	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)
35th Meeting: Berlin, Germany, 16-18 July, 2008
	Document VCEG-AI15
Filename: VCEG-AI15.doc

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Damian Karwowski
Marek Domański

Poznań University of Technology, Chair of Multimedia Telecommunications and Microelectronics, Poznań, Poland
	
Tel:
Fax:
Email:
	
+48 61 665 3900
+48 61 665 3899
dkarwow@multimedia.edu.pl
domanski@et.put.poznan.pl

	Title:
	Improved Context-based Adaptive Binary Arithmetic Coding using Context-Tree Weighting

	Purpose:
	Proposal for improvement of CABAC

1 Introduction

An improved Context-based Adaptive Binary Arithmetic Coding (CABAC) is proposed for applications future H.265 standard. The proposed modification results in increased coding efficiency [9-11] (as compared to the original CABAC in Advanced Video Coding (H.264/MPEG-4 Part 10) [7]). The improvement consists in more accurate estimation of the conditional probabilities of symbols that are fed to an arithmetic coder. To achieve that, the well-known data modeling technique of the Context-Tree Weighting (CTW) is used. The method of incorporating of CTW into CABAC is original. The efficiency of the modified CABAC encoder (with CTW technique) has been compared with the coding efficiency of the original CABAC encoder. The bitstream reduction of 1%-2.5% has been obtained after application of CTW within CABAC. Additionally, complexity of the modified AVC codec (with CABAC and CTW) relative to the complexity of the original AVC codec (with CABAC) has been tested.
2 Bitstream syntax

The proposed modified CABAC codec (with CTW) is not a standard CABAC codec. Nevertheless, the modification of an entropy encoder does not influence bitstream syntax that may be the same as in AVC or H.265. Nevertheless both coder and decoder have to use the same version of CABAC (either the original or the modified). If the modification is adopted as standard, no bitstream modification is needed. If the modification is adopted optionally an additional one-bit flag will be needed for signalization of the bitstream obtained with the modified CABAC. The flag would be needed in the sequence or group of pictures header. In any case the lowest level for this flag would be slice headers.
3 Main idea of CTW technique

Context Tree Weighting (CTW) is a technique of statistical data modeling that is used for estimation of the conditional probability of the successor symbol [2, 3]. The technique uses binary context tree to store information about symbol statistics of binary source data. In a given node s of the context tree the information about number of zeros
[image: image1.wmf]s

a

 and number of ones
[image: image2.wmf]s

b

 that follow context s in the source sequence is kept. In order to store information about symbol statistics for maximum context length D, binary context tree of depth D is used. The structure of binary tree of depth D = 3 is shown in Figure 1.
[image: image34.emf]a

λ

+1, b

λ

a

0

+1, b

0

a

10

+1, b

10

a

110

+1, b

110

a

1

, b

1

a

11

, b

11

a

111

, b

111

a

011

, b

011

a

101

, b

101

a

001

, b

001

a

010

, b

010

a

100

, b

100

a

000

, b

000

a

00

, b

00

a

01

, b

01

0

0

0

0

0

0

0

1

1

1

1

1

1

1

sourcesequence:

. . x

n-3

x

n-2

x

n-1

x

n

. . 1 1 0 0

a

s

–numberofzeros(0)

b

s

–numberofones(1)

contextpath

0

1

s

1s

0s

s

w

P

0s

w

P

1s

w

P

depthD

0123

a

λ

+1, b

λ

a

0

+1, b

0

a

10

+1, b

10

a

110

+1, b

110

a

1

, b

1

a

11

, b

11

a

111

, b

111

a

011

, b

011

a

101

, b

101

a

001

, b

001

a

010

, b

010

a

100

, b

100

a

000

, b

000

a

00

, b

00

a

01

, b

01

0

0

0

0

0

0

0

1

1

1

1

1

1

1

sourcesequence:

