
Page 20
29.10.98

ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Sixth Meeting: Seoul, Korea, 3-6 November, 1998
Document Q15-F-24

Filename: q15f24.doc

Generated: 28 Oct ’98

Question:
Q.15/SG16

Source:
Nokia Research Center
Sinitaival 6
P.O. Box 100
FIN-33721 TAMPERE, Finland

Tel:
Fax:
Email:

+358 3 272 5379
+358 3 272 5322
marta.karczewicz@research.nokia.com

Title:
MVC Video Codec - Proposal for H.26L

Purpose:
Proposal

1. Introduction

MVC, the proprietary low bit rate video coder developed at Nokia Research Center, is presented. This video coder contains three major elements distinguishing it from the current video coding standards. These elements, which prove to be the source of its improved coding efficiency, are:

· Rough segmentation of the video frame into arbitrary shaped regions composed of 8(8 pixel blocks. The segmentation allows compact encoding of motion vector fields and can be described with relatively few bits.

· Motion compensation scheme utilising the above mentioned segmentation and an affine motion field model which enables very accurate prediction.

· Powerful Vector Quantization and Multi-Shape Discrete Cosine Transform (DCT) based scheme utilising spatial properties of the prediction frame for efficient coding of the residual error.

In this document, we will shortly describe all this three elements and present comparison with H.263 video codec.

2. Motion Compensated Prediction

The MVC coder has the same operating principle as other motion compensated video coders. One of the previously coded and transmitted frames, called reference frame
[image: image1.wmf]R

x

y

n

(

,

)

, is used to predict the current, coded frame
[image: image2.wmf])

,

(

y

x

I

n

. The predicted frame denoted here
[image: image3.wmf]P

x

y

n

(

,

)

is found using formula:

[image: image4.wmf](

)

)

,

(

),

,

(

)

,

(

y

x

d

y

y

x

d

x

R

y

x

P

y

x

n

n

+

+

=

.
(2‑1)

The pair
[image: image5.wmf](

(

,

),

(

,

))

d

x

y

d

x

y

x

y

 is the motion vector of the pixel in the coded frame at location
[image: image6.wmf](

,

)

x

y

. The set of motion vectors of all pixels of the current frame is called the motion vector field. The prediction error
[image: image7.wmf]E

x

y

n

(

,

)

, i.e. the difference between the coded frame and the prediction frame
[image: image8.wmf]P

x

y

n

(

,

)

[image: image9.wmf])

,

(

)

,

(

)

,

(

y

x

P

y

x

I

y

x

E

n

n

-

=

,
(2‑2)

is compressed and sent to the decoder together with motion vectors. To indicate that the compression of the prediction error is typically lossy the compressed prediction error is denoted as
[image: image10.wmf])

,

(

~

y

x

E

n

. In the decoder the reconstructed frame
[image: image11.wmf]~

(

)

I

n

×

 is obtained by predicting it according to Eq. (2‑1)

 REF PredEqn \h
 and then by adding the received prediction error:

[image: image12.wmf](

)

).

,

(

~

)

,

(

),

,

(

)

,

(

~

y

x

E

y

x

d

y

y

x

d

x

R

y

x

I

n

y

x

n

n

+

+

+

=

(2‑3)

2.1 Split and Merge Segmentation

Due to the very large number of pixels in a frame it is not efficient to transmit a separate motion vector for each pixel. Instead, the current frame is divided into larger image segments Sk characterised by homogeneity of motion so that all motion vectors of the segment can be described by a function of few parameters. Only the parameters of this function and the segmentation map, which is an inherent part of the motion representation, need to be coded and transmitted to the decoder.

The MVC coder utilises segmentation of the video frames into non-regularly shaped segments composed of 8(8 blocks (Figure 1). This segmentation is obtained by quadtree based splitting of an image (10, 11(followed by motion assisted merging algorithm which yields segments characterised by uniformity of motion. Such segmentation gives a good trade-off between accuracy of the segmentation and the number of bits that are required for its representation.

After the segmentation, the content of each segment is coded independently. Each segment has a mode of coding, which is signalled in the beginning of representation of the segment. The mode tells what type of prediction and prediction error coding will be employed for the segment. The modes will be described later in proper context.

2.1.1 Split and Merge Segmentation Encoding

The encoder transmits the final segmentation to the decoder as two sequences of bits, SPLIT bits and MERGE bits. Both encoder and decoder assume an initial segmentation, as a common reference when building the final segmentation. The initial segmentation consists of a regular grid of 32x32 pel blocks, except at the right and bottom edges, for those picture formats which are not multiple of 32.

2.1.1.1 Split Information Encoding

Split information is sent from the encoder to the decoder as two sequences of bits (SPLIT bits). Bits of the first sequence indicate splitting of all the regions in the initial segmentation which are greater than 16x16 pel (i.e. 32x32, 32x16, and 16x32) into four or two 16x16 regions. We refer to this operation as first split level. The bits of the second sequence indicate which of the 16x16 regions present in the frame segmentation after performing the first split level should be split into four 8x8 regions. We refer to this operation as second split level. Each of the resulting two SPLIT bit sequences is coded using an entropy coded run-length.

2.1.1.2 Merge Information Encoding

The encoder informs the decoder about the merge/not-merge decisions using MERGE bits which are inserted in the bitstream right after the SPLIT bits. MERGE bits refer to an adjacency graph, which is initialised at the beginning of the transmission and is being updated in the meantime according to the following rules:

1) Initialise adjacency graph:

a) Assign an unique label to each of the split segments: scan the segmentation image from left to right - top to bottom with a step of 8x8 pel block, every time a new segment is encountered assign a new label to it, which is incremented by one comparing to the previous label.

b) Associate with each segment array of labels of neighbouring segments using 4-connectivity rule
. These arrays are initially sorted according to increasing index of segment labels.

2) Construct MERGE bit sequence by parsing the adjacency diagram from the segment with lowest index to the segment with highest index, and parsing the array of neighbours from start to end. Generate bits for merge/not merge decisions only for those neighbours having a higher segment index than the index of the segment being processed. 0 indicates that the two segments remain intact, 1 indicates that the two segments are merged.

3) Every time two segments are merged update the adjacency graph before proceeding with encoding/decoding subsequent MERGE bits.

a) The whole area of the merged segment should be labelled with the lower label. The higher label should be removed from the adjacency graph completely.

b) Adjacency relations must be updated. Specifically, if the segment labelled i is merged with the segment labelled j, where i<j, do the following for each of the indices k in the array of neighbours of segment j, parsing the array from start to end:

If k is a common neighbour of i and j,

 proceed to the next k

 else

 concatenate the index k to the end of neighbour array of segment i.
2.2 Motion Model

The motion vectors of the pixels in each segment Sk are modelled using parametric function:

[image: image13.wmf]å

å

+

=

=

=

=

m

m

i

i

i

k

y

m

i

i

i

k

x

y

x

f

a

y

x

d

y

x

f

a

y

x

d

1

2

/

2

/

1

)

,

(

)

,

,

(

)

,

(

)

,

,

(

a

a

,

,
(2‑4)

Only the parameters
[image: image14.wmf]a

k

m

T

a

a

a

=

(

,

,

.

.

.

,

)

1

2

, called motion coefficients, have to be transmitted to the decoder. The basis functions
[image: image15.wmf]f

i

 are known both to the encoder and the decoder.

