity.
VIII. Simulation Results

To evaluate all of the new performance tools discussed in the previous section, we have designed a rather rigorous test using several sequences with different characteristics, a big range of quantizers, and different picture coding order structures. Our test mainly focused on QCIF, CIF, and QVGA resolution sequences, although we do not expect big differences on higher resolution material. The sequences used were the following:
1) Container QCIF and CIF

2) Silence QCIF

3) Foreman QCIF and CIF

4) News QCIF

5) Paris CIF

6) Tempete CIF

7) Mobile QCIF and CIF

8) Stefan QCIF and CIF

9) Akiyo QCIF

10) Football QCIF

11) Flower CIF

12) Bus CIF

13) Movie1 QCIF

14) Movie2 QCIF

15) Movie3 QVGA

16) Movie4 CIF

17) MTV1 QVGA

18) MTV2 QVGA

Considering that the common test conditions mainly focus at lower bitrates using QPI,P values of {28, 32, 36, 40}, which might not be as appropriate for many applications, we have additionally tested performance for quantization values {12, 16, 20, 24}. QPRB for B reference slices was set equal to QPI,P + 1, while QPB for non reference B slices was set equal to QPI,P + 2. Evaluation was performed using P only coding, 2 non reference B slices, 3 level B pyramids using 3 B pictures (i.e. I0-P4-RB2-B1-B3-P8…), and 5 (i.e. I0-P6-RB4-RB2-B1-B3-B5-P12…), and a 4 level B pyramid using 7 B pictures as the one discussed in Section II. It should be mentioned that the coding order of the 5B pyramid was preferred versus a pyramid with a coding order of I0-P6-RB2-RB4-B1-B3-B5-P12… because RB4 could provide better motion information for use with the Direct modes of RB2 (for both temporal and spatial direct) since references are closer than those of P6. Note that two other interesting pyramid coding orders are I0-P4-RB3-B1-B2-P8… and I0-P4-RB3-RB2-B1-P8…, since these allow the encoder to take higher advantage of implicit weighted prediction and in general temporal distances between images. A search window of (32 was used for all simulations, while 5 references were stored in the reference buffer. However, for B slices only 2 of these references were used for either list0 and list1 (it should be pointed out however that for many cases using only a single reference for each list could lead to slightly better performance). 1 slice per picture, the 8x8 matrix with no quantization matrices (High profile) and the CABAC entropy method were used.
The Full Search (FS) algorithm was used to evaluate the original JM, while a fast motion estimation scheme based on zonal algorithms was used to evaluate the new tools. This fast scheme, which we will name as the Unified or Universal Zonal Search (UZS) scheme can easily consider any possible zonal based structure, including the Predictive Motion Vector Field Adaptive Search Technique (PMVFAST) and Advanced Predictive Diamond Zonal Search (APDZS) schemes [20], Enhanced Predictive Zonal Search (EPZS) [20]

 REF _Ref93347323 \r \h
[21], hexagonal search etc. Our scheme supports spatial and temporal predictors (computed by directly considering the co-located mvs used also for temporal direct), and a circular based pseudo fixed pattern [20], although, and unlike all our prior work on motion estimation, we have only considered fixed thresholding in order to avoid any significant memory allocations. In general, our implementation was aimed in not only reducing complexity (speed is approximately the same as the exisiting scheme within the reference software), but to also provide similar to FS performance with minimal memory and implementation cost (our implementation actually leads to significant reduction in memory versus both the FS and FastME schemes). Our scheme can support MBAFF and PicAFF encoding, 10 and 12 bit color, but also Bi-predictive ME as was discussed in Section VI. It should be noted that this scheme leads to faster encoding than FS even when all of the above new tools are combined, although with a significant performance improvement. The PMVFAST type of patterns (combinations of the large and small diamond patterns) were used for this simulation.
Considering the volume of our simulations, we have also selected enabling the ChromaIntraDisable flag for all simulations, but also the selective hadamard parameter for the new enhancements (disabled for the original JM).