. . x

n-3

x

n-2

x

n-1

x

n

. . 1 1 0 0

a

s

–numberofzeros(0)

b

s

–numberofones(1)

contextpath

0

1

s

1s

0s

s

w

P

0s

w

P

1s

w

P

a

λ

+1, b

λ

a

0

+1, b

0

a

10

+1, b

10

a

110

+1, b

110

a

1

, b

1

a

11

, b

11

a

111

, b

111

a

011

, b

011

a

101

, b

101

a

001

, b

001

a

010

, b

010

a

100

, b

100

a

000

, b

000

a

00

, b

00

a

01

, b

01

0

0

0

0

0

0

0

1

1

1

1

1

1

1

sourcesequence:

. . x

n-3

x

n-2

x

n-1

x

n

. . 1 1 0 0

a

s

–numberofzeros(0)

b

s

–numberofones(1)

contextpath

0

1

s

1s

0s

s

w

P

0s

w

P

1s

w

P

depthD

0123

Figure 1. Binary tree of contexts.

At depth 0, …, D – 1 each node s has its successor 0s (associated with context 0) and successor 1s (associated with context 1) as shown in Figure 1. By encoding of a new symbol
[image: image3.wmf]n

x

, the information about D previous symbols is used. These D previous symbols determine the context for
[image: image4.wmf]n

x

, and this context specifies the context path on the contexts tree (see Figure 1). After encoding the symbol
[image: image5.wmf]n

x

 the information about symbols statistics is updated in each node from the context path (e. g. when
[image: image6.wmf]0

=

n

x

,
[image: image7.wmf]s

a

 is incremented by 1 in each node on the context path). Based on
[image: image8.wmf]s

a

 and
[image: image9.wmf]s

b

 counters, the algorithm recursively calculates the value of weighted probability
[image: image10.wmf](

)

n

s

w

x

P

1

 (w means weighted probability) of symbols sequence
[image: image11.wmf]n

x

1

 in each node on the context path beginning from the leaf to the root
[image: image12.wmf]l

 of the context tree:

[image: image13.wmf]ï

î

ï

í

ì

<

+

=

=

,

|

|

),

(

)

(

2

1

)

,

(

2

1

,

|

|

),

,

(

)

(

1

1

1

0

1

D

s

for

x

P

x

P

b

a

P

D

s

for

b

a

P

x

P

n

s

w

n

s

w

s

s

e

s

s

e

n

s

w

where:

[image: image14.wmf]s

 means the depth on which the node s is located in the context tree;

[image: image15.wmf](

)

s

s

e

b

a

P

,

 (e stands for estimated probability) is the Krichevsky – Trofimov estimator [12] that is calculated recursively for symbol 0 with the following equation:

[image: image16.wmf].

1

5

.

0

)

,

(

)

,

1

(

+

+

+

=

+

s

s

s

s

s

s

e

s

s

s

e

b

a

a

b

a

P

b

a

P

A similar equation is used for symbol 1.
In the root
[image: image17.wmf]l

 of the context tree the final conditional weighted probability
[image: image18.wmf](

)

(

)

(

)

1

1

1

1

1

/

-

-

=

n

w

n

w

n

n

w

x

P

x

P

x

x

P

l

l

l

 is calculated which is used by arithmetic codec.
Conditional probability may be estimated using various depth D of the tree. In principle, increasing depth improves compression. Nevertheless, careful experiments [11] with various test video sequences have shown that the depth values exceeding 8 do not lead to any increase of coding performance. Therefore, we assume the depth of context trees to be fixed to D = 8 in the course of further discussion (see also Section 9 for the motivation).
4 General structure of the proposed entropy codec

The main idea of the proposal [9-11] is to replace the simple method of data statistics estimation that is in CABAC [1] hitherto. The idea is to use a more sophisticated and more accurate technique of the conditional probabilities estimation based on Context Tree Weighting (CTW) [2, 3]. The general structure of the proposed entropy codec has been presented in Figure 2.