In the current video coding standards (1, 8, 7(motion vector field of each segment is assumed to be constant, i.e., it can be represented by only two coefficients which describe the horizontal and vertical displacement of the pixels in this segment:

[image: image16.wmf]2

1

)

,

,

(

,

)

,

,

(

a

y

x

d

a

y

x

d

k

y

k

x

=

=

a

a

.
(2‑5)

Such motion model can describe only translations of blocks and yields a large prediction error in the presence of non-translational motion such as rotation or zoom.

The MVC coder approximates motion vector field using affine motion model in which the values of motion vectors are given by the following formula:

[image: image17.wmf]y

a

x

a

a

y

x

d

y

a

x

a

a

y

x

d

k

y

k

x

6

5

4

3

2

1

)

,

,

(

,

)

,

,

(

+

+

=

+

+

=

a

a

.
(2‑6)

The affine motion model is capable of describing rotation, change of scale and translation at the same time (13(. It can also deal with other types of motion such as sheer motion and rotation around an axis parallel to the image plane (12(. Thus affine motion model gives a more realistic approximation of the changes taking place in image sequences compared to the translational model.

2.3 Motion Coefficients Coding

The motion information for a segment consists of two components: selection information and quantized nonzero coefficients. Selection information contains two 3-tuples of bits. Each bit of the first 3-tuple corresponds to one coefficient of the horizontal displacement function, whereas bits in the second 3-tuple correspond to coefficients of the vertical displacement function of the segment. The role of these bits is to indicate whether the corresponding coefficient has a nonzero value. Thus, selection information identifies which motion coefficients are transmitted to the decoder. The 3-tuples in the selection information as well as the values of the quantized nonzero coefficients are Huffman coded.

3. Example of Motion Vector Field Encoder Implementation.

3.1 Motion Estimation

The role of motion estimation is to calculate the motion coefficients ak for a given segment
[image: image18.wmf]S

k

 so as to minimize the measure of prediction error for this segment:

[image: image19.wmf]å

Î

+

+

-

k

S

y

x

k

y

k

x

n

n

y

x

d

y

y

x

d

x

R

y

x

I

)

,

(

2

)))

,

,

(

),

,

,

(

(

)

,

(

(

a

a

.
(3‑1)

The function (3‑1) is a multidimensional non-linear function. There are no techniques which always find its absolute minimum and have an acceptable computational complexity. So-called differential algorithms such as Gauss-Newton are usually used to minimise such functions (4(.

The Gauss-Newton algorithm assumes that the function to be minimised can be locally approximated by a quadratic function of the parameters. Due to this assumption it can converge only towards local minima, unless the initial parameters lie in the attraction domain of the global minimum. Thus, it is necessary to feed this algorithm with a sufficiently good initial guess of the actual optimum.

Block Matching (e.g. [1],[8]) is one of the methods used in the MVC encoder to feed the Gauss-Newton algorithm with an initial guess. This stage helps especially in the cases when the translational motion is the dominant part of the motion.

Another technique that is used in the MVC encoder to improve the convergence of the Gauss-Newton algorithm is low-pass filtering and sub-sampling the images. Following the same principle as in motion estimation using multiresolution image pyramid (3(, it is assumed that low-pass filtering the current frame and the reference frame will erase -at least some of- the local minima and help the algorithm to converge to the global minimum. Motion estimation is performed first on the low-pass filtered and subsampled versions of the reference and current frames, and the result is fed to the motion estimation stage using non-smoothed images.

The convergence is also improved by using hierarchical motion estimation. In the MVC coder motion estimation is combined with obtaining quadtree based segmentation of an image (Figure 2). The segmentation algorithm starts with a fixed partition of the coded frame into 32(32 blocks. For each initial block motion is estimated. Based on the prediction error a decision is made to stop or split the considered block into 4 smaller blocks. The splitting and motion estimation proceeds recursively, until . the minimum size of the block is reached (8x8) or the prediction error is below a threshold The motion coefficients of the block which is being split are used as the initial estimates of motion coefficients for the blocks obtained after splitting. We will call such motion coefficients - inherited motion coefficients.

Figure 3 shows how the above-mentioned methods are combined into motion estimation module. First, prediction error is calculated when motion coefficients are set to 0. If this prediction error is sufficiently small the block is declared as zero motion block and there are no additional motion coefficients calculations done for this block. Such block will be also excluded from the further stages of motion compensation. In the next step the translational motion parameters are estimated by block matching. Then, the best of three alternatives (zero motion, block matching output, inherited motion coefficients –if any-) is selected in 'Choose best' module. The resulting motion coefficients are fed to Gauss-Newton iterations operating on images that have been low-pass filtered and subsampled by 2 in each direction. The outcome of each iteration is compared against best-so-far motion coefficients on non-smoothed images, and assigned to best-so-far if they improve. The best so-far coefficients are used to initialise the next Gauss-Newton iteration. The iterations are performed until a maximum number of iterations is reached, or if the last iteration does not improve sufficiently. The motion coefficients obtained after this step are used to initialise the Gauss-Newton iterations on non-smoothed images.

After the motion coefficients estimation is finalised the prediction error is compared with zero motion prediction error: If the prediction error difference is sufficiently small its coefficients are set to zero and the block is also declared a zero motion block.

Since motion vectors can have non-integer values, motion compensated prediction requires evaluating the luminance and chrominance values at non-integer locations (x, y) in the reference frame
[image: image20.wmf]R

n

. Moreover Gauss-Newton method requires first derivatives of the reference frame at non-integer coordinates, and it works much better if the derivatives are continuous. These values are obtained using cubic convolution interpolation [6].

3.2 Motion Vector Field Coding

Application of quadtree based splitting typically results in a large number of blocks per frame. In practice, however, many of these blocks belong to objects with similar motion hence can be predicted well using common motion coefficients. This process of combining (merging) such segments is called here Motion Assisted Merging.

Since the complexity of motion varies between frames and between segments the complexity of motion model should also vary. It is not efficient to use always all 6 basis functions of the affine model per segment which requires encoding 6 coefficients. Therefore in the MVC coder during Motion Model Adaptation for each segment of interest, those basis functions (and corresponding coefficients) which can be excluded from the original motion vector field model without an excessive increase of the prediction error are determined.

To represent motion coefficients with a little amount of bits and without unacceptable increase of the prediction error it is important that they have low sensitivity to quantisation. It is well known fact that the coefficients corresponding to the discrete orthonormal functions have this property. Two options were considered initially:

· polynomial functions orthonormalized with respect to the shape of the segment, and

· separable polynomials orthonormalized with respect to the rectangle circumscribing the segment (Figure 6).

Experimentally it was found that the latter one provides equally good performance (measured in bits needed to achieve a given prediction error). Therefore, orthonormalization with respect to the rectangle circumscribing the segment was chosen since its basis functions are given by simple analytic formulas and thus can be computed with relatively low computational complexity.

The motion vector field coding system consisting of Motion Assisted Merging, Basis Function Orthonormalisation and Motion Model Adaptation is shown in Figure 4.

The goal of motion vector field coding is to find the segmentation and the motion model for each segment which minimise the distortion subject to the total bit budget constraint. The distortion D is defined as the square error between the original and the coded frame and the rate R is equal to the number of bits spent on coding this frame, i.e., coding the motion coefficients and the prediction error. This optimisation problem is equivalent to minimising the Lagrangian cost function defined as

[image: image21.wmf]L

D

R

=

+

l

.

