	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

35th Meeting: Berlin, Germany, 16-18 July, 2008
	Document VCEG-AI28
Filename: VCEG-AI28.doc

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Sungho Seo1 , Yoonsik Choe2
Yonggoo Kim2 , Yungho Choi1

1: Konkuk University, Korea
2: Yonsei University, Korea

	
Tel:

Email:
	
1: +82-2-2049-6009
2: +82-2-2123-2774
sunghos@mplab.konkuk.ac.kr
yschoe@yonsei.ac.kr
drgfly@yonsei.ac.kr
yunghoch@konkuk.ac.kr

	Title:
	A Complexity Measurement Using a Processor Simulator

	Purpose:
	Information

Abstract
This contribution extends the ideas presented in a discussion on complexity evaluation methods at the 33rd VCEG Meeting in Shenzhen last year. This contribution proposes a simple complexity measurement method utilizing a codec processor simulator. The proposed method separates computational complexity and memory operation-related complexity from an overall coding complexity, which enables to deliver more meaningful analysis. To show the feasibility of the proposed method, we implement the measurement method on top of the SimpleScalar simulator. Using this simulator, we evaluate the complexity of two well known motion estimation algorithms, proving its validity.
1.0 Introduction
As discussed at the Shenzhen meeting last year, it is important to evaluate the complexity of a video coding standard accurately and reasonably as the complexity is directly associated with video encoder and decoder implementation cost. However, it is not easy to evaluate the complexity of a video coding standard since the complexity is a multi-facet concept and thus, its evaluation is required to consider many dimensions of the complexity such as execution unit latency, branch prediction, memory hierarchy structure, and so on.
To evaluate coding complexity, some contributions have been made. One of the most recent contributions was presented and discussed at the Shenzhen meeting last year (VCEG-AG19).[1] This contribution provides complexity measurement methods to evaluate coding complexity considering two dimensions that most affect implementation cost, i.e., computational complexity and memory access bandwidth/data cache size. These methods do provide a novel way and a novel framework to evaluate coding complexity. However, they have some limitations in accurately evaluating and analyzing coding complexity. One of them is that, in simple measurement methods, there is some ambiguity between measured complexity dimensions, i.e., computation complexity and memory access bandwidth/data cache size. For example, in general, people can expect that computation complexity is related to computation latency while memory complexity is associated with memory latency. However, in the proposed method, measured computational complexity includes the memory operation-related latency increased by limited memory access bandwidth/data cache size, which is a little bit confusing. Additionally, data cache size does not seem to be a complexity to be measured. Rather, it seems to be a hardware configuration variable which needs to be given just like a given image sequence in coding efficiency measurement. Another limitation of the contribution is that comparison of complexities measured in different dimensions does not seem to be inconvenient. This is because they have different measurement units, i.e., computational complexity (number of cycles) and memory access bandwidth/data cache size (MB/s, MB) and their complexity meanings seem to be inconsistent. Lastly, in the measured method, memory access bandwidth/cache size seems insufficient in measuring memory operation complexity since the memory operation complexity incurred by a given coding algorithm includes not only memory access bandwidth but also page fault, cache consistency policy, virtual addressing, cache associativity and so on. Therefore, to measure memory complexity more accurately, there is a need to cover more factors.
Due to the limitations mentioned above, the measurement method presented at the Shenzhen meeting might not provide a clear idea about what the measured coding complexity means and how the measured complexity is associated with each complexity dimension. It is important to analyze and to understand coding complexity by singling out the effects of each complexity dimension because, according to hardware platforms, interested complexity dimensions can be different (e.g., FPGA and ASIC implementers can have more interests on memory complexity since they can add as much execution resource as they want and thus, in general, memory bandwidth is a bottleneck.)
The goal of this contribution lies in extending the contribution discussed at the Shenzhen meeting by resolving its limitations mentioned above. For this goal, this contribution proposes a simple complexity measurement method using a codec processor simulator. By utilizing a simulator, the proposed measurement method in this contribution can easily measure an overall coding complexity for a given algorithm and can measure computational complexity and memory operation-related complexity comprising the overall coding complexity. This is done by configuring a processor simulator to minimize complexity interference between computation operations and memory operations.
To show the feasibility and validity of the proposed complexity measurement method, this contribution implements the proposed method on top of the SimplesSalar processor simulator[2], which has been well known to processor architecture society and validated for a reasonably long time. By using this augmented processor simulator, the coding complexity of two coding algorithms are evaluated, proving the feasibility of the proposed measurement method. Since defining a common experiment condition for coding complexity evaluation is out of the scope, this contribution arbitrarily selects a hardware configuration and a common experiment condition for all the evaluation of the contribution.
