	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)
35th Meeting: Berlin, Germany, 16-18 July, 2008
	Document VCEG-AI33
Filename: VCEG-AI33.doc

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Yan Ye, Peisong Chen, Marta Karczewicz
5775 Morehouse Dr
San Diego, CA 92121
USA
	
Tel:

Email:
	
+1-858-8455080

+1-848-6585673
martak@qualcomm.com

	Title:
	High Precision Interpolation and Prediction

	Purpose:
	Proposal

Abstract
The proposed method increases precision of interpolation and bi-directional prediction during motion compensated prediction. The average improvement obtained for 720p sequences is 7.7% for IPP configuration, 4.8% for IBBP configuration and 4.9% for hierarchical B configuration.
Introduction

In the interpolation process defined in H.264, pixels at 1/4-pixel positions are interpolated by using pixels at half pixel positions after they have been rounded and clipped. Moreover, during bilinear filtering, which is used to obtain the 1/4-pixel values, upward rounding is always used. Such frequent and biased rounding effectively reduces precision of the interpolation filtering. In [1] it was proposed to postpone rounding and clipping until the last step not to compromise the final precision. In this contribution we demonstrate that after this modification the filtering can still be performed using 16 bit arithmetic. In addition we address rounding accumulation in case of bidirectional prediction.

High Precision Interpolation
When deriving pixels at positions pixels at 1/4-pixel positions labeled as a, c, d, n, f, i, k, and q (Figure 1) we postpone the shift, rounding and clipping till the last step:

a = (G<<5+b1+32)>>6

c = (H<<5+b1+32)>>6

d = (G<<5+h1+32)>>6

n = (M<<5+h1+32)>>6

f = (j1>>5+b1+32)>>6

i = (j1>>5+h1+32)>>6

k = (j1>>5+m1+32)>>6

l = (j1>>5+s1+32)>>6

where the intermediated values denoted as b1, h1, m1 and s1 are derived by applying the 6-tap filter vertically and horizontally, e.g.:
b1 =E-5*F+20*G+20*H-5*I+J.

h1 =A-5*C+20*G+20*M-5*R+T.

The pixels at 1/4-pixel positions labeled as e, g, p and r are calculated by averaging with upward rounding of the two nearest pixels at half pixel positions in the diagonal direction by using

e = (b1+h1+32)>>6

g = (b1+m1+32)>>6

p = (h1+s1+32)>>6

r = (m1+s1+32)>>6
The final values of those 1/4-pixels will be clipped to values in the range (0,255). The implementation using 16 bit precision is given in Appendix.

[image: image1.wmf]bb

a

c

E

F

I

J

G

h

d

n

H

m

A

C

B

D

R

T

S

U

M

s

N

K

L

P

Q

f

e

g

j

i

k

q

p

r

aa

b

cc

dd

ee

ff

hh

gg

Figure 1: Integer pixels (shaded blocks with upper-case letters) and fractional pixel positions (white blocks with lower-case letters).

Bidirectional Averaging
Bidirectional prediction averaging in H.264 is performed using bilinear interpolation with upward rounding. Especially in case of hierarchical B-frames the rounding error may accumulate. To reduce the effect of error accumulation we propose to signal to the decoder should upward on downward round be used for a given slice.
Simulation Results
The results are obtained when High Precision Interpolation is enabled (Table 1) and when both High Precision Interpolation and bidirectional averaging rounding modifications are enabled.

Table 1: High Precision Interpolation results.

	
	IPP
	IBBP
	IbBb

	QCIF
	foreman
	-1.19
	-0.91
	-1.20

	
	container
	-3.38
	-2.18
	-1.45

	
	silent
	-0.42
	-0.11
	0.06

	QCIF ave
	-1.66
	-1.04
	-0.86

	CIF
	foreman
	-2.19
	-0.92
	-1.25

	
	mobile
	-0.85
	-0.14
	-0.33

	
	paris
	-1.32
	0.34
	0.24

	
	tempete
	-3.17
	-1.08
	-1.28

	CIF ave
	-1.88
	-0.45
	-0.66

	720p
	bigships
	-7.23
	-5.64
	-5.24

	
	city
	-7.99
	-6.02
	-3.80

	
	crew
	-6.93
	-4.44
	-1.87

	
	night
	-1.75
	-0.56
	-0.50

	
	shuttlestart
	-14.60
	-6.13
	-5.18

	720p ave
	-7.70
	-4.56
	-3.32

	AVERAGE
	-4.25
	-2.32
	-1.82

Table 1: High Precision Interpolation and bidirectional averaging rounding improvements.