(3‑2)

The parameter
[image: image22.wmf]l

 is the rate-distortion trade-off parameter supplied from higher level controls such as rate control mechanism.

In order to find the optimal solution to (3‑2) all possible combinations of segments during motion assisted merging should be checked. Moreover, the selection of the motion model should be combined with the merging decision. To avoid such a computationally expensive exhaustive search approximate solutions are proposed in the following sections.

3.2.1 Matrix Representation of the Motion Vector Field

The primary difficulty which distinguishes the problem of encoding the motion vector field is a nonlinear dependency between values of motion coefficients and the prediction error which needs to be minimised. Encoding of the motion vector field by minimisation of, e.g., the square error between the estimated and the decoded motion vector field in general will not lead to optimal encoding in the sense of minimising the prediction error. Thus, for example, during the motion coefficient removal a contribution of a particular motion coefficient (or the corresponding basis function) to the reduction of prediction error is not known a priori. Even when basis functions are orthonormalized to the shape of the segment, or to the rectangle circumscribing the segment, they are orthonormal at most with respect to the motion vector field and not the prediction error. The importance of a particular basis function cannot be judged by the magnitude of the corresponding motion coefficient.

Encoding the motion vector field will require obtaining motion coefficients for different combinations of segments and motion models. Minimising each time the prediction error function (3‑1) using iterative, differential techniques, in order to calculate them, would be very computationally expensive. Therefore at the beginning of motion vector field coding the new representation of the motion vector field is found, which can be used later to calculate motion coefficients more efficiently.

We start by approximating the prediction error (3‑1) of segment Sk as a quadratic function of
[image: image23.wmf]k

a

. By employing first order Taylor expansion of
[image: image24.wmf]R

n

(

)

×

around

[image: image25.wmf]),

,

,

(

'

)

,

,

(

'

y

x

d

y

y

y

x

d

x

x

c

k

y

i

i

c

k

x

a

a

+

=

+

=

(3‑3)

with respect to x and y one can write

[image: image26.wmf](

)

(

)

(

)

)

,

,

(

)

,

,

(

)

'

,

'

(

)

,

,

(

)

,

,

(

)

'

,

'

(

)

'

,

'

(

)

,

,

(

),

,

,

(

y

x

d

y

x

d

y

y

x

R

y

x

d

y

x

d

x

y

x

R

y

x

R

y

x

d

y

y

x

d

x

R

c

k

y

k

n

c

k

x

k

x

n

n

k

y

k

x

n

y

a

a

a

a

a

a

-

+

-

+

=

+

+

¶

¶

¶

¶

.
(3‑4)

The values of motion coefficients in
[image: image27.wmf]c

k

a

 represent the current motion vector field of a segment. At the beginning of motion vector field coding they are equal to values obtained during motion estimation. After substituting (3‑4) into (3‑1), criterion (3‑1) can be approximated as

[image: image28.wmf](

)

(

)

k

k

k

T

k

k

k

y

a

E

y

a

E

-

-

,
(3‑5)

Let us order all the P pels belonging to the segment Sk and denote their co-ordinates as
[image: image29.wmf](

)

x

y

i

i

,

. The ith row of matrix
[image: image30.wmf]E

k

 is than given by

[image: image31.wmf](

)

(

)

[

]

,

1

'

,

'

'

,

'

i

i

i

i

n

i

i

n

y

x

y

y

x

R

x

y

x

R

Ä

ú

û

ù

ê

ë

é

¶

¶

¶

¶

(3‑6)

and the ith element of vector
[image: image32.wmf]y

k

 is equal to

[image: image33.wmf](

)

(

)

(

)

(

)

,

'

,

'

,

,

'

,

'

,

,

'

,

'

,

i

i

n

i

i

k

y

i

i

n

i

i

k

x

i

i

n

i

i

n

y

x

R

y

x

c

k

d

y

y

x

R

y

x

c

k

d

x

y

x

R

y

x

I

-

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

+

a

a

¶

¶

¶

¶

(3‑7)

where by
[image: image34.wmf]A

B

Ä

 we denote the Kronecker product of two matrices.

To minimize (3‑5) its derivatives with respect to
[image: image35.wmf]k

a

 are taken and set to zero. As a result a set of 6 equations is obtained

[image: image36.wmf]

k

k

k

d

a

C

=

(3‑8)

where

[image: image37.wmf]k

T

k

k

E

E

C

=

(3‑9)

and

[image: image38.wmf].

k

T

k

k

y

E

d

=

(3‑10)

The motion coefficients can be found by solving the above set of equations. We are using the method of normal equations to solve (3‑8):

1) Calculate Cholesky factorisation [5] of matrix
[image: image39.wmf]k

C

[image: image40.wmf](

)

,

k

T

k

k

R

R

C

=

(3‑11)

where
[image: image41.wmf]k

R

 is 6
[image: image42.wmf]´

6 upper triangular matrix.

2) Solve 2 sets of equations, first

[image: image43.wmf](

)

k

k

T

k

d

z

R

=

(3‑12)

to obtain
[image: image44.wmf]k

z

 and later

[image: image45.wmf]k

k

k

z

a

R

=

(3‑13)

to obtain the actual motion coefficients. Both can be solved by back substitution due to the usage of triangular matrices [5]

It was found experimentally that (3‑5) is a statistically valid approximation of criterion (3‑1). When using this approximation all the necessary information about the motion vector field of the segment Sk are included in matrices Ck and dk (or alternatively Rk and zk). All the subsequent operations during motion vector field encoding can be restricted to manipulating these small, at most 6x6 matrices.

3.2.2 Motion Assisted Merging

After the initial quadtree segmentation is obtained, an adjacency graph is constructed to indicate the spatial relations between the segments (Figure 5). Each node k in the graph represents a segment Sk and it is associated with the Lagrangian cost L(Sk) for this segment:

[image: image46.wmf](

)

(

)

(

)

.

k

k

k

S

R

S

D

S

L

l

+

=

(3‑14)

Each arc is associated with the expected gain of merging the segments (nodes) connected by that arc. The expected gain for arc connecting nodes k and l is calculated as the reduction of Lagrangian cost
[image: image47.wmf]D

L

kl

 if segments
[image: image48.wmf]S

k

 and
[image: image49.wmf]S

l

 would be merged into one segment
[image: image50.wmf]S

kl

:

[image: image51.wmf](

)

).

(

)

(

)

(

kl

l

k

kl

S

L

S

L

S

L

L

-

+

=

D

(3‑15)

To reduce computation complexity the blocks declared as zero motion blocks during the initial motion estimation are not included in this graph. Moreover if the value
[image: image52.wmf]D

L

kl

 is smaller than some predefined threshold the arc connecting nodes k and l is removed.

