
	ITU-T Video Coding Experts Group (ITU-T SG16 Q.6)

24th Meeting: 18-22 October 2003, Palma de Mallorca
	Document: VCEG-X09
Filename:VCEG-X09.doc

	Title:
	Introduction of a back channel for H.264

	Status:
	Input Document to VCEG

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Frederic Loras
France Telecom,
38, rue du General Leclerc
92794 Issy Les Moulineaux, France
	
Tel:
Email:
	
+33 145296534
frederic.loras@francetelecom.com

	Source:
	France Telecom.

1 Introduction & Background
Video telecommunication over IP networks has to deal with packet loss. Concealment is on key feature to ensure good quality. Real time communication can take as advantage the fact that the encoder is encoding in real time so it can adapt its own strategy to the packet loss. For example, it can decrease its outgoing bit rate or strengthen its bit stream by using some tools like FMO in H.264. H.263+ experience showed that using a back channel that allows a decoder to send information to an encoder can drastically improve the quality of the communication over error prone networks. That is why the use of a back channel is interesting for H.264 video telecommunications.

2 Summary
H.264 video telecommunication can take benefits of the use of a back channel. As done for H.263+ (annex N) the back channel presented here can be defined as a separate back channel or as a videomux mode that uses backward channel messages sent from a decoder to an encoder to inform the encoder which part of which pictures have been correctly decoded by the decoder.

3 H.264 back channel set up
As already done for H.263+, there are two methods of operation in terms of the channel for backward channel messages:

1) Separate Logical Channel mode: This method of operation delivers back-channel data through a separate logical channel in the multiplex layer of the system, and

2) VideoMux mode: This method of operation delivers back-channel data for received video within the forward video data of a video stream of encoded data.

4 Back channel messages

When using the video mux mode, back channel messages can be included as new SEI messages. See the SEI syntax in 4.1 and the common syntax in 4.2.

When using the separated mode, the common syntax must be used for the back channel messages. See the common syntax in 4.2.
4.1 Back channel messages in SEI syntax for Video multiplexed mode
	sei_payload(payloadType, payloadSize) {
	C
	Descriptor

	if(payloadType = = 0)
	
	

	buffering_period(payloadSize)
	5
	

	…
	…
	…

	else if(payloadType = = 18)
	
	

	
motion_constrained_slice_group_set(payloadSize)
	5
	

	else if(payloadType = = 19)
	
	

	
Back_channel_msg (payloadSize)
	5
	

	else
	
	

	
reserved_sei_message(payloadSize)
	5
	

	if(!byte_aligned()) {
	
	

	bit_equal_to_one /* equal to 1 */
	5
	f(1)

	while(!byte_aligned())
	
	

	bit_equal_to_zero /* equal to 0 */
	5
	f(1)

	}
	
	

	}
	
	

4.2 Back channel messages common syntax
	Back_channel_msg(payloadSize)

{
	C
	Descriptor

	
Bk_pic_parameter_set_id
	5
	ue(v)

	
BkBadFrame
	5
	u(1)

	
if(BkBadFrame == 1)

{
	
	

	

Bk_frame_num
	5
	u(v)

	

Bk_last_good_frame_num
	5
	u(v)

	

Bk_num_slices_minus1
	5
	ue(v)

	

if(Bk_num_slices_minus1 > 0)

{
	
	

	

Bk_slice_map_type
	5
	ue(v)

	

if(Bk_slice_map_type = = 0)
	
	

	

for(iGroup = 0; iGroup <= Bk_num_slices_minus1; iGroup++)
	
	

	

Bk_run_length_minus1[iGroup]
	5
	ue(v)

	

else if(Bk_slice_map_type = = 2)
	
	

	

For(iGroup = 0; iGroup < Bk_num_slices_minus1; iGroup++)

{
	
	

	

Bk_top_left[iGroup]
	5
	ue(v)

	

Bk_bottom_right[iGroup]
	5
	ue(v)

	

}
	
	

	

else if(Bk_slice_map_type = = 3 | |

Bk_slice_map_type = = 4 | |

Bk_slice_map_type = = 5)

{
	
	

	

Bk_slice_change_direction_flag
	5
	u(1)

	

Bk_Start_MbNum
	5
	ue(v)

	

Bk_run_length_minus1
	5
	ue(v)

	

}

else if(Bk_slice_map_type = = 6)

{
	
	

	

Bk_pic_size_in_map_units_minus1
	5
	ue(v)

	

For(i = 0; i <= Bk_pic_size_in_map_units_minus1; i++)
	
	

	

Bk_slice_id[i]
	5
	u(v)

	

}//end of slice map types
	
	

	

} //end of num slices
	
	

	

for(iGroup = 0; iGroup <= Bk_num_slices_minus1; iGroup++)
	
	

	

Bk_slice_lost[iGroup]
	5
	u(1)

	
} //end of BkBadFrame ==1
	
	

	}
	
	

4.3 Back channel messages semantics

Bk_pic_parameter_set_id: identifies the picture parameter set that is referred to in the slice header. (missing or not)
BkBadFrame: indicate slices losses or whole picture loss.
Bk_frame_num: identifies the picture that has been lost or that contains lost slices.

Bk_last_good_frame_num: identifies the last picture that has been well decoded.