[image: image19.emf]probability,

bit

Arithmetic Coder

from H.263 standard

bit for context model update

bitstream

coded bits

coded bits

loop

over bits

bit

bypass path

regular path

binary data

m-ary

data

Binarizer

Context

modeler with

CTW

Regular

coding

engine

Bypass

coding

engine

bit

Figure 2. The block diagram of the new entropy codec.

In the proposed (modified) entropy codec, depth D of context trees equal to 8 is used.

In more detail, the CTW technique has been adopted for CABAC codec in the following way:

1) Binarization schemes, definition of probability models and the method of selection of the proper probability model have been left unchanged with respect to CABAC.
2) The technique of the data statistics estimation from CABAC has been replaced with more sophisticated one based on CTW. A separate context tree of depth
[image: image20.wmf]8

=

D

 has been ascribed to each of 399 probability models defined in CABAC (see Figure 3).

[image: image21.emf]2

1

3

Contexts tree 0

Contexts tree 398Contexts tree 10Contexts tree 3

0

d

e

p

t

h

D

...

............

01

1

1

0

0

0

λ

............

01

1

1

0

0

0

λ

............

01

1

1

0

0

0

λ

............

01

1

1

0

0

0

λ

Statistical

model 0

Statistical

model 3

Statistical

model 10

...

Statistical

model 398

......

mb_typefor Intra slice type

Figure 3. Context trees in CABAC.

3) The optimized scheme of CTW method that works in logarithmic domain [8] has been implemented in CABAC.
4) For the reason that the M-codec core (the core of binary arithmetic codec) from CABAC has been adopted to operate properly with a limited set of only 128 predefined quantized values of probabilities [1], it has been replaced with a traditional multiplication- and division-based implementation of an m-ary arithmetic codec core defined in H.263 video coding standard [4]. In the proposal, the m-ary arithmetic codec core from H.263 works as a binary arithmetic codec. In this way, the modified and the original AVC video codecs work with different arithmetic codec cores. It obviously could influence on experimental results on coding efficiency of the modified AVC video codec relative to the original AVC. Therefore, compression performance of H.263 arithmetic codec core has been tested and confronted with coding efficiency of M-codec core from CABAC algorithm with several test sequences within AVC video codec.
5) A simplified mode of arithmetic coding (the so-called bypass mode) has been left unchanged (like in CABAC algorithm).
6) The context trees used in CTW technique are initialized each time before the new slice (in experiments, a slice contains whole frame). The advanced mechanism of contexts initialization from CABAC has been adapted to the modified CABAC with CTW. The counters of the number of zeros
[image: image22.wmf]s

a

 and the number of ones
[image: image23.wmf]s

b

 in roots of 399 context trees are set to values that allow for obtaining of CABAC initial probabilities for 0 and 1 symbols. The counters of remaining nodes of all 399 context trees are initialized to zero.
5 Methodology of experiments

The experiments have been aimed at estimation of the compression efficiency of the above proposed modification of a CABAC codec.

The proposed modified CABAC entropy codec (with CTW technique) has been applied to AVC video codec. In order to obtain reliable experimental results, both encoder and decoder have been implemented. The modified AVC codec has been built as a modification of reference software JM 10.2 [5] of AVC. Nevertheless, it is possible to put the modified CABAC entropy codec into the structure of KTA software [13] if necessary.

Compression performance of the modified AVC coder has been tested with several test sequences and confronted against coding efficiency of the original AVC. Coding efficiency of the modified AVC encoder has been expressed as a percentage reduction of bitrate relative to the size of bitstream obtained with the original AVC.

Experiments on coding efficiency of the modified and the original AVC encoders have been done in the following configurations of the encoders:

· Experiments have been done with CITY, CREW, ICE and HARBOUR progressive test video sequences (704x576 spatial resolution and 60 frames per second). The IBBPBBP… structure of GOP has been considered with I-frames inserted every 30-th frame.

· Two reference frames have been used for motion estimation and motion compensation.

· In the original AVC video encoder CABAC entropy encoder has been working in its most efficient coding mode by setting to use the adaptive technique of contexts initialization at the beginning of each new slice.