The motion assisted merging procedure starts from the adjacency graph related to the initial quadtree segmentation and proceeds as follows:

1.
Find the arc with maximum reduction of the Lagrangian cost. Let us assume that this arc connects nodes k and l.

2.
Merge nodes k and l (and the corresponding segments).

3.
Re-compute the reduction of the Lagrangian cost associated with the arcs of the new graph.

4.
Repeat steps 1-4 until the Lagrangian cost reductions of all the arcs are negative or 0.

3.2.2.1 Lagrangian Cost Calculation

Since each segment Sk can be coded in one of three modes: INTER, INTRA and COPY, three different values of the Lagrangian cost, corresponding to these modes, have to be calculated. These values of the are denoted as LINTRA(Sk,), LINTER(Sk,), and LCOPY(Sk,). The smallest one is chosen as the Lagrangian cost of the segment Sk:

[image: image53.wmf]{

}

)

(

),

(

),

(

min

)

(

k

COPY

k

INTER

k

INTRA

k

S

L

S

L

S

L

S

L

=

.
(3‑16)

At this stage the motion coefficients are not yet determined and thus the exact prediction and the exact number of bits spent for the representation of motion information are not available. Therefore instead of the exact values of Lagrangian costs, the estimates of them are used. Both for INTRA coding of a segment and the prediction error coding the two dimensional (2-D) Discrete Cosine Transform (DCT) applied to 8x8 blocks is used. The quantization and entropy coding of the DCT coefficients is performed as in H.263 video coder. The number of bits required to represent the motion coefficients of a segment are approximated by its average value obtained in number of simulations.

The INTRA and COPY Lagrangian cost of coding segment Skl, which would be created as a result of merging segments
[image: image54.wmf]S

k

 and
[image: image55.wmf]S

l

, can be calculated by utilising already known values of INTRA and COPY Lagrangians for these segments:

[image: image56.wmf])

(

)

(

)

(

l

INTRA

k

INTRA

kl

INTRA

S

L

S

L

S

L

+

=

,
(3‑17)

[image: image57.wmf])

(

)

(

)

(

l

COPY

k

COPY

kl

COPY

S

L

S

L

S

L

+

=

.
(3‑18)

The calculation of the INTER Lagrangian cost LINTER(Skl) requires performing the motion compensated prediction. Therefore motion coefficients, denoted as
[image: image58.wmf]kl

a

, for the segments Skl have to be found. This in turn requires minimisation of the function

[image: image59.wmf](

)

(

)

(

)

2

)

,

(

)

,

,

(

),

,

,

(

,

å

Î

+

+

-

kl

S

y

x

kl

y

kl

x

n

n

y

x

d

y

y

x

d

x

R

y

x

I

a

a

.
(3‑19)

After replacing
[image: image60.wmf]R

n

(

)

×

 by its first order Taylor expansion around

[image: image61.wmf](

)

(

)

(

)

(

)

(

)

î

í

ì

Î

+

+

Î

+

+

=

,

,

)

,

,

(

),

,

,

(

,

,

)

,

,

(

),

,

,

(

'

,

'

l

l

y

l

x

k

l

y

k

x

S

y

x

if

y

x

d

y

y

x

d

x

S

y

x

if

y

x

d

y

y

x

d

x

y

x

a

a

a

a

(3‑20)

criterion (3‑19) can be rewritten as

[image: image62.wmf](

)

(

)

kl

kl

kl

T

kl

kl

kl

y

a

E

y

a

E

-

-

,
(3‑21)

where

[image: image63.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

=

l

k

kl

l

k

kl

y

y

y

E

E

E

,

.
(3‑22)

The common motion coefficient vector
[image: image64.wmf]kl

a

 is found by solving the following set of equations

[image: image65.wmf]kl

kl

kl

d

a

C

=

,
(3‑23)

where

[image: image66.wmf]kl

T

kl

kl

E

E

C

=

 and
[image: image67.wmf]kl

T

kl

kl

y

E

d

=

.
(3‑24)

The method of normal equations described in Section 3.2.1 is used to solve (3‑23). The matrix
[image: image68.wmf]kl

C

 and the vector
[image: image69.wmf]kl

d

 do not have to be calculated from the beginning using Eq. (3‑24). They are obtained from matrices already calculated for regions Sk and Sl:

[image: image70.wmf]

T

,

l

k

l

T

l

k

T

k

l

k

l

k

kl

T

kl

kl

C

C

E

E

E

E

E

E

E

E

E

E

C

+

=

+

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

=

=

(3‑25)

[image: image71.wmf]l

k

l

T

l

k

T

k

l

k

T

l

k

kl

T

kl

kl

d

d

y

E

y

E

y

y

E

E

y

E

d

+

=

+

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

=

=

.
(3‑26)

The increase of the square prediction error
[image: image72.wmf]kl

E

D

 in the combined area of segments
[image: image73.wmf]k

S

 and
[image: image74.wmf]l

S

, if they would be merged into new segment
[image: image75.wmf]kl

S

 can be approximated as:

[image: image76.wmf](

)

kl

T

l

T

k

l

T

l

k

T

k

kl

E

a

d

d

a

d

a

d

+

-

+

»

D

.
(3‑27)

3.2.2.2 Merging Two Segments

Having found the arc that yields maximum expected gain, and having decided to merge the two nodes connected by this arcs, we merge the associated segments, and proceed by updating the relevant data for the merged segment:

1) The label for the merged segment is assigned to the smaller of the labels of the two segments, i.e., if we are merging the segments k and l (where k < l), the merged segment is labelled k. This is equivalent to expanding segment k and vanishing segment l.

2) If the increase of the prediction error due to merging in the area of newly created segment is smaller than some predefined threshold, Lagrangian cost L(Sk), matrix
[image: image77.wmf]k

C

 and vector
[image: image78.wmf]k

d

 are updated by the values computed for the "virtual" segment Skl, i.e. L(Sk)
[image: image79.wmf]¬

 L(Skl),
[image: image80.wmf],

kl

k

C

C

¬

[image: image81.wmf]kl

k

d

d

¬

. Otherwise:

a) The motion coefficients of the segment
[image: image82.wmf]k

S

 are re-estimated. The motion coefficients
[image: image83.wmf]kl

a

 are used to initialised the Gauss-Newton iterations on non-smoothed images. These iterations continue till a maximum number of iterations (5) is reached, or if the last iteration did not bring sufficient improvement.

b) Matrix
[image: image84.wmf]k

C

 and
[image: image85.wmf]k

d

 vector are recalculated using Eqs. (3‑6)-(3‑7).

c) New INTER Lagrangian cost is calculated.

3.2.2.3 Updating the Graph

Once the two segments are merged, the graph must be updated accordingly. The graph nodes corresponding to these segments are combined and the weights (Lagrangian cost reductions) of the arcs involving the merged node are recalculated. As an example, let us assume that the nodes k and l were merged. Node l has vanished, and its neighbours has become node k's neighbours. The reduction of the Lagrangian cost
[image: image86.wmf]km

L

D

 for all the neighbouring segments Sm, m=1,…,M, of segment Sk has to be calculated. This reduction is calculated in the same manner as described in Section 3.2.2.1. The only exception is that to reduce computational complexity the value of LINTER(Skm) is not calculated for all m=1,…,M:

1) For each neighbouring segment Sm of Sk calculatate, according to Eq. (3‑27), the increase of the square prediction error
[image: image87.wmf]km

E

D

 if these segments would be merged.

2) Find the value of smallest increase of the prediction error. This value is denoted as
[image: image88.wmf]min

E

D

.

3) Calculate the INTER Lagrangian cost proceeding from the segment
[image: image89.wmf]m

S

 for which the smallest value of
[image: image90.wmf]km

E

D

 was obtained to the one with the largest value. Stop the calculations if

a) the positive value of
[image: image91.wmf]km

L

D

 is encountered, and

b)
[image: image92.wmf]min

E

T

E

km

D

>

D

, where T is predefined threshold.

