	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)
35th Meeting: Berlin, Germany, 16-18 July, 2008
	Document VCEG-AI40
Filename: VCEG-AI40.doc

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Michael Horowitz
Vidyo, Inc.
433 Hackensack Avenue, 6th Floor
Hackensack, NJ USA
	
Tel:
Fax:
Email:
	
+1 512 524-1633
+1 512 524-1633
michael@vidyo.com

	Title:
	A Coding Efficiency-Computational Complexity Analysis of KTA 1.9r1 Coding Tools

	Purpose:
	Information

Abstract

A coding efficiency-computational complexity analysis of KTA 1.9r1 coding tools for High Profile with an IbBbBbBbP coding structure is presented. This work may be viewed as an extension to a contribution presented in April’s meeting [1] in that a nearly identical methodology is used to measure time complexity which is measured as the execution time difference between a reference codebase and a codebase containing the reference codebase + a coding tool under investigation. BD-Rate is used to evaluate coding efficiency and the combination of time complexity and BD-rate are presented in efficiency-complexity graph form. The results demonstrate consistency across the two compute platforms used to generate the results. As mentioned in [1], a seemingly simple relationship between time measurements on the different platforms suggests the possibility of individual contributors being able to make time measurements on their own equipment instead of relying on a “golden” platform on which all time complexity measurements would need to be collected.

1.0 Introduction

This contribution contains a coding efficiency-computational complexity analysis of KTA 1.9r1 coding tools for High Profile with an IbBbBbBbP
 coding structure. Separate encoder and decoder execution time differences were measured on two separate compute platforms comparing each of eight selected KTA tools (see following section) individually and a combination of 2 tools (i.e., HPIF and OFFSET) against a reference. The KTA 1.9r1 software with all of the tools under investigation disabled was chosen as the reference. By measuring the time difference in this manner, we hope to remove any systematic errors from the measurement. The time difference measures are combined with a measure of coding efficiency gain relative to the reference using BD-Rate in the form of efficiency-complexity (eff-comp) graphs [2]. These eff-comp graphs provide a first order means to assess the relationship between computational complexity and coding efficiency of an algorithm. Different complexity measures (e.g., memory access bandwidth) may be more relevant to some implementations, however these measures are not considered in this contribution. It is our intention to introduce additional complexity measurement techniques in the future with memory access bandwidth measurement having the highest priority.

In Section 2, we introduce the KTA tools under investigation. Section 3 contains a description of the experiments performed including details describing the software used, common conditions, coding profiles and prediction structures, compute platform descriptions, as well as additional information relevant to the time measurement process. We summarize the results in Section 4 and present conclusions and discuss future work in Section 5. Acknowledgements may be found in Section 6.

2.0 KTA Tools Under Investigation

The KTA tools investigated in this work are summarized below. Please refer to the most recent KTA Manual for more detailed information for tools 1 to 6 in the list below may be found in [3] while more details for tools 7 and 8 may be found in [4]. In addition, the combination of tools 7 and 8, HPIF and OFFSET respectively, was investigated.

1) AIF 1 – 2D Adaptive Interpolation Filter (2AIF). To account for aliasing, quantization and motion estimation errors, blurring effects, camera noise, etc., a two-dimensional (2D) non-separable interpolation filter, which is calculated for each P- or B- frame independently by minimizing prediction error energy is developed.

2) AIF 2 – Separable Adaptive Interpolation Filter (SAIF). An adaptive interpolation filtering structure using separable filters.