· In the experiments, in both the modified and the original AVC encoders the rate-distortion optimization has been left switched off. The bitrate control has been also switched off. Experiments have been done for a wide range of the QP parameter values (from QP=8 to QP=44 with step equal to 3), where the QP parameter is the quantization index that is an encoding parameter of AVC [11]. In this document the experimental results for QP parameter values from QP=14 to QP=41 have been presented only.
· In all experiments, only the 4x4 integer transform has been used.

· The depth D of context trees equal to 8 has been used in the proposed modified CABAC entropy codec. Discussion on influence of the depth D on the efficiency of the modified CABAC encoder has been introduced in Section 9.
6 Compression performance of the modified CABAC – experimental results

Compression performance of the proposed modified AVC with CABAC and CTW has been compared to the coding efficiency of the original AVC with CABAC. Methodology of experiments has been presented in the previous section. The depth D of context trees equal to 8 has been used in the proposed CABAC codec with CTW. Experimental results obtained for CITY, CREW, ICE and HARBOUR test sequences have been presented in Figure 4. Additionally, the average compression gain (for CITY, CREW, ICE and HARBOUR test sequences) has been presented. The average compression gains (for 4 test sequences: CITY, CREW, ICE and HARBOUR) obtained for I-, P-, and B-slices have been presented in Figure 5.
[image: image24.emf]1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

111417202326293235384144

QP parameter

bitrate reduction [%]

city

crew

ice

harbour

AVERAGE

Figure 4. Compression gain due to application of the modified CABAC instead of the original CABAC for CITY, CREW, ICE and HARBOUR test video sequences. Average compression gain has been also presented (depth D=8).
[image: image25.emf]0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

111417202326293235384144

QP parameter

bitrate reduction [%]

I-slices

P-slices

B-slices

Figure 5. Average compression gain due to application of the modified CABAC instead of the original CABAC for I-, P, and B-slices. (average for 4 test sequences: CITY, CREW, ICE and HARBOUR) (depth D=8).
Analysis of the achieved experimental results yields a conclusion that the gain of the coding efficiency of the modified CABAC with CTW technique relative to the compression performance of the original CABAC algorithm is clearly dependent on:

· type of frame (intra-frame and inter-frame);

· value of the QP parameter .
Experimental results proved that another two elements have significant impact on the efficiency of CTW technique within CABAC:

· an algorithm of the context trees initialization;

· amount of data encoded within a slice.

The bitrate reduction of 1%-2.6% is possible with application of the proposed modified CABAC codec within AVC. The average gain of compression (for 4 tested video sequences) is equal to 1.5%-1.8%. Different results have been obtained for individual slice types. In the case of I-slices, the bitrate reductions of 1.9%-2.3% have been obtained. In the case of P-slices the bitrate reductions of 0.6%-1.4% have been achieved. Better results have been observed for B-slices with 1.6%-2.5% gain of compression.

Additionally, the Y-PSNR measures in the function of output bitrates have been presented in Figure 6 to Figure 9 for the modified and the original CABAC entropy encoder (for 4 test video sequences).
[image: image26.emf]34

34.25

34.5

34.75

35

35.25

35.5

35.75

36

36.25

36.5

36.75

22.252.52.7533.253.53.7544.254.54.755

bitrate [Mbits/s]

Y-PSNR [dB]

CABAC with CTW, D=8

original CABAC

Figure 6. Y-PSNR measures in the function of output bitrates for the modified and the original CABAC encoder (CITY test video sequence).

[image: image27.emf]35

35.25

35.5

35.75

36

36.25

36.5

36.75

37

37.25

37.5

37.75

38

38.25

22.252.52.7533.253.53.7544.254.54.755

bitrate [Mbits/s]

Y-PSNR [dB]

CABAC with CTW, D=8

original CABAC

Figure 7. Y-PSNR measures in the function of output bitrates for the modified and the original CABAC encoder (CREW test video sequence).