For the remaining segments set LINTER(Skm) to some large positive value.

Moreover, if both segments Sk and Sm have the smallest Lagrangian cost for INTRA mode, it is assumed that segment Skm has the smallest Lagrangian also for INTRA mode. The INTER Lagrangian for Skm is not calculated.

The output of the Motion Assisted Merging, in addition to the segmentation information, should be for each segment Sk matrix
[image: image93.wmf]k

R

 and vector
[image: image94.wmf]k

z

. They will be utilised during Motion Model Adaptation. For some of the segments which did not require motion coefficient re-estimation after their last merging they are already known. They were calculated in order to solve (3‑23) and find coefficients of the merged segment. For other they have to be calculated using Eqs. (3‑11) and (3‑12). However the computation complexity of these calculations is very low.

3.2.3 Function Orthogonalisation

After the Motion Assisted Merging, when the frame segmentation is fixed, the basis functions can be orthonormalised. Let the size of the rectangle circumscribing the given segment be
[image: image95.wmf][

]

[

]

max

min

max

min

,

,

y

y

x

x

´

 (Figure 8). The two dimensional (2-D) basis functions
[image: image96.wmf]i

f

 orthogonal with respect to the
[image: image97.wmf][

]

[

]

max

min

max

min

,

,

y

y

x

x

´

 are build as a tensor product of 1-D orthogonal polynomials:

[image: image98.wmf])

(

)

(

)

,

(

)

,

(

)

(

)

(

)

,

(

)

,

(

)

(

)

(

)

,

(

)

,

(

2

1

6

3

1

2

5

2

1

1

4

1

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

y

h

x

g

y

x

f

y

x

f

y

h

x

g

y

x

f

y

x

f

y

h

x

g

y

x

f

y

x

f

=

=

=

=

=

=

,
(3‑28)

where

1)
[image: image99.wmf]å

=

=

n

l

l

i

l

n

i

n

x

x

g

0

,

)

(

a

, n=1,2 orthonormal on the interval
[image: image100.wmf][

]

max

min

,

x

x

,

2)
[image: image101.wmf]å

=

=

n

l

l

i

l

n

i

n

y

y

h

0

,

)

(

b

, n=1,2 orthonormal on the interval
[image: image102.wmf][

]

max

min

,

y

y

.

The coefficients of the polynomial gn with
[image: image103.wmf]max

min

x

x

L

-

=

 are equal to

[image: image104.wmf](

)

(

)

(

)

(

)

(

)

(

)

2

1

3

2

2

1

3

2

2

1

3

1

1

1

,

2

min

0

,

2

0

,

1

+

+

-

=

+

+

+

+

+

=

+

=

L

L

L

L

L

L

x

L

L

L

L

a

a

a

(3‑29)

The coefficients of polynomial hn are calculated using the above formulas by replacing xmin by ymin and xmax by ymax.

Matrices
[image: image105.wmf]k

R

 and
[image: image106.wmf]k

z

 describing the motion vector field of the segment need to be updated to reflect the change of the basis functions:

[image: image107.wmf]T

R

R

k

k

¬

,
[image: image108.wmf]k

k

z

z

¬

,
(3‑30)

where

[image: image109.wmf]ú

û

ù

ê

ë

é

=

1

1

T

0

0

T

T

,
(3‑31)

[image: image110.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

0

,

1

1

,

2

1

,

2

0

,

1

0

,

1

0

,

2

0

,

2

0

,

1

0

,

1

0

,

1

1

0

0

0

0

b

a

b

a

b

a

b

a

b

a

T

.
(3‑32)

3.2.4 Motion Model Adaptation

The goal of Motion Model Adaptation is to find for each segment the subset of the affine model basis functions and their corresponding motion coefficients as to minimise Lagrangian cost function of this segment. The Motion Model Adaptation can be carried out for each segment independently since for fixed
[image: image111.wmf]l

, Lagrangian cost function for the frame is minimised when all segments operate at constant slope point
[image: image112.wmf]l

 on their rate-distortion curves.

For each segment basis functions are removed from the initial set iteratively. At each iteration one basis function is removed from the current set of basis functions and the INTER Lagrangian cost is computed for the obtained set. The INTER Lagrangians is calculated as desribed in Section 3.2.2.1. The only difference is that the exact number required to code motion coefficients is calculated. To decide which basis function should be removed some measure of significance has to be assigned to each of them. To reduce computational complexity the change of the prediction error and not the Lagrangian cost is used as such a measure. At the end of Motion Model Adapation the final decision on the mode for each region is made. The Lagrangian for INTRA mode is also calculated as desribed in Section 3.2.2.1.

Low complexity method to approximate the increase of the prediction error and re-estimate motion coefficients when one of the basis functions is removed is essential to efficiently implement Motion Model Adaptation. Let us reconsider the approximate prediction error (3‑1) in which the motion vector field is described by 6 basis functions. Note that removing i'th basis function is equivalent to removing i'th row from
[image: image113.wmf]k

a

, and removing i'th column from
[image: image114.wmf]k

E

. This is turn is equivalent to removing i'th column from
[image: image115.wmf]k

R

 [9]. Therefore the vector
[image: image116.wmf]k

a

~

 of nonzero motion coefficients corresponding to the remaining basis functions can be found by minimising

[image: image117.wmf](

)

(

)

k

k

i

k

T

k

k

i

k

k

z

a

R

z

a

R

a

-

-

~

~

min

)

(

)

(

~

(3‑33)

or equivalently by solving the overdetermined system of equations:

[image: image118.wmf]k

k

i

k

z

a

R

=

~

)

(

(3‑34)

where
[image: image119.wmf])

(

i

k

R

 is the matrix
[image: image120.wmf]k

R

 with ith column removed. The approximate increase of the prediction error is equal to (3‑33).

Let us denote by
[image: image121.wmf])

(

p

f

 the subset of the affine model basis functions which includes p functions. The motion model adaptation for a region Sk can be than summarised as follows :

1) Create an initial set of m (m<=6) basis functions by removing these basis functions of an affine model for which the quantised motion coefficients are equal to 0. Calculate motion coefficients and the INTER Lagrangian cost corresponding to this set.

2) For p=m,…,2:

a) Calculate the prediction error when the basis function fi, i=1,…, p, is eliminated from the current set of basis functions
[image: image122.wmf])

(

p

f

. In order to reduce the computational complexity the approximate increase of the prediction error given by Eq. (3‑33) is used.

b) Create new set
[image: image123.wmf])

1

(

-

p

f

 by eliminating from
[image: image124.wmf])

(

p

f

 the ith basis function for which the smallest increase was obtained.

c) Calculate the motion coefficients vector corresponding to set
[image: image125.wmf])

1

(

-

p

f

. Calculate the INTER Lagrangian cost for this vector.

d) Update matrix
[image: image126.wmf]k

R

, i.e.,
[image: image127.wmf])

(

i

k

k

R

R

¬

.

3) Choose the vector of coefficients for which the INTER Lagrangian cost is minimized to model the motion vector field of the considered segment.

4) Compare the minimum INTER Lagrangian cost with COPY and INTRA Lagrangian costs. Select the mode of coding segment Sk for which the Lagrangian cost is minimised.

