ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Ninth Meeting: Red Bank, New Jersey, 19-22 October, 1999
Document Q15-I-17
Filename: q15i17.doc

Generated: 01 Oct. ’99

Question:
Q.15/SG16

Source:
Stephan Wenger
TU Berlin Sekr. FR 6-3
Franklinstr. 28-29
D-10587 Berlin
Germany

Tel:
Fax:
Email:

+49-172-300-0813
+49-30-314-25156
stewe@cs.tu-berlin.de

Title:
A correct place for a channel coder to support unequal error protection for H.263++ and H.26L

Purpose:
Proposal

Summary

In Berlin, LG Electronic presented a – in our opinion – quite interesting proposal for data partitioning augmented by unequal error protection of the various partitions. Some concern was raised regarding the combination of source and channel coding mechanisms in this proposal. For Red Bank there is a proposal for header repetition on the table.

This document proposes to split pure source coding (e. g. data partitioning) and pure channel coding (e. g. FEC and header repetition) into two different entities. Our opinion, possibly without being fully aware of procedural problems, is to put ‘channel coder’ functionality into a new Recommendation under control of Q.15, whereas the source coding parts have to remain inside of H.263.

General remarks about channel coders and our environment

Before proposing our schemes, we want to raise a very general issue. In the video-oriented signal processing literature, a channel coder is usually an algorithms that enhances an already coded bitstream by redundant error protection information, such as FEC or redundant copies of headers. The channel code can be transparently applied and, in case of error free transmission, removed. In that sense, Annex H is a typical channel coder.

In the academic literature the term channel coder seems, however, be almost exclusively used in the framework of non-multiplexed, bit error prone, video transmission. Knowing that such channels are, within the framework of H.-series system standards, not available, a lot of the proposed algorithms are of very theoretical nature and rather useless in our environments. It’s fact that H.-series systems recommendations do need underlying protocol support such as H.223, it’s fact that these underlying protocols do include mechanisms such as CRC checks, or even ARQ-type mechanisms. Discussing error resilience and channel coders without having system environments in mind might make sense from an academic point-of-view, but not, at least in our view, for product designs, or standardization work.

On the other hand, there are mechanisms that do correspond to the definition of a channel coder as mentioned above, but are never called as such. Examples include RFC2429, and the packet based FEC draft (Rosenberg/Schulzrinne) for the Internet.

The newest fashion in signal processing seems to be ‘joined source/channel coding’. Although such techniques are around since many years, researchers seem to focus on them a lot recently. The author and his support at TELES and TU Berlin are, as you surely know, very strong supporters of the joined source/channel coding ideas. This document does not at all want to propose an independent handling of source coding and channel coding, but it wants to have particular algorithms be standardized in the correct places.

Current situation

Currently, SG16 focuses mainly on the Internet and on mobile networks. Both networks are error prone, but with totally different error characteristics. Both networks are also supported by totally different transport protocols: H.223 in case of mobile and H.225/RTP/UDP/IP in case of Internet.

On the Internet the situation is from an architectural point of view in very good shape. H.263 includes with Annex K, R, N, with the possibility for INTRA and INTER coded macroblocks and with the ability to add GOB headers (if K is not used) over a large variety of source coding mechanisms. RFC2429 adds media-dependent ‘channel coding’ mechanisms, such as header repetition and support for Video Redundancy Coding. Additional transport-related functionality is available by employing mechanisms like packet-based FEC, negotiation of guarantied QoS, or the use of feedback-based transport protocols such as TCP. Only a few reminders in H.263, which cannot and should not be deleted due to backward compatibility issues, making us feel that there might be room for improvement for later standards such as H.26L. Start codes, for example, are unnecessary for packet networks, as are the various emulation prevention bits. The Appendix on error control could be mentioned, too.

For mobile networks, however, the situation is less positive. Q.15 is already moving towards the adoption of a data partitioning scheme, defined in proposed Annex V. Fairly uncontroversial should be the idea of header repetition, as proposed by Nokia for the Red Bank meeting. LGIC’s data partitioning is in the opinion of the author a much more powerful extension than proposed Annex V, and some mechanisms, especially the partitioning tables might make it into the standard, even if the whole proposal is not adopted. LGIC proposes to add typical channel coder functionality into H.263 to unequally protect the various partitions, out of the sheer need that there is no other place to standardize them in the H.223/H.263 framework. As unequal error protection is currently one of the most fashionable topics in video research, only the early Determination of H.263++ might rescue us from many similar proposals and the resulting late-night sessions.

On the transport side, H.223 allows for scalable error protection on both the AL and the MUX layer. It is, however, not possible to select an H.223 protection level for a single virtual channel, let alone for some bits of a single virtual channel (e. g. important header bits). This stands in sharp contrast to the Internet, where such is possible when an appropriate packetization scheme is used.

Proposed Structure

We propose to introduce an additional protocol layer between the service interfaces of H.223 (typically AL3) and the source coding of H.263.

The source coding of H.263 can then include all necessary mechanisms to support highly error prone mobile networks, such as data partitioning, in addition to the error resilience tools already in place.

The channel coder should be defined in a new Recommendation under Q.15 control. It could, for now, include the unequal protection of various partitions by bit-oriented FEC. It would also be the appropriate place for header repetition algorithms. Later, additional mechanisms like a packet based FEC to partly compensate MUX-errors (resulting in losses of complete AL3-SDUs) can be incorporated here, too.

What we are essentially proposing here is to leave the idea of conveying a ‘bitstream’, already generate ‘packets’ in the source coding. For H.26L, we can try to design the high level syntax from scratch to allow for such a ‘packet’ coding. In H.263++, however, we cannot change the structure of the syntax. Therefore, the channel coder needs to be completely aware of the H.263 syntax and has therefore to be designed by Q.15, and not by Q.11 (for example).

Pros and Cons

+ Clean architecture

+ Facilitates Gateway design and eliminates the need for conveying FEC info, redundant headers, …, if not needed -> lower bitrate requirements on the non-mobile parts of the connection.

+ As channel coder and source coder are in independent Recommendations, their update is decoupled, as is their determination/decision date.

· Additional work?

· Might delay the adoption of the whole LGIC proposal somewhat.

Requirements

This list of requirements for the channel coder might be incomplete, but we feel that the major points are covered.

· Byte orientation for all protocol elements

· No VLCs, no context-based (unannounced) items

· Features of RFC2429 should be incorporated (maybe without VLC)

Why not wait for H.26L?

We propose to add the discussed structure in the form of an additional Recommendation and changes in H.263++ even at the cost of additional delay of H.263++ (if necessary). We feel, that considering the complexity of many H.26L algorithms as discussed today, H.263 will likely be the #1 video coding for most mobile terminals for at least the next 10 years, if there will be any non-IP-based mobile terminals.

H.26L, on the other hand, will hopefully start from scratch following the discussed structure, and not stick to the know-as-inappropriate means designed for ISDN years ago. TELES and TU Berlin are committed to support this effort by contributions more concrete and detailed than this one.