[image: image28.emf]41

41.25

41.5

41.75

42

42.25

42.5

42.75

43

43.25

43.5

43.75

22.252.52.7533.253.53.7544.254.54.755

bitrate [Mbits/s]

Y-PSNR [dB]

CABAC with CTW, D=8

original CABAC

Figure 8. Y-PSNR measures in the function of output bitrates for the modified and the original CABAC encoder (ICE test video sequence).

[image: image29.emf]30.75

31

31.25

31.5

31.75

32

32.25

32.5

32.75

33

33.25

33.5

33.75

34

34.25

34.5

22.252.52.7533.253.53.7544.254.54.755

bitrate [Mbits/s]

Y-PSNR [dB]

CABAC with CTW, D=8

original CABAC

Figure 9. Y-PSNR measures in the function of output bitrates for the modified and the original CABAC encoder (HARBOUR test video sequence).

According to experimental results, the proposed CABAC codec with CTW improves the rate-distortion performance of the original CABAC entropy encoder. The gain of approximately 0.1 dB has been obtained for the modified CABAC encoder relative to the original CABAC.
7 Complexity of the modified AVC video codec– experimental results

The complexity of the whole modified AVC video codec (that has been built on the basis of the JM 10.2 reference implementation of AVC) has been tested. The complexity of the modified AVC codec has been compared to the complexity of original AVC with CABAC in which the M-codec core has been replaced with core of arithmetic codec from H.263 video coding standard. In this way the influence of application in CABAC of CTW technique on the complexity of the whole modified AVC video codec has been tested.

Experiments have been done with CITY and CREW test sequences in 4CIF format. The I29P structure of GOP has been considered with I-frames inserted every 30-th frame. The rate-distortion optimization and the bitrate control have been switched off in both tested AVC video codecs. Experiments have been done on Intel Core 2 Duo E6600 platform (2.4 GHz, 4MB of Level 2 memory cache) with 2 GB of RAM under 32-bit Windows XP with Service Pack 2 operational system. The optimized for speed the modified AVC (with CABAC and CTW) and the original AVC video codec (with CABAC and H.263 arithmetic codec core) have been prepared from source code with Intel C++ Compiler (in version 10.0.025) for 32-bit Intel Architecture (IA-32) of microprocessors.

The modified AVC encoding times relative to the original AVC encoding times have been presented in Figure 10 for a wide range of target bitrates.
[image: image30.emf]1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

02468101214161820

bitrate (Mbits/s)

modified AVC encoding time relative to the

original AVC encoding time

Figure 10. Increase of total encoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic encoder core) relative to total encoding time of AVC with CABAC and H.263 arithmetic encoder core (average for CITY and CREW test video sequences, depth D=8).

The modified AVC decoding times relative to the original AVC decoding times have been presented in Figure 11 for a wide range of target bitrates.
[image: image31.emf]1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

02468101214161820

bitrate (Mbits/s)

modified AVC decoding time relative to the

original AVC decoding time

Figure 11. Increase of total decoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic decoder core) relative to total decoding time of AVC with CABAC and H.263 arithmetic decoder core (average for CITY and CREW test video sequences, depth D=8).

The application of more exact technique of data statistics estimation based on CTW in CABAC increases the complexity of both a video encoder and a video decoder. The increase of total encoding and total decoding times for the modified AVC with CABAC and CTW depends on the value of target bitrate. In the range of useful bitrates of AVC stream used for Standard-definition Television (less or equal to 10 Mbits/s in Baseline, Extended and Main Profiles of AVC) total encoding time increases up to 2% and total decoding time increases up to 75% after application of CTW in CABAC.
8 Impact of arithmetic encoder core on compression performance

The proposed modified and the original AVC video encoders employ different cores of arithmetic codec. There arises a question about the impact of the applied core of arithmetic codec on the coding efficiency of the whole entropy encoder. In order to unambiguously answer this question a set of experiments have been done in which the coding efficiency of both M-codec and H.263 arithmetic codec core has been compared.