4. Multi-Transform Prediction Error Coding

Prediction error coding involves the lossy coding of the residual error after motion compensation with the highest possible fidelity, within the target bit budget. When examining a prediction error frame, such as the one in Figure 7 it can be seen that the error is sparsely localised at certain areas as almost arbitrary patterns with changing contrast. Since the error signal has such a statistically varying nature it is very difficult for a single coding method to represent it. Therefore, unlike the current video coding standards which use only 8(8 DCT to code the prediction error, the MVC coder utilises a set of coding methods such as Multishape DCT and Entropy Constrained Vector Quantisation (ECVQ) (2(. Each of these methods can work very well for certain patterns of prediction error largely improving coding efficiency over DCT. However, if we were to use many different methods freely, we would have to spend large amount of overhead bits to signal them to the decoder (which would decrease the gain in coding efficiency).

The number of methods which should be considered for coding the prediction error at a given location is limited by the characteristic of this error. Since the prediction error is the difference between the frame being coded and its prediction obtained by motion compensation, knowledge of the motion compensation scheme should enable us to anticipate when it is not working correctly and therefore where and what type of error we can expect. The proposed motion compensated scheme, due to the type of segmentation and motion model that it uses, is not able to approximate very accurately discontinuities of motion vector field. These discontinuities are located at the object boundaries. The exact location of contours of moving objects is not known in general. However, their location can be approximately determined by finding edges and other discontinuities in the prediction frame which is known both to the encoder and the decoder (after receiving motion coefficients). Thus the spatial properties (location, directionality, etc.) of the prediction error signal at a given location can be inferred from properties of the prediction frame in the same location (see e.g. Figure 7, and Table 3). The decoder can anticipate what coding technique(s) the encoder will choose for coding of prediction error pattern in this block. This allows to reduce the number of overhead bits.

In the MVC coder both the encoder and the decoder include a classifier which analyses spatial properties of the prediction frame. The above information is used to switch between a multitude of coding methods. The decision on the best methods is made by an optimisation procedure based on rate-distortion performance. The selection information is transmitted to the decoder as a variable length codeword (VLC).

4.1 Classification

In MVC coder there are two classifiers used, 8(8 and 4(4 Classifier. The objective of 8(8 Classifier is to determine where the prediction error is concentrated within an 8(8 pel block. It is assumed that localisation of the high energy error corresponds to “active“ area in the prediction frame. Thus the criterion for classification of an 8(8 pel block is the location of those areas with high variance of pixel values in the corresponding block of the prediction frame. Each 8(8 pel block is divided into four 4(4 pel quadrants. For each quadrant the variance is calculated. A quadrant is said to be active when its variance is larger than predetermined threshold. According to the number and location of active quadrants, an 8(8 pel block is classified into one of 16 possible classes. Six of them are shown in Figure 9. The remaining classes are obtained by rotating the ones depicted in Figure 9 by 90o, 180o and 270o.

The goal of 4(4 Classifier is to estimate not only the energy but also directionality of the error in a 4(4 pel quadrant. The expected energy of a 4(4 pel prediction error block is, as in 8(8 Classifier, based on the variance of the corresponding 4(4 pel block in the predicted frame. According to the value of this prediction image variance the 4x4 pel block is classified as low or high energy block. By analysing the gradient values of the pixels in the corresponding block in the prediction frame the 4(4 pel block is assigned in addition to one of the following classes: horizontal, vertical, diagonal-45 o, diagonal-135 o, texture and flat.

4.2 Coding Methods

To each 8x8 class there is assigned a set of 8x8 Coding Methods which are designed to perform best for this class. The MVC coder includes overall 26 8x8 Coding Methods which are depicted in Figure 10. For each 8x8 Coding Method the coded area consists of a cluster or a combination of clusters of the same size. For example, the method 7-5 in Figure 10 has a coded area consisting of a combination of two 4x4 pel clusters. Clusters can have only five different sizes: 8x8, 4x8, 8x4, 3x8 and 4x4. The clusters of sizes 8x8, 4x8, 8x4 and 3x8 can only be coded using a 2-D separable DCT of the corresponding size. In order to obtain a full 8x3 DCT transform for diagonal methods 6-1 and 6-2 in Figure 10, one pixel is moved to the top row and one to the bottom row.

Each coded 4(4 clusters can use one of 4x4 Coding Methods available for the 4x4 class to which the block is assigned. The class for the 4(4 block is determined by the 4(4 Classifier using the corresponding 4(4 prediction block. MVC coder uses the following 4(4 Coding Methods: 4x4 DCT, 4x4 Extrapolation, and 4x4 ECVQ.

4.2.1 Extrapolation Methods

There are two kinds of extrapolation methods used in the MVC codec: 8x8 and 4x4 extrapolation. 8x8 extrapolation methods are available only if the classification yields a class with one active quadrant or a single active half. In these cases the median of the eight or nine surrounding pixels is used to extrapolate the entire active area. 4x4 extrapolation method can be used if the 8x8 method contains 4x4 methods. 4x4 extrapolation differs from the 8x8 case in the fact that now the median is taken from the boundary pixels inside the coding area. This is due to the assumption of having different characteristics for different quadrants if they get coded with separate 4x4 methods. Different extrapolation possibilities are illustrated in Figure 12 below.

4.2.2 ECVQ Methods

Since for each 4x4 class we can expect different type of error a set of ECVQ codebooks having different directionality and energy is used. While designing ECVQ codebooks the prediction error blocks, which constitute the training material, are passed through 4(4 Classifier. The classifier splits the training material into subsets, each corresponding to one of 4(4 classes. Each ECVQ codebook is trained using one of these subsets. Thus the types of codebooks correspond to the types of 4(4 classes. In addition to texture and flat codebooks only codebooks with horizontal and diagonal-45o directionality are required. Vertical and diagonal-135o codevectors can be obtained by rotating, respectively, horizontal and diagonal-45o codevectors. This allows not only to reduce the storage requirements but also make the codebooks more robust, e.g., to obtain horizontal codebook we used 4(4 prediction error blocks classified as horizontal and rotated 4(4 prediction error blocks classified as vertical. Example of the codevectors from the directional ECVQ codebooks is given in Figure 13.

4.3 Method Selection Information

The set of 8x8 methods assigned to a particular class are ranked according to their probabilities. For a given class, VLC codewords are only assigned to the most probable methods whereas the least probable ones are discarded (Table 1).

In a similar fashion as for the 8x8 methods, to each 4x4 class, a set of 4x4 Coding Methods are assigned which are ranked according to their probabilities, discarding those most improbable methods. The classification of the prediction image gives only approximate characteristic of the error. Thus to each 4(4 class there is more than one method assigned. However for a given 4(4 class the probability of usage of the ECVQ codebook with the same characteristics as this 4(4 class is considerably higher than of the other methods as indicated in Table 3. As an example of 4(4 Coding Methods assignment to 4(4 classes let us consider high energy, diagonal-45o class. To this class the following methods are assigned (in parenthesis lengths of VLC codewords are given which are used to signal the methods to the decoder): high energy diagonal-45o ECVG (1), high energy texture ECVQ (3), high energy vertical ECVQ (3), high energy horizontal ECVQ (3), DCT (4) and Extrapolation (4).

To select the best method (in rate-distortion sense) for each coded block encoder should test all the methods available for this block according to the results of the classification of the corresponding block in the prediction frame. However, similar classification can be used for the error image blocks in the encoder to further limit the number of methods which should be tried and reduce computational complexity.