	
	IBBP
	IbBb

	QCIF
	foreman
	-0.67
	-1.14

	
	container
	-2.11
	-2.13

	
	silent
	0.07
	-0.10

	QCIF ave
	-0.90
	-1.12

	CIF
	foreman
	-1.08
	-1.99

	
	mobile
	-0.11
	-0.67

	
	paris
	0.59
	0.29

	
	tempete
	-1.06
	-1.63

	CIF ave
	-0.42
	-1.00

	720p
	bigships
	-5.77
	-6.74

	
	city
	-6.01
	-5.88

	
	crew
	-4.92
	-3.67

	
	night
	-0.69
	-0.87

	
	shuttlestart
	-6.46
	-7.15

	720p ave
	-4.77
	-4.86

	AVERAGE
	-2.35
	-2.64

Appendix

16-bit register implementation

The interpolation of a, c, d, n, e, g, p and r uses intermediate values b1, h1, s1 and m1, which are within range -2550 to 10710 and can be represented using 15 bits plus sign (15s). Hence their calculation does not pose a problem for 16 bit arithmetic. During calculation of subpel values f, i, k and q intermediate value j1, requiring 20 bits representation, is used. We apply the method introduced in [1] to make an intermediate value j1 fit 16 bit registers. Shaded rows contain operations done at the end only (not used for interpolation of other sub-pixel positions).

{j}

	Operation
	Comment
	Min val
	Max val
	Reg size

	r1 = y0
	y0 is1-D half-pixel aa1 before shifting down
	-2550
	10710
	15s

	r2 = y5
	y5 is1-D half-pixel hh1 before shifting down
	-2550
	10710
	15s

	r1 = r1+r2
	r1 is y0+y5
	-5100
	21420
	16s

	r2 = y1
	y1 is1-D half-pixel bb1 before shifting down
	-2550
	10710
	15s

	r3 = y4
	y4 is1-D half-pixel gg1 before shifting down
	-2550
	10710
	15s

	r2 = r2+r3
	r2 is y1+y4
	-5100
	21420
	16s

	r1 = r1-r2
	r1 is (y0+y5)-(y1+y4)
	-26520
	26520
	16s

	r1 = r1 >> #2
	r1 is ((y0+y5)-(y1+y4))>>2
	-6630
	6630
	14s

	r3 = y2
	y2 is 1-D half-pixel b1 before shifting down
	-2550
	10710
	15s

	r4 = y3
	y3 is 1-D half-pixel s1 before shifting down
	-2550
	10710
	15s

	r3 = r3+r4
	r3 is y2+y3
	-5100
	21420
	16s

	r3 = max(# -2372,r3)
	clip r3 to avoid overflow (low side)
	-2372
	21420
	16s

	r3 = min(#18640,r3)
	clip r3 to avoid overflow (high side)
	-2372
	18640
	16s

	r2 = r3-r2
	r2 is (y2+y3)-(y1+y4)
	-23792
	23740
	16s

	r1 = r1 + r2
	r1 is ((y0+y5)-5*(y1+y4)+4*(y2+y3))>>2
	-30422
	30370
	16s

	r1 = r1 >> #2
	r1 is ((y0+y5)-5*(y1+y4)+4*(y2+y3))>>4
	-7605
	7592
	14s

	r1 = r1 + r3
	r1 is ((y0+y5)-5*(y1+y4)+20*(y2+y3))>>4
	-9977
	26232
	16s

	j1 = r1
	store result
	
	
	

	r1 = r1+32
	r1 is ((y0+y5)-5*(y1+y4)+20*(y2+y3)+512)>>4
	-9945
	26264
	16s

	r1 = r1 >> #6
	r1 is ((y0+y5)-5*(y1+y4)+20*(y2+y3)+512)>>10
	-155
	410
	10s

	r1 = max(#0,r1)
	clip r1 on the low side
	0
	410
	9u

	r1 = min(#255,r1)
	clip r1 on the high side
	0
	255
	8u

The code below describes the 16-bit implementation of interpolating {f,i,k,q}:
{f,i,k,q}

	Operation
	Comment
	Min val
	Max val
	Reg size

	r1 = y0
	r1 is y0 (1-D half-pixel such as b1, h1, m1 and s1 before shifting down)
	-2550
	10710
	15s

	r2 = j1
	r2 is j1 (2-D half-pixel j1 before shifting down)
	-9914
	26232
	16s

	r2 = r2>>1
	r2 is j1>>1
	-4957
	13116
	15s

	r1 = r1+r2
	r1 is y0+(j1>>1)
	-7507
	23826
	16s

	r1 = r1+32
	r1 is y0+(j1>>1)+32
	-7491
	23842
	16s

	r1 = r1>>#6
	r1 is (y0+(j1>>1)+32)>>6
	-235
	745
	11s

	r1 = max(#0,r1)
	clip r1 on the low side
	0
	745
	10u

	r1 = min(#255,r1)
	clip r1 on the high side
	0
	255
	8u

References
[1] TK Frank Bossen, “Full 16-bit implementation of 1/4 pel motion compensation”, ISO/IEC MPEG & ITU-T VCEG, JVT-C037, Fairfax, Virginia, USA, May, 200.

[2] “Switched Interpolation Filter with Offset”, ITU-T Q.6/SG16 VCEG, COM 16 – C 463 – E, Geneva, April 2008.
IPR Notification: Qualcomm may have IPR relating to the technology described this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
File:VCEG-AI33.doc
Page: 3
Date Saved: 2008-07-11

_1101456132.vsd