Both cores of arithmetic codec have been tested in the framework of CABAC within AVC video encoder. In experiments, both M-codec core and H.263 arithmetic codec core were working with the same values of input symbols and the same values of the conditional probabilities of coded symbols. Experiments have been done with CITY, CREW, ICE and HARBOUR 4CIF test video sequences. The I29P structure of GOP has been considered. The difference in the coding efficiency between M-codec core and H.263 arithmetic codec core has been expressed as a percentage bitrate reduction due to application of H.263 arithmetic codec core instead of M-codec core.
Average experimental results obtained for I- and P-slices have been presented in Figure 12.

[image: image32.emf]-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

14172023262932353841

QP parameter

bitrate reduction [%]

I slices

P slices

Figure 12. Average bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF test sequences for I-frames and P-frames. The presented bitrate reduction is a result of application in CABAC the H.263 arithmetic codec core instead of the M-codec core.

The obtained experimental results have proved that application of H.263 arithmetic codec core within CABAC only marginally influences the coding efficiency of entropy encoder. For a wide range of values of QP parameter, H.263 arithmetic codec core insignificantly outperforms the fast binary M-codec core [11]. For both I- and P-frames the maximum bitrate reduction after using H.263 arithmetic codec core is below 0.1% for a wide range of QP parameter values. For high values of QP parameter, CABAC with M-codec core is characterized by even higher coding efficiency in comparison to CABAC with H.263 arithmetic codec core. Greater differences of the compression performance between two tested entropy encoders have been observed for P-frames in the case of lower bitrates. The presented experimental results well correspond to those from [6], where it is said that the coding efficiency of M-codec core (from CABAC) and a traditional arithmetic codec core with multiplication and division operations are virtually the same.
9 Depth D of context trees – discussion

The modified CABAC entropy codec proposed in this document uses context trees of depth D=8. Several different depths D of context trees have been investigated by authors in the framework of CABAC [9, 10, 11]. These experiments have been done in context of coding efficiency and computational complexity. In Figure 13 some experimental results on the efficiency of the modified CABAC with CTW (relative to the original CABAC) have been presented for depths D=4, D=8, and D=12. Experiments have been done with CITY, CREW, ICE and HARBOUR test video sequences.
[image: image33.emf]1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

111417202326293235384144

QP parameter

bitrate reduction [%]

CABAC with CTW, D=12

CABAC with CTW, D=8

CABAC with CTW, D=4

Figure 13. Average compression gain due to application of the modified CABAC with CTW instead of the original CABAC (average for CITY, CREW, ICE and HARBOUR test sequences and different depths D of context trees).
In general, the bigger depth D of context trees the better efficiency of CTW technique and the greater gain of compression performance of the modified AVC video encoder relative to the original AVC encoder. Experimental results showed that further increase of the depth D of context trees (above D=8) does not lead to significant improvement of the coding efficiency of the modified CABAC with CTW. According to experimental results on the efficiency and complexity of the modified CABAC with CTW, the depth D=8 is a good compromise between compression performance and complexity of the modified CABAC codec. Therefore, the depth D=8 has been used in the proposed modified CABAC codec.
10 Conclusions

Application of the proposed modified CABAC entropy encoder leads to a reasonable increase of coding efficiency of AVC video encoder. The modified AVC video encoder (with CABAC and CTW) outperforms the original AVC with CABAC. Bitrate reductions of 0.6%-2.6% have been obtained. The performance of the proposed modified AVC encoder is strictly dependent on the value of QP parameter and the type of slice (intra-slices or inter-slices). The algorithm of context trees initialization is of great importance on the efficiency of CTW technique within CABAC, especially for P- and B-slices. The coding efficiency of the modified CABAC with CTW may be slightly increased when using even more sophisticated mechanism of context trees initialization.