5. Intra Frame Coding

Intra frame coding uses pixel prediction from the surrounding area in a causal fashion (i.e. prediction is done from the neighbouring 8x8 pel blocks which have already been coded). The pixels can be predicted either by using DC prediction, or from one of the 7 directions depicted in Figure 14. The prediction uses part of texture data from blocks L, UL, U, or UR, which were already coded and transmitted to the decoder. The prediction involves two stages:

· Directionality Classification of the two neighbouring 8x8 pel blocks U and L in Figure 14. This classification is done in a similar fashion as for the 4x4 Classifier described in Section 4.1. However, there are 8 directionality classes with directions k/8, k = 0,…,7, and two non-directional classes, namely flat and texture.

· Texture prediction from the neighbouring coded blocks is based on the result of the directionality classification. To each combination of classes of blocks U and L a suitable set of directional predictions is assigned. For example, if both 8x8 pel blocks U and L are classified as vertical then the texture prediction for the current block will most probably use vertical pixel prediction. Based on the Lagrangian cost either a DC prediction or a suitable directional pixel prediction is selected.

After texture prediction is performed, the MVC intra frame encoder uses the same concept for prediction error coding as is used for inter coding. The differences are:

1. The DC component of the error is subtracted and transmitted for every 8x8 pel block. Consequently, the zig-zag scanning is offset by one since the 8x8 DC component has been sent to the decoder.

2. Different VLC tables are used for DCTs.

3. 4x4 ECVQ has additional codebook for the /8 direction. Difference blocks with directionality 3/8, 5/8, and 7/8 are rotated or mirrored before coding in order to reuse the /8 codebook.

4. Three KLTs with basis functions having directionality k/8, k = 0, …,2 are added to 8x8 Coding Methods.

Complexity

Example figures for the complexity of MVC codec can be summarised as follows:

· Decoder runs real-time on a MMX 100 MHz PC.

· Encoder can be efficiently parallelised.

· On a Pentium II platform with two processors at 400 MHz, encoder runs real-time on the average.

6. Results

Simulation results compared to the anchor bitstreams are presented in a separate Excel document (Q15f24.xls) according to the conditions specified in Q15D62r1.doc. Since MVC codec uses a different intra frame coding than the anchor, the amount of bits for the first frame have been aligned according to the rule provided in Q15D62r1.

In addition to the recommended sequences, simulation results using rate control in MVC compared to TMN8 UBC 3.2.0 software implementation (with rate control method 3 and Annexes D, F, I, J and T enabled) are enclosed in Table 2, for the commonly used sequences.

References

(1(
CCITT Recommendation H.261, “Video codec for audio visual services at p x 64 kbit/s, December 1990.

(2(
P. A. Chou, T. Lookabaugh and R. M. Gray, “Entropy Constrained Vector Quantization,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-37, No. 1, January 1989, pp. 31-42.

[3]
P. J. Burt, “The Pyramid as a Structure for Efficient Computation”, in: Multiresolution Image Processing and Analysis, ed. Rosenfeld, Springer Verlag, 1984, pp. 6-35.

[4]
R. Fletcher, “Practical Methods of Optimization”, Second Edition, John Wiley & Sons, 1987, Chapter 3 and Chapter 6.

[5]
G. H. Golub and C. van Loan, "Matrix computation" 2'nd edition, The Johns Hopkins University Press, 1989.

 [6]
R. G. Keys, "Cubic convolution interpolation for digital image processing," IEEE Trans. Acoust., Speech, Signal Processing, Vol.29, No.6, pp.1153-1160, 1981

(7(
ISO/IEC 11172-2, “Information technology - coding of moving picture and associated audio for digital storage media at up to about 1.5 mbit/s: Part 2 video,” August 1993.

(8(
ITU-T Draft Recommendation H.263, “Video coding for low bitrate communication,” December 1995.

(9(
M. Karczewicz, J. Niewglowski and P. Haavisto, “Video coding using motion compensation with polynomial motion vector fields,” Image Communication Journal Special Issue on MPEG-4, Vol. 10, Nos. 1-3, 1997.

(10(
J. Lee, “Optimal quadtree for variable block size motion estimation,” in Proc. of IEEE International Conference on Image Processing, Washington, USA, 1995, pp. III480-483.

(11(
R. Leonardi and H. Chen, “Tree based motion compensated video coding,” in Proc. of IEEE International Conference on Image Processing, Austin, USA, 1994, pp. II438-442.

(12(
G. Wolberg, Digital Image Warping, New York: IEEE Computer Society, 1990.

(13(
S. F. Wu and J. Kittler, “A differential method for simultaneous estimation of rotation, change of scale and translation,” Signal Processing: Image Communication, Vol. 2, No. 1, pp. 69-80, May 1990.

[image: image128.wmf]
Figure 1: Example segmentation.

[image: image129.wmf]DOCUMENTTYPE

NOKIA RESEARCH CENTER

TypeYourNameHere

TypeDateHere

Initial Segmentation

into 32x32 blocks

Motion

Estimation

Split

Decision

Figure 2: Motion vector field estimation and encoding.

[image: image130.wmf]NOKIA RESEARCH CENTER

TypeYourNameHere

Initial estimate

Zero motion

Block matching

Choose best

GN on

subsampled

 images

GN on

non-subsampled

 images

Decide whether

zero motion

Output motion

coefficients

Figure 3: Block diagram of motion estimation module.

[image: image131.wmf]DOCUMENTTYPE

1

 (

1

)

NOKIA RESEARCH CENTER

TypeYourNameHere

TypeDateHere

motion

coefficients

Motion

Assisted

Merging

Motion

Model

Adaptation

Basis

Function

Orthonormalisation

Quantiza-

tion

segmentation

R

n

(x,y)

I

n

(x,y)

d

x

(x,y), d

y

(x,y)

multiplexing

segmentation information

selection information

Figure 4: Schematic diagram of the motion field coding system.

[image: image132.wmf]p

n

o

m

t

s

q

r

v

u

w

x

g

op

g

ov

g

ou

g

mp

g

nq

g

pq

g

mo

g

nr

g

qr

g

tu

g

mt

g

ot

g

tw

g

st

g

wx

g

qv

g

sx

g

rx

g

rs

g

ns

g

sw

g

mn

g

pv

g

ms

g

np

Figure 5: Weighted connected graph representing the segments and their connectivity

[image: image133.wmf]S

k

Figure 6: Rectangle circumscribing the segment Sk.

[image: image134.wmf]
Figure 7: Example of the prediction frame (left) and the prediction error image (right).

[image: image135.wmf]Y

U

V

Figure 8: Example of partitioning segment into macroblocks.
An 8x8 pel grid is used both for luma and chroma.

[image: image136.wmf]
Figure 9: The 8x8 classes. Gray color denotes the "active" areas.

[image: image137.wmf]1

2-1

2-2

2-3

3-1

3-2

3-3

4

5

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

7-11

7-12

7-13

7-14

7-15

6-1

6-2

Figure 10: 8x8 coding methods. Gray color is used to denote the coded area. It should be noted that only DCT methods exist for all the clusters shown. ECVQ can only be applied on 4x4 quadrants whereas extrapolation can only be utilised for 4x4 and alone 8x4 cluster (excluding methods 4 and 5).

[image: image138.wmf]11

11

11

10

10

101

100

011

011

010

011

010

8x8 Class

Ranked 8x8 methods for the class

Figure 11: Example of most probable 8x8 methods in some of the 8x8 classes.