All our simulation results can be seen in the associated excel document. In general, when comparing similar coding structures only, as someone would expect for normal sequences, benefits are very minor when using P slices only (although we have also used a Fast ME scheme which suggests its high efficacy). However benefits can be rather significant when using B slices (up to 15% bitrate reduction – 1dB PSNR improvement for some of the known test sequences using Bjontergaard Bitrate and PSNR [22]). Performance benefits appear also higher when using Pyramid structures, making the use of these structures more appealing. In general, we observe that possibly the most appealing in terms of performance is the use of the 3level-5B pyramid (commonly an additional 6% improvement over the enhanced 2B structure), and could be the preferred coding order for many applications. The 4level-7B pyramid does not appear to provide any additional performance benefit versus the 3level-5B pyramid (and many times results in a small performance loss), but could still be useful due to its scalability and trick mode properties. A summary of these results can be seen also in Table 1, where the performance of the enhanced 4level-7B pyramid compared to the “plain vanilla” JM using the common IBBP.. coding structure is shown.
IX. Conclusion

Several new tools were introduced in the reference software which can lead to significant improvements in terms of coding efficiency compared to commonly used encoding methods. We believe that these new tools, apart from the performance benefits, could also provide the insight necessary in designing other algorithms that could even further enhance performance of H.264 based encoders, while we hope that the examples provided could also help in the further understanding of the H.264 standard. Finally, we would also suggest, that maybe the common test conditions used for evaluating various tools and proposals are amended to consider a broader span of quantizers and sequences, but also some if not all of these tools, provided that a Fast motion/mode scheme is provided that would demonstrate a reasonable compromise in terms of complexity and coding efficacy. It would also be interesting to further modify the code and test some of the concepts not evaluated within the RD picture decision and which were mentioned in Section V, and in particular the consideration of a single reference (num_ref_idx_lX_active = 1), adjusting the rounding offset parameters or lagrangian multipliers, using temporal instead of spatial direct, adjusting deblocking (which btw does not require a full encode), using reordering and/or multiple weights/offsets per reference etc.

Table 1. Performance of enhanced 4level-7B pyramid versus “plain vanilla” JM with an IBBP… structure

	Sequence
	Resolution
	Bitrate
(12-24)
	PSNR
 (12-24)
	Bitrate
(28-40)
	PSNR
(28-40)
	Bitrate
(all QPs)
	PSNR
(all QPs)

	Container
	176x144
	-19.30%
	0.931dB
	-21.45%
	1.358dB
	-20.37%
	1.145dB

	Silence
	176x144
	-4.66%
	0.312dB
	-4.51%
	0.229dB
	-4.59%
	0.270dB

	Foreman
	176x144
	-5.05%
	0.281dB
	-3.34%
	0.180dB
	-4.19%
	0.230dB

	News
	176x144
	-9.49%
	0.613dB
	-8.53%
	0.524dB
	-9.01%
	0.569dB

	Paris
	352x288
	-7.62%
	0.427dB
	-9.82%
	0.509dB
	-8.72%
	0.468dB

	Tempete
	352x288
	-7.35%
	0.466dB
	-7.48%
	0.293dB
	-7.41%
	0.379dB

	Mobile
	352x288
	-9.11%
	0.625dB
	-9.13%
	0.425dB
	-9.12%
	0.525dB

	Stefan
	176x144
	-5.40%
	0.395dB
	0.16%
	-0.013dB
	-2.62%
	0.191dB

	Mobile
	176x144
	-12.31%
	0.850dB
	-13.64%
	0.697dB
	-12.97%
	0.774dB

	Football
	176x144
	-3.45%
	0.261dB
	-0.81%
	0.034dB
	-2.13%
	0.148dB

	Akiyo
	176x144
	-10.39%
	0.512dB
	-5.21%
	0.363dB
	-7.80%
	0.438dB

	Foreman
	352x288
	-4.49%
	0.185dB
	-4.15%
	0.195dB
	-4.32%
	0.190dB

	Flower
	352x288
	
	
	
	
	
	

	Stefan
	352x288
	
	
	
	
	
	

	Bus
	352x288
	
	
	
	
	