The application of CTW data modeling technique in CABAC increases the complexity of both video encoder and video decoder. For the depth D=8 and the bitrates less than 10 Mbits/s total AVC encoding time increases up to 2% and total AVC decoding time increases up to 75% after using CTW in CABAC.
IPR Statement: Poznań University of Technology may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

11 References

[1]
D. Marpe, H. Schwarz, and T. Wiegand, Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression Standard. IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 620-636, July 2003.

[2]
F. M. J. Willems, Y. M. Shtarkov, and Tj. J. Tjalkens, The Context-Tree Weighting Method: Basic Properties. IEEE Transactions on Information Theory, Vol. 41, No. 3, pp. 653-664, May 1995.

[3]
F. M. J. Willems, The Context-Tree Weighting Method: Extensions. IEEE Transactions on Information Theory, Vol. 44, No. 2, pp. 792-797, March 1998.

[4]
ITU-T Rec. H.263, Video Coding for Low Bit Rate Communication, August 2005.

[5]
H.264/AVC software coordination site – http://bs.hhi.de/~suehring/tml.

[6]
D. Marpe, G. Marten, and H. L. Cycon, A Fast Renormalization Technique for H.264/MPEG4-AVC Arithmetic Coding. 51st Internationales Wissenschaftliches Kolloquium Technische Universitat Ilmenau, September 2006.

[7]
ISO/IEC 14496-10, Generic Coding of Audio-Visual Objects, Part 10: Advanced Video Coding, March 2006.

[8]
F. M. J. Willems, and Tj. J. Tjalkens, Complexity Reduction of the Context-Tree Weighting Algorithm: A study for KPN research. Technical Report EIDMA-RS.97.01, Euler Institute for Discrete Mathematics and its Applications, Eindhoven University of Technology, 1997.
[9]
D. Karwowski, Improved Arithmetic Coding in H.264/AVC Using Context-Tree Weighting and Prediction by Partial Matching. European Signal Processing Conf. EUSIPCO 2007, pp. 1270-1274, September 2007, Poznań, Poland.

[10]
D. Karwowski, and M. Domański, Improved Arithmetic Coding In H.264/AVC Using Context-Tree Weighting Method. Picture Coding Symposium PCS 2007, November 2007, Lisboa, Portugal.

[11]
D. Karwowski, Advanced Adaptation Algorithms of Arithmetic Coding in Hybrid Video Compression. Doctoral Dissertation, Poznań University of Technology, 2008.

[12]
R. E. Krichevsky, and V. K. Trofimov, The Performance of Universal Encoding, IEEE Transactions on Information Theory, Vol. IT-27, pp. 199-207, March 1981.
[13]
KTA software - http://iphome.hhi.de/suehring/tml/download/KTA/.

File:VCEG-AI15.doc
Page: 14
Date Saved: 2008-07-10

_1277189044.unknown

_1277190988.unknown

_1277191194.unknown

_1277191629.unknown

_1277192125.unknown

_1277192816.unknown

_1277191723.unknown

_1277191242.unknown

_1277191137.unknown

_1277190711.unknown

_1277190749.unknown

_1234986035.unknown

_1276684184.vsd
�

�

Binarizer

Context
modeler with CTW

Regular
coding
engine

Bypass
coding
engine

Arithmetic Coder from H.263 standard

m-ary
data

binary data

regular path

bypass path

loop
over bits

bit

probability,
bit

coded bits

coded bits

bitstream

bit for context model update

bit

_1277189025.unknown

_1272628648.unknown

_1272628704.unknown

_1251624730.vsd
Tekst�

�

�

�

depth D

λ

...

0

0

0

0

1

1

1

0

...

...

...

...

...

...

...

...

0

1

1

1

0

0

0

λ

...

...

...

...

0

1

1

1

0

0

0

λ

...

...

...

...

0

1

1

1

0

0

0

λ

2

1

3

Contexts tree 0

Contexts tree 3

Contexts tree 10

Contexts tree 398

Statistical
 model 0

Statistical
 model 3

Statistical
 model 10

...

Statistical
 model 398

...

...

mb_type for Intra slice type�

_1234985995.unknown