This contribution is organized as follows. Section 2 describes a codec processor simulator and proposes a simple complexity measurement method using the processor simulator. Section 3 provides an application example of the complexity measurement method. In the last section, we conclude this contribution.
2.0 A Proposed Method of Complexity Measurement
This chapter proposes a simple complexity measurement method utilizing a codec processor simulator. First, Section 2.1 describes a complexity measurement method to evaluate an overall coding complexity and its component coding complexities, i.e., computational complexity and memory operation-related complexity, which were selected in the contribution of the Shenzhen meeting. This method can measure component coding complexity (previously referred to as dimensions of complexity) by setting hardware configuration to minimize interference between component coding complexities. Section 2.2, we describe and explain the architecture and functions of the codec processor simulator on which we implement the proposed measurement method.
2.1 A Complexity Measurement Method using a Processor Simulator
This section describes a complexity measurement method utilizing a codec processor simulator. The proposed complexity measurement method enables to measure an overall coding complexity and its component coding complexities, i.e., computational complexity and memory operation-related complexity. A component coding complexity is a complexity in a specific complexity dimension and thus, is a part of an overall coding complexity of a given algorithm. Measurement of a component coding complexity can deliver clearer insights to implementers. For example, FPGA/ASIC-based implementers have more interests on memory operation-related complexity than the other component complexities since they can put as many execution units as they want and thus, memory-related complexity is more.
Since the measurement method for an overall coding complexity in this contribution is the one for the computation complexity in the contribution of the Shenzhen meeting, we do explain only the methods for computational complexity and memory operation complexity. The detail of the complexity measurement methods will be given in the following subsections.
2.1.1 A Measurement Method for Computational Complexity
In the contribution of the Shenzhen meeting, computational complexity was defined as the number of steps or operations that it takes to compute a result using the most efficient algorithm as a function of the size of the input. Computational complexity in this contribution, at large, is similar to the definition given above. However, to provide a more concrete and meaningful analysis, this contribution changes the definition as follows. Computational complexity is a partial execution time which excludes memory operation-related latency such as cache access time, cache miss penalty, page faults and so on. Consequently, computational complexity focuses on how much computations need to be done for a given algorithm.
To measure a computational complexity, we propose to use a processor simulator and to assume that memory accesses are never blocked and can be done in zero clock cycle by setting simulator configurations. Such assumption rules out the latency of memory-related operations from a total execution time. In this case, the execution time represents how many arithmetic and logic computations are needed, resulting in computational complexity. So this helps FPGA/ASIC-based codec implementers to figure out how much computation resource they want. In evaluating computational complexity, hardware configuration conditions are needed to be defined. However, since it is out of the scope of this contribution, we do not mention it here.
2.1.2 A Measurement Method for Memory Operational-related Complexity
As for memory, the contribution of the Shenzhen meeting does not use execution time. Instead, it employs memory bandwidth and data cache size to measure memory-related complexity. However, this might give an ambiguity about what it is and how it affects coding complexity while different measurement units are not consistent with computational complexity, e.g., MB, MB/s. In other words, such measurement does not directly tell how memory complexity contributes to execution time and performance. To resolve this problem and to give a better insight, in this contribution, memory operation-related complexity is measured by execution time, i.e., number of clocks to process memory operations. For this, in the same manner of computation complexity, we assume zero execution unit latency. This means that, in this assumption, measured execution time is associated only with memory access-related operations such as load, store, cache misses, page fault, memory access latency, and so on. Consequently, the memory operation-related complexity measured by the proposed method indicates how much memory performance is required to accommodate a target coding algorithm and thus, can help FPGA/ASIC tech-based implementers to design codec more efficiently.
To apply the proposed complexity measurement method, we adopt SimpleScalar processor simulator and implements the method on top of the simulator. The detail is given in the following section.
2.2 Processor Simulator: Complexity Measurement Tool
To validate the feasibility of the measurement method mentioned above, this section introduces a codec processor simulator which can emulate all the activities of a processor and thus, can evaluate the execution time of a given coding algorithm. The codec processor simulator is augmented from SimpleScalar processor simulator [2] which has been validated and used for a long time in a processor architecture society.