Bk_num_slices_minus1: plus 1 specifies the number of slices for a picture. When num_slices_minus1 is equal to 0, all macroblocks of the same picture belong to the same slice.
Bk_slice_map_type: specifies how the mapping of macroblocks to slices is coded. The value of slice_map_type shall be in the range of 0 to 7, inclusive. Those slice maps can be mapped into Slice group map if the number Bk_num_slices_minus1 does not exceed slice_group_map_type. The different kinds of map type correspond to the slice group map of the FMO.
slice_map_type equal to 0 specifies interleaved slices.

slice_map_type equal to 1 specifies a dispersed slice mapping.

slice_map_type equal to 2 specifies one or more “foreground” slice groups and a “leftover” slice group.

slice_map_type values equal to 3, 4, and 5 specify changing slice groups. When num_slices_minus1 is not equal to 1, slice_map_type shall not be equal to 3, 4, or 5.

slice_map_type equal to 6 specifies an explicit assignment of a slice to each slice group map unit.

slice_map_type equal to 7 specifies that the slice map correspond to an exact slice group map as defined in the picture parameter set.
…

Bk_slice_lost: is used to specify for each slice if it has been lost or not. 1 indicates a loss.
4.4 Examples of back channel messages:

No picture parameter set received

The decoder receives a Slice header, but has no associated picture parameter set with the corresponding pic_parameter_set_id. The following message should be sent:

	Back_channel_msg(payloadSize)

{
	Value

	
Bk_pic_parameter_set_id
	pic_parameter_set_id

	
BkBadFrame
	0

	}
	

4.4.1 No sequence parameter set received

The decoder receives a Slice header; but the associated picture parameter references a sequence parameter set that is unavailable. The following message should be sent:

	Back_channel_msg(payloadSize)

{
	Value

	
Bk_pic_parameter_set_id
	pic_parameter_set_id

	
BkBadFrame
	0

	}
	

4.4.2 Whole frame lost

The decoder detects a gap in frame number while gaps in frame number are not allowed. The following message should be sent:

	Back_channel_msg(payloadSize)

{
	Value

	
Bk_pic_parameter_set_id
	pic_parameter_set_id

	
BkBadFrame
	1

	

Bk_frame_num
	Frame ID -1

	

Bk_last_good_frame_num
	Frame ID -2

	

Bk_num_slice_groups_minus1
	0

	

Bk_slice_group_lost[0]
	1

	}
	

4.4.3 Second slice of a three slice picture is lost (no FMO)
The decoder detects that a slice is lost. No FMO is used for this picture:
	Back_channel_msg(payloadSize)

{
	Example of value

	
Bk_pic_parameter_set_id
	pic_parameter_set_id

	
BkBadFrame
	1

	

Bk_frame_num
	Current Frame ID

	

Bk_last_good_frame_num
	FrameID -1

	

Bk_num_slice_groups_minus1
	2

	

Bk_slice_group_map_type
	0

	

Bk_run_length_minus1[0]
	99

	

Bk_run_length_minus1[1]
	99

	

Bk_run_length_minus1[2]
	195

	

Bk_slice_group_lost[0]
	0

	

Bk_slice_group_lost[1]
	1

	

Bk_slice_group_lost[2]
	0

	}
	

4.4.4 The whole slice group number 1 is lost in a 3 slice group picture (slice group number are from 0 to 2).

The decoder has lost exactly the slice group 1. The back channel message tells that in the map described in the pic_parameter_set_id, the slice group number 1 is lost.
	Back_channel_msg(payloadSize)

{
	Example of value

	
Bk_pic_parameter_set_id
	pic_parameter_set_id

	
BkBadFrame
	1

	

Bk_frame_num
	Current Frame ID

	

Bk_last_good_frame_num
	FrameID -1

	

Bk_num_slice_groups_minus1
	2

	

Bk_slice_group_map_type
	7

	

Bk_slice_group_lost[0]
	0

	

Bk_slice_group_lost[1]
	1

	

Bk_slice_group_lost[2]
	0

	}
	

4.5 Results:

When transmitting video over networks, it is really rare when no loss appear. When some information is lost, some bad artifacts appear to the video. The first reason is due to the lack of information (packet lost) and approximates concealment, and the second is due to prediction of well received data on an area that have been previously lost.

Example of artifacts generated by lost packets.

[image: image1.png]

The use of a back channel can limit in time and in space (due to timing prediction) those non-desired artifacts. Indeed, the maps of the non-received (or badly decoded) macroblocks are transmitted on the back channel, so the encoder can encode those corresponding macroblocks in a way that can completely refresh the bad area. The picture quality is highly improved.

Moreover, FMO tool allow defining any kinds of macroblocks maps so the syntax is easy to understand because it reuse the FMO definitions of the maps.

5 Conclusions

We recommend the adoption of such a tool for the following reasons:
- The back channel is a very powerful and simple tool that improves drastically the quality over error prone networks.
- Its integration into the actual standard is very easy too. (Only a new SEI message & back channel syntax)
- The video mux mode simplifies the integration into products. Indeed, no additional socket needed so no NAT or Firewall traversal problem.

- The separate back channel is very useful for one direction transmission.

If someone has still some doubts about the efficiency of the back channel use, please, see the demo or contact me to see the demo.

File:VCEG-W11.doc
Page: 1
Date Printed: 10/13/2004