3) AIF 3 – Directional Adaptive Interpolation Filter (DAIF). An adaptive interpolation filtering structure using directional filters in which the sub-sample locations are obtained using a single one dimensional filter.
4) APEC -- Adaptive prediction error coding. This technique enables adaptive prediction error coding in the spatial and frequency domain. For each block of the prediction error, either transform coding or spatial domain coding is applied. The result with lower rate-distortion cost is chosen.
5) AQMS2 -- Adaptive quantization matrix selector. A technique for switching quantization matrices on a macroblock-by-macroblock basis. Rate-distortion optimization techniques are used to select matrices. Modeled quantization matrix parameters are sent in the slice header at each slice.
6) RDOQ -- Rate Distortion Optimized Quantization. A rate-distortion optimized quantization together with an efficient implementation of H.264 macroblock level delta QP.
7) HPIF – High precision interpolation filter in which rounding of the half-pel compensated sample value is deferred to the final processing step.

8) OFFSET (noff) – New method for determining the weighted prediction offset in the encoder.

3.0 Experimental Details

Details pertaining to the simulation runs are described in this section. Note that Section 3.4 describes additions to the common conditions that specifically address the conditions under which time measurements were collected. The contents of that section along with a description of the computing environment in Section 3.5 are provided to facilitate reproducibility of the time difference measurements.
3.1 Software

Software version KTA 1.9r1 was used to generate results unless otherwise noted. KTA 1.9r1 is based on JM 11.0 (hence common conditions [5] were used). The reference results, KTA 0, were generated using KTA 1.9r1 with all the KTA tools under investigation disabled.
3.2 Common Conditions

The tests were performed according to the common conditions specified in [5] for the KTA 1.9r1.
3.3 Profiles and Prediction Structures

For the experiment described in this contribution, results for the High Profile IbBbBbBbP case are presented.
3.4 Additional Considerations

In addition to the common conditions, the following steps were taken in an effort to produce accurate and reproducible execution time measurements.

1) Results were generated on a limited set of machines (see details in the Compute Platforms Details section below).

2) To mitigate time measurement variations due to I/O the following steps were taken.

a. On linux: ldecod.exe -i input.bits -o /dev/null
b. On windows: ldecod.exe -i input.bits -o nul where input.bits is the name of the bitstream
c. On the encoder, the reconstructed output was disabled by setting the parameter ReconFile to ""
3) Execution time was reported using both gnu time and the time reported by the KTA 1.9r1 software which separates ME and non-ME.

4) Each machine was rebooted immediately prior to testing and a careful check was performed to ensure that the encoder/decoder was the only major process running during the simulations.

5) On the Linux based platforms #1 and #2, the KTA 1.9r1 software was compiled with the Makefile straight out of the zip. The DBG flag was commented out and the -O3 flag was set.
6) The encoder and decoder software was compiled to specifically exclude support for multi-threading. In addition, hyper-threading was explicitly disabled for all simulation runs. Consequently all results were generated using a single threaded process.

3.5 Compute Platform Descriptions

In this section, the computer hardware, operating systems, and compilers used to run the simulations are described.

3.5.1 Compute Platform #1
CPU Details

Dell PowerEdge 1800 Server

2xIntel® Xeon™ CPU 3.20GHz / 1M Cache

Memory: 4GB, (4x1GB DDR2-PC3200 (400MHz) ECC 1R Memory)

Bus Speed: 800 MHz FSB

7200rpm SATA drive (All source sequence, executable, configuration and output are on local drive during the execution)

OS

Ubuntu 7.10 (gutsy)

Kernal Linux 2.6.22-14-generic
Compiler

GCC 4.1.3 – 64-bit compilation for both encoder and decoder.

3.5.2 Compute Platform #2

CPU Details
Dell PowerEdge 2900
Dual QuadCore Intel(R) Xeon(R) CPU E5440 @ 2.83GHz (bogomips:5652.66), 1333MHz FSB

Disk: Local Raid10, 8x400GByte SAS
L1 Cache Size 128KB
L2 Cache Size 2x6MB
Memory 16GB, Synchronous 667MHz
OS
Linux openSUSE 10.3
Kernel: 2.6.22.17-0.1 x86_64
Compiler

GCC 4.1.3 – 64-bit compilation for both encoder and decoder.