[image: image139.wmf]Extrapolation

8x8

Extrapolation

4x4

Figure 12: Examples of 8x8 and 4x4 extrapolation methods.
Median of the pixels marked with dots is used for extrapolation.

[image: image140.wmf]Codevectors from the horizontal codebook

Codevectors from the diagonal codebook

Figure 13: Example of the codevectors from the directional ECVQ codebooks.

[image: image141.wmf]L

C

UR

U

UL

Figure 14: Directions from which texture prediction can be done in an I frame.

Table 1
Available methods and corresponding Huffman Codes for each 8x8 class in luminance.

1 Quadrant
2 Quadrants
3 Quadrants
All Quadrants
No Quadrants
Diagonal

Method
VLC
Method
VLC
Method
VLC
Method
VLC
Method
VLC
Method
VLC

1
11
1
11
1
11
1
11
1
1
1
11

7-2
10
3-1
10
7-2
101
7-15
101
3-2
011
7-2
101

3-1
011
7-2
011
3-1
100
7-3
100
3-1
010
7-8
100

2-1
010
7-1
010
2-1
011
7-12
011
2-2
0011
2-1
011

3-2
001
7-3
0011
7-15
0101
7-6
0101
2-1
0010
3-1
0101

2-2
000
3-2
0010
7-1
0100
7-9
0100
7-2
00011
3-2
0100

5
0001
7-4
0011
5
0011
7-4
00010
2-2
0011

7-15
0000
7-6
0010
3-3
0010
7-8
00001
7-14
0010

7-3
0001
4
0001
7-1
00000
7-12
0001

6-2
0000
2-3
0000

6-1
0000

Table 2
Results using Rate Control in MVC and H.263+
Sequence
MVC
TMN8
PSNR difference

Bitrate
(bps(
PSNR luma (dB(
Delay (msec.(
average/max
PSNR luma (dB(
Delay (msec.(
average/max
(dB(

Akiyo
10
37.38
142/147
34.33
152/165
3.1

Container
10
32.44
143 148
28.57
163/178
3.9

Container
24
35.57
110/110
32.13
116/126
3.4

Hall
10
32.83
143/147
30.36
152/165
2.5

Mother&Dthr
10
33.42
148/196
32.21
153/177
1.2

Mother&Dthr
24
37.07
109/110
35.19
111/116
1.9

News
24
32.77
109/111
30.27
117/151
2.5

Foreman
48
33.93
131/132
31.92
132/134
2.0

Silent
24
33.24
131/132
31.71
1337150
1.5

Table 3
Correlation figures between prediction class and prediction error class.
For a given prediction class (rows) the percentage of blocks falling into a certain prediction error class is shown.

Prediction error class

Prediction class

Horizontal
Diag 45(
Vertical
Diag 135(
Flat
Texture

Horizontal
33
14
1
14
31
7

Diag 45(
5
52
4
5
25
9

Vertical
2
15
25
13
37
9

Diag 135(
8
7
3
46
28
8

Flat
8
16
4
12
56
4

Texture
7
23
7
15
28
19

� In this context, 4-connectivity rule means that two segments are neighbors if they have at least a line segment as their common border

_970134026.unknown

_970386764

_970429936.unknown

_970506330.unknown

_970512326.unknown

_970519935.doc

DOCUMENTTYPE

1 (1)

NOKIA RESEARCH CENTER

TypeYourNameHere

TypeDateHere

Decision

Split

Estimation

Motion

into 32x32 blocks

Initial Segmentation

TypeDateHere

TypeYourNameHere

NOKIA RESEARCH CENTER

DOCUMENTTYPE

_935227290.doc

_970673056.vsd

_970990468.ppt

Codevectors from the horizontal codebook

Codevectors from the diagonal codebook

_971190248.vsd

_970850133.vsd

_970664021.vsd

_970664025.vsd

_970664027.vsd

_970557195.doc

DOCUMENTTYPE

1 (1)

NOKIA RESEARCH CENTER

TypeYourNameHere

TypeDateHere

motion

coefficients

selection information

segmentation information

Quantiza-tion

multiplexing

Motion

Model

Adaptation

Basis

Function

Orthonormalisation

dx(x,y), dy(x,y)

In(x,y)

Rn(x,y)

segmentation

Motion

Assisted

Merging

_970520355.unknown

_970520525.unknown

_970520705.unknown

_970520398.unknown

_935227290.doc

_970517721.unknown

_970518157.unknown

_970517714

_970517720

_970517705.unknown

_970510449.unknown

_970510551.unknown

_970510401.unknown

_970465120

_970506303

_970506315

_970471993.unknown

_970472012.unknown

_970472021.unknown

_970472005.unknown

_970465165

_970429982.unknown

_970430015.unknown

_970430046.unknown

_970429961.unknown

_970394519

_970397134.unknown

_970397151.unknown

_970429891.unknown

_970397210.unknown

_970397142.unknown

_970394710.unknown

_970387321.unknown

_970393601.unknown

_970394351.unknown

_970387335.unknown

_970386974.unknown

_970323558.unknown

_970324993.unknown

_970386607.unknown

_970386676.unknown

_970382166.unknown

_970383041.unknown

_970323635.unknown

_970324286.unknown

_970324876.unknown

_970324889.unknown

_970324761.unknown

_970324045.unknown

_970323622.unknown

_970302571.unknown

_970308802.unknown

_970323360.unknown

_970323372.unknown

_970310166.unknown

_970318772.unknown

_970310104.unknown

_970308693.unknown

_970229771.unknown

_970302486.unknown

_970302544.unknown

_970230606.unknown

_970167593.unknown

_970174651.unknown

_970174666.unknown

_970167628.unknown

_970170806.unknown

_970135017.unknown

_970135079.unknown

_970161553.unknown

_970134047.unknown

_969525696.unknown

_969974537.unknown

_969974616.unknown

_969974761.unknown

_969978817

_970049015.unknown

_970049016.unknown

_970049040.unknown

_969975186.unknown

_969974828.unknown

_969974682.unknown

_969974727.unknown

_969974630.unknown

_969974595.unknown

_969974601.unknown

_969525700.unknown

_969525702.unknown

_969695723.unknown

_969974414.unknown

_969525701.unknown

_969525699.unknown

_956141207.unknown

_956141221.unknown

_962110016.unknown

_968326332.unknown

_968424102.unknown

_968326402

_967973354.unknown

_967973414.unknown

_962521038.unknown

_962521373.unknown

_956141227.unknown

_961586116.doc

DOCUMENTTYPE

1 (1)

NOKIA RESEARCH CENTER

TypeYourNameHere

TypeDateHere

[image: image1.emf]Initial estimate

Zero motion

Block matching

Choose best

GN on

subsampled

 images

GN on

non-subsampled

 images

Decide whether

zero motion

Output motion

coefficients

Initial estimate Zero motion Block matching

Choose best

GN on

subsampled

 images

GN on

non-subsampled

 images

Decide whether

zero motion

Output motion

coefficients

_935227290.doc

_962109997.unknown

_956141236.unknown

_956141222.unknown

_956141225.unknown

_956141211.unknown

_956141217.unknown

_956141208

_956141199.unknown

_956141201

_956141204

_956141200.unknown

_956141195.unknown

_956141198

_922976551.unknown

_956141193

_916745488