	

	Movie1
	176x144
	-10.29%
	0.558dB
	-15.51%
	0.745dB
	-12.90%
	0.651dB

	Movie2
	176x144
	-9.95%
	0.483dB
	-14.02%
	0.525dB
	-12.00%
	0.504dB

	Movie3
	320x240
	-11.21%
	0.399dB
	-11.30%
	0.891dB
	-11.25%
	0.645dB

	Movie4
	352x288
	-10.22%
	0.558dB
	-38.26%
	2.550dB
	-24.24%
	1.554dB

	MTV1
	320x240
	-8.36%
	0.331dB
	-17.49%
	0.885dB
	-12.93%
	0.608dB

	MTV2
	320x240
	-5.50%
	0.299dB
	-7.74%
	0.421dB
	-6.62%
	0.260dB

Note: The above results were generated without using explicit weighted prediction in B slices due to a bug in the original code that always considered this mode as invalid. New results with this bug fixed will be uploaded later.
[image: image27.emf]Enhanced JM Performance for Container QCIF Sequence

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

0100200300400500600

Bitrate (kbps)

Relative PSNR (dB)

Original P only

Enhanced P only

Original 2B

Enhanced 2B

Original 3B

Enhanced 3B

Original 5B

Enhanced 5B

[image: image28.emf]Enhanced JM Performance for Silence QCIF

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

0100200300400500600

Bitrate (kbps)

Relative PSNR (dB)

Original P only

Enhanced P only

Original 2B

Enhanced 2B

Original 3B

Enhanced 3B

Original 5B

Enhanced 5B

[image: image29.emf]Enhanced JM Performance for Foreman QCIF

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

020040060080010001200

Bitrate (kbps)

Relative PSNR (dB)

Original P only

Enhanced P only

Original 2B

Enhanced 2B

Original 3B

Enhanced 3B

Original 5B

Enhanced 5B

[image: image30.emf]Enhanced JM Performance for News QCIF

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

050100150200250300350400450500

Bitrate (kbps)

Relative PSNR (dB)

Original P only

Enhanced P only

Original 2B

Enhanced 2B

Original 3B

Enhanced 3B

Original 5B

Enhanced 5B

[image: image31.emf]Enhanced JM Performance for Paris CIF

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

05001000150020002500300035004000

Bitrate (kbps)

Relative PSNR (dB)

Original P only

Enhanced P only

Original 2B

Enhanced 2B

Original 3B

Enhanced 3B

Original 5B

Enhanced 5B

[image: image32.emf]Enhanced JM Performance for Tempete CIF

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

010002000300040005000600070008000

Bitrate (kbps)

Relative PSNR (dB)

Original P only

Enhanced P only

Original 2B

Enhanced 2B

Original 3B

Enhanced 3B

Original 5B

Enhanced 5B

[image: image33.emf]Enhanced JM Performance for Mobile CIF

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

010002000300040005000600070008000900010000

Bitrate (kbps)

Relative PSNR (dB)

Original P only

Enhanced P only

Original 2B

Enhanced 2B

Original 3B

Enhanced 3B

Original 5B

Enhanced 5B

X. References
[1] Advanced video coding for generic audiovisual services, http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-H.264
[2] Joint Video Team Reference Software, Version 9.3 (JM9.3), http://iphome.hhi.de/suehring/tml/download/