4.0 Complexity Measurement and Results

The primary goal of this work is the continued development of a complexity measurement methodology that is easy to use and, while not perfect, provides meaningful information that can be used to guide the development of future video coding standards. A secondary goal is to shed light on the coding efficiency - computational complexity trade-off for a set of tools that are part of the latest KTA software. The author wishes to emphasize that conclusions drawn from the analysis presented in this contribution should be treated as preliminary due to the fact that the methodology is immature, the analysis is incomplete in that only one profile and coding structure was investigated, and not all relevant measures of computational complexity are considered. We discuss both goals in the following sub-sections.
4.1 Complexity Measurement

The execution time difference between a reference codebase and a codebase containing the coding tool (or tools) under investigation was measured. The reference, denoted KTA 0, consisted of the KTA 1.9r1 software with all coding tools under investigation disabled. The software for each of the nine codebases tested consisted of KTA 0 each with a different coding tool activated and one case in which the HPIF and OFFSET tools are active simultaneously. Execution time was measured using GNU time. We chose to focus on the execution time difference rather than a ratio or percentage to isolate the time measurement to the part of the code relevant to the investigation. This technique has the desirable effect that any systematic timing error or the accidental inclusion of non-essential code introduced in a part of the code not being investigated will be subtracted. That said, an email exchange occurred on the VCEG reflector that discussed the merits of other techniques including presenting absolute timing figures. We may choose to adopt different timing techniques as the methodology evolves.

The compute platforms were similar in that they contained CPUs manufactured by Intel. We found that differences in CPU and bus speed as well as the computing architecture’s computational efficiency led to significant time measurement differences. Even when the time measurement results were normalized to machine cycles per pixel to mitigate differences due to processor speed, differences persisted. That said, a cross platform comparison presented in Figure 1 with additional data in the associated spreadsheet reveals a simple relationship between the measurements from the different compute platforms. That said, we note the fact that the RDOQ data points appear to lie on a line that does not cross the (0,0) point. At present we do not have an explanation for this behavior. The existence of this simple relationship leads us to believe that it may be possible to derive meaningful time measurement data on different compute platforms. In an ideal case, each contributor would derive measurements on his or her own computer equipment and the results could be converted to some universal measure rather than requiring a “golden” test platform on which all time measurements would be taken. The notion of confidence intervals on such measurements was discussed and may be introduced at a later time. Execution time measurement results from a wide variety of platforms will be required before we can draw conclusions.

Finally, while coarse, the emerging measurement methodology appears to capture many features of the KTA tools, including bad implementation. We believe it exposes issues in an objective way that will allow experts to isolate and improve the implementation and algorithm optimization even when the issues are not inherent in the coding tools.

[image: image1.emf]Encoder Average Normalized Time Differences of Compute Platform #1 vs. #2

for All CIF/qCIF Sequences

-100000

0

100000

200000

300000

400000

500000

600000

700000

-200000020000040000060000080000010000001200000

Compute Platform #1 Average Normalized Time Differences

Compute Platform #2 Average Normalized

Time Differences

AIF 1

AIF 2

AIF 3

AQMS2

RDOQ

APEC

HPIF

Offset

HPIF+Off

Figure 1. Encoder Cross Platform Results for CIF/qCIF Sequences.