[image: image1.emf]Fetch Dispatch Scheduler Writeback Commit

Memory

Scheduler

Mem

D-Cache

(DL2)

D-Cache

(DL1)

I-Cache

(IL2)

I-Cache

(IL1)

Virtual Memory

Exec

Figure 1 SimpleScalar Processor Simulator Architecture
As shown in Figure 1, the SimpleScalar consists of 5 pipeline stages and enables to configure various processor architectures including the number of execution units, memory hierarchy structure, execution module latency, etc., and thus, can easily set any experiment condition that we want. Additionally, unlike trace-driven simulator, the SimpleScalar, a execution-driven simulator, can provides a result as accurately as a real hardware platform can do by truly executing each instruction of a given coding algorithm. Beside these benefits, the simulator can monitor all the activities of a given processor that, in a real hardware platform, are difficult to monitor, e.g., cache miss rate, pipeline branch mis-prediction rate, etc. Such monitoring results help to understand coding complexity evaluating results. In last, the simulator can evaluate coding complexity and processor performance without redundant modules like cycle counters which are needed to inserted into coding programs and thus, might distort evaluation results by adding unnecessary clock cycles. This enables a more accurate and useful complexity analysis. All these benefits mentioned above are the reasons to choose a processor simulator to evaluate coding complexity instead of a theoretical analysis and a real hardware platform execution.
To apply the complexity measurement method, we build our proposed method on top of the SimpleScalar simulator mentioned above, enabling to evaluate overall coding complexity, computational complexity and memory operation-related complexity for a given algorithm. Since this tool is a simulator, we can configure simulator parameters such as memory structures, various latency, cache size and so on. However, since hardware configurations for complexity evaluation are out of the scope, in this contribution, we assume a MIPS-based SimpleScalar architecture which is the fundamental one of SimpleScalar. The detail of hardware configuration for evaluation is given in the next section.
3.0 Case Study: Complexity of Motion Estimation Algorithms

In this Section, to validate the proposed measurement method using the processor simulator mentioned in the last section, we evaluate the effect of two motion estimation algorithms, i.e., Full Search and UMHexagonS[3], on the complexity of H.264/AVC standard. To validate the correctness of the simulator, we run these algorithms on a desktop PC with Windows XP and on the presented processor simulator. For this, the processor simulator configurations and test conditions are given as follows;
Table 1 Processor Simulator configurations
	Parameters
	Configurations

	Issue Scheduling
	In Order

	fetch/decode/commit width
	1/1/1 (1-way Superscalar Pipeline)

	IntALU/IntMUL/FpALU/FpMUL/Mem
	1/1/1/1/1

	Local register file size
	4byte X 32

	I-cache L1
	32KB direct-mapped, 32-byte lines, 2-cycle latency

	D-cache L1
	32KB 4-way set associative, 32-byte lines, 2-cycle latency

	I/D-cache L2
	1024KB 8-way set associative, 64-byte lines, 7-cycle latency

	Memory Latency(first/rest)
	120/8

Table 2 Test Conditions and Results
	　
	Full Search
	UMHexagonS

	
	Simulator
	Desktop PC
	Simulator
	Desktop PC

	PSNR Y (dB)
	33.89
	33.89
	33.89
	33.89

	PSNR U (dB)
	38.18
	38.18
	38.18
	38.18

	PSNR V (dB)
	40.08
	40.08
	40.14
	40.14

	Bit rate (kbit/s)
	201.6
	201.6
	199.52
	199.52

 SHAPE * MERGEFORMAT

As you can see in Table 2, PSNR Y/U/V and Bit rates obtained from two different platforms match exactly, showing the validity of the presented simulator although it might not be sufficient. The figure 2 shows the overall complexity, computational, complexity and memory operation-related complexity of H.264/AVC with two algorithms.
In Figure 2, complexity evaluation results show that the complexity reduction of UMHexgonS comes from computational complexity, rather than memory operation-related complexity. This indicates that this algorithm can help to reduce more computation resources than memory operation-related resources, which might benefit software programmers who are struggling with limited computation resources.
[image: image3.png]million

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Overall coding Computational Memory Operation-
Complexity Complexity related Complexity

WFullSearch UMHexagons

 Figure 2 Complexity Measurement Results
4.0 Conclusion

This contribution proposes a simple and feasible complexity measurement method by extending the measurement method presented at the Shenzhen meeting. Although there is a long way to go until we makes an agreement on many complexity issues, this contribution can be a small step toward its destination, i.e., fairer and more meaningful complexity evaluation. For this, we build our method on top of the SimpleScalar processor simulator and using the simulator, we show the feasibility of the method. However, it does not mean that the simulator is the one we need to use. Rather, we can cooperate to build a new simulator that most members can agree on. This effort can be a big step toward a useful and meaningful complexity evaluation methodology.
References

[1] Michael Horowitz, “Toward Use Complexity Evaluation Methods”,ITU-T SG16/Q6, 33rd VCEG Meeting, Shenzhen, China, October 2007, Doc. VCEG-AG19.
[2] http://www.simplescalar.com
[3] Zhibo Chen, Peng Zhou, and Yun He, “Fast Integer Pel and Fractional Pel Motion Estimation for JVT”, 6th JVT Meeting, Awaji, Island, JP, December, 2002. JVT-F017.

IPR Notification: Konkuk University and Yonsei University may have IPR relating to the technology described this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation.
JM 11.0 Baseline

 Hadamard : off

 Search Range : 16

 Reference frames : 5

 Block size : all

RD-optimization : on

Motion Estimation : Full Search, UMHexagonS

Sequence : Foreman QCIF

2 Frame Encoding(Inter)

File:VCEG-AI28.doc
Page: 2
Date Saved: 2008-07-141

_1277323470.vsd
Fetch

Dispatch

Scheduler

Writeback

Commit

Memory Scheduler

Mem

D-Cache
(DL2)

D-Cache
(DL1)

I-Cache
(IL2)

I-Cache
(IL1)

Virtual Memory

Exec