[3] H. Schwarz, D. Marpe, and T. Wiegand, “Subband Extension of H.264/AVC,” ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, document JVT‑K023, Munich, Germany, March 2004, ftp://standards.polycom.com/2004_03_Munich/JVT-K023.zip
[4] A.M. Tourapis, K. Sühring, G. Sullivan, “Proposed Amended H.264/MPEG-4 AVC Reference Software Manual,” ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, document JVT‑N008, Hong Kong, PRC China, January 2005, ftp://standards.polycom.com/2005_01_HongKong/JVT-N008.doc
[5] J. Lu, T. Chen, Y. Kashiwagi, and S. Kadono, “Proposal of quantization weighting for H.264/MPEG-4 AVC Professional Profiles,” ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, document JVT-K029, Munich, Germany, March 2004, ftp://standards.polycom.com/2004_03_Munich/JVT-K029r1.doc
[6] A.M. Tourapis, J. Boyce, “Performance Evaluation of the 8x8 Transform vs. Coefficient Adaptive Deadzone Consideration,” ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, document JVT K035, Munich, Germany, March 2004, ftp://standards.polycom.com/2004_03_Munich/JVT-K035.doc
[7] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications. Boston, MA: Academic, 1990.
[8] B. Tao, “On optimal entropy-constrained deadzone quantization,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, pp. 560–563, April 2001.
[9] W.K. Pratt, Digital Image Processing. John Wiley, New York, 1978.
[10] R. C. Reininger and J. D. Gibson, "Distributions of the Two-Dimensional DCT Coefficients for Images," in IEEE Trans. On Communications, vol. COM-31, pp. 835 - 839, June 1983.
[11] F. Müller, “Distribution shape of two-dimensional DCT coefficients of natural images” in Electronics Letters, 29(22):1935-1936, October 1993.
[12] S.R. Smoot and L.A. Rowe, "Study of DCT Coefficient Distributions," in SPIE Symposium on Electronic Imaging, Feb. 1996

[13] S.R. Smoot and L.A. Rowe, "Laplacian Model for AC DCT Terms in Image and Video Coding," Ninth Image and Multidimensional Signal Processing workshop, March 1996.
[14] G.J. Sullivan, "On embedded scalar quantization", in Proc. of IEEE ICASSP, May 2004.

[15] G.J. Sullivan, "Efficient scalar quantization of exponential and Laplacian random variables", IN IEEE Transactions on Information Theory, vol. 42, no. 5, pp. 1365-1374, Sept. 1996.
[16] G. Sullivan and T. Wiegand, “Rate Distortion Optimization for Video Compression,” IEEE Signal Processing Magazine, pp. 74-90, Nov’98

[17] S.W. Wu and A. Gersho,”Joint estimation of forward and backward motion vectors for interpolative prediction of video,” in IEEE Transactions on Image Processing, Vol.3, Iss.5, pp.684-7, Sept.’94.

[18] Markus Flierl, Thomas Wiegand, and Bernd Girod, "A Locally Optimal Design Algorithm for Block-Based Multi-Hypothesis Motion-Compensated Prediction", Proceedings of the Data Compression Conference, Snowbird, USA, April 1998.
[19] A. M. Tourapis, O. C. Au, and M. L. Liou, “Highly Efficient Predictive Zonal Algorithms for Fast Block-Matching Motion Estimation,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 12, No 2, pp.934-947, Oct'02.

[20] H. Y. Cheong, A. M. Tourapis, and P. Topiwala, “Fast Motion Estimation within the JVT codec,” ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, document JVT-E023, Geneva, Switzerland, Oct'02, ftp://standards.polycom.com/2002_10_Geneva/JVT-E023.doc.

[21] H-Y. Cheong, A. M. Tourapis, “Fast Motion Estimation within the H.264 codec,” in proceedings of 2003 IEEE International Conference on MultiMedia & Expo (ICME-2003), Baltimore, MD, July 6-9, 2003.

[22] G. Bjontegaard, “Calculation of average PSNR differences between RD-Curves”, ITU-T Q6/SG16, document VCEG-M33, Apr’01.

_1165067326.vsd
P

B

B

P

B

B

B

B

B

_1167051870.unknown

_1167063510.unknown

_1167084256.unknown

_1167084900.unknown

_1167084957.unknown

_1167084295.unknown

_1167084100.unknown

_1167052873.unknown

_1167063344.unknown

_1167051990.unknown

_1167051842.unknown

_1167051866.unknown

_1167049648.unknown

_1142953888.unknown

_1142954021.unknown

_1142954029.unknown

_1142954044.unknown

_1142954026.unknown

_1142953892.unknown

_1138718544.unknown

_1142953859.unknown

_1142953832.unknown

_1051365312.unknown

_1138718541.unknown

_1051365311.unknown