4.2 Eff-comp Results

In this subsection, we summarize the coding efficiency-computational complexity results that are presented in detail in the spreadsheet associated with this contribution. We were unable to complete the HD simulations in time for this meeting. Consequently, we present partial results for the HD sequences. While all collected data is included in the associated spreadsheet,VCEG-AI40.xls, only those data common to all sequences were included in the eff-comp graphs. For example, we collected data for the sequence BigShips with QP values 27, 32, and 37 for all coding tools, however, for some of the coding tools QP 22 did not complete in time, therefore the eff-comp graphs include only results for QP values 27, 32, and 37. In addition, because BD-SNR requires YPSNR results for four QP values, we were unable to compute BD-results directly from our partial data set. Instead, we received BD-SNR results (for a subset of coding tools) from the Coding Efficiency AHG since they used exactly the same encoding configurations that we used. We note that the Coding Efficiency AHG did not examine all coding tools. As a result, for the HD sequences, we present results for a subset of the coding tools (i.e., those for which BD-SNR results were available).
Note that the majority of the tools demonstrate low computational complexity on the decoder side while a little more than half have relatively low complexity on the encoder side as well. The RDOQ tool in particular appears to give significant gains in coding efficiency with relatively low compute on both the encoder and decoder.
Also worthy of mention is the fact that several tools show a slightly negative time difference measurement on the decoder side. We hypothesize that this is due to the fact that the complexity of these tools on the decoder side is negligible and the overall bit rate savings leads to less entropy decoding as compared to KTA 0 and consequently a negative time difference measurement.
[image: image2.emf]KTA 1.9 Encoder Eff-Comp Overall

(Compute platform #2)

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

-50000050000100000150000200000250000300000350000400000450000500000

Normalized Time Difference w.r.t. KTA 0

(Machine Cycles Per Pixel)

BD-Rate

AIF #2

AIF #3

RDOQ

HPIF

OFFSET

Figure 2a. Encoder Eff-comp Results Averaged Over All Common Condition Sequences.

[image: image3.emf]KTA 1.9 Decoder Eff-Comp Overall

(Compute Platform #2)

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

-100-50050100150200250

Normalized Time Difference w.r.t. KTA 0

(Machine Cycles Per Pixel)

BD-rate

AIF #2

AIF #3

RDOQ

HPIF

OFFSET

Figure 2b. Decoder Eff-comp Results Averaged Over All Common Condition Sequences.
5.0 Conclusions and Future Work

While much work remains to refine the methodology, the computational complexity measurement process shows promising signs. In particular, the consistency of results across three different platforms along with a seemingly simple relationship between the results, suggest the possibility of individual contributors being able to make time measurements on their own equipment instead of relying on a “golden” platform on which all time complexity measurements would be collected. In addition, despite the fact that the results presented here are very preliminary, several coding tools demonstrate good eff-comp trade-off, especially on the decoder side and in particular for the HD sequences.

In the future, we plan to refine our time measurement methodology and collect data for additional profiles and coding structures and to investigate encoder and decoder eff-comp performance of additional combinations of coding tools. In addition, we plan to develop tools to measure memory access bandwidth since this dimension of complexity is arguably more important for a wide range of hardware based implementations.
6.0 Acknowledgements

The author would like to thank Dr. Alexis Tourapis of Dolby Laboratories and Dr. T.K. Tan of NTT DoCoMo, Inc. for running simulations over the common condition set of sequences and Dr. Arild Fuldseth of Tandberg for his assistance proofreading and checking data.

References

1) Tandberg, “A coding efficiency-computational complexity analysis of KTA 1.8 coding tools”, ITU - Telecommunications Standardization Sector STUDY GROUP 16, COM 16 – C 409 – E, April 2008.
2) M. Horowitz, “Toward Useful Complexity Evaluation Methods”, ITU-T SG16/Q6 Document, VCEG-AG19, Shenzhen, October 2007.

3) J. Jung, TK Tan, “KTA 1.8 Software Manual”, ITU-T SG16/Q6 Document, Geneva, April 2008.

4) Qualcomm, “Switched Interpolation Filter with Offset”, ITU-T Q.6/SG16 VCEG, COM 16 – C 463 – E, Geneva, April 2008.
5) TK Tan, G. Sullivan, T. Wedi, “Recommended Simulation Conditions for Coding Efficiency Experiments Revision 1”, ITU-T SG16/Q6 Document, VCEG-AE010r1, Marrakech, January 2007.
� IbBbBbBbP represents a"4" level binary hierarchical coding structure where 0 level is I-P.

File:VCEG-AI40.doc
Page: 3
Date Saved: 2008-07-18

