Page 42 - ITU Journal, Future and evolving technologies - Volume 1 (2020), Issue 1, Inaugural issue
P. 42

ITU Journal on Future and Evolving Technologies, Volume 1 (2020), Issue 1




              blockage design for high‑speed railway communica‑  [16] V. M. Baeza and A. G. Armada. Noncoherent mas‑
              tions. IEEE Transactions on Vehicular Technology,     sive MIMO. In Wiley 5G Ref: The Essential 5G Refer‑
              2020.                                                 ence Online, chapter 10, pages 266–290. John Wiley
                                                                    & Sons, Ltd., 2019.
           [5] G. L. Stuber, J. R. Barry, S. W. McLaughlin, Ye Li, M. A.
              Ingram, and T. G. Pratt. Broadband MIMO‑OFDM     [17] K. Chen‑Hu and A. G. Armada. Non‑coherent mul‑
              wireless communications. Proceedings of the IEEE,     tiuser massive MIMO‑OFDM with differential modu‑
              92(2):271–294, Feb. 2004.                             lation. In ICC 2019 ‑ 2019 IEEE International Confer‑
                                                                    ence on Communications (ICC), pages 1–6, May 2019.
           [6] B. Yang, Z. Yu, J. Lan, R. Zhang, J. Zhou, and
              W. Hong.    Digital beamforming‑based massive    [18] S. Bucher, G. Yammine, R. F. H. Fischer, and C. Wald‑
              MIMO transceiver for 5G millimeter‑wave commu‑        schmidt.  A noncoherent massive MIMO system
              nications. IEEE Transactions on Microwave Theory      employing beamspace techniques.  IEEE Trans‑
              and Techniques, 66(7):3403–3418, July 2018.           actions on Vehicular Technology, 68(11):11052–
                                                                    11063, Nov. 2019.
           [7] R. A. Smith. The relative advantages of coherent and
              incoherent detectors: a study of their output noise  [19] K. Chen‑Hu, Y. Liu, and A. G. Armada. Non‑coherent
              spectra under various conditions. Proceedings of the  massive MIMO‑OFDM down‑link based on differen‑
              IEE ‑ Part III: Radio and Communication Engineering,  tial modulation.  IEEE Transactions on Vehicular
              98(55):401–406, Sep. 1951.                            Technology, 2020. (In press).

           [8] D. Middleton. Statistical theory of signal detection.  [20] M. J. Lopez‑Morales, K. Chen‑Hu, and A. Garcia‑
              Transactions of the IRE Professional Group on Infor‑  Armada. Differential data‑aided channel estimation
              mation Theory, 3(3):26–51, March 1954.                for up‑link massive SIMO‑OFDM. IEEE Open Journal
                                                                    of the Communications Society, 1:976–989, 2020.
           [9] M. L. Doelz, E. T. Heald, and D. L. Martin. Binary data  [21] F. Adachi.  Adaptive differential detection for M‑
              transmission techniques for linear systems. Pro‑      ary DPSK.   IEE Proceedings ‑ Communications,
              ceedings of the IRE, 45(5):656–661, May 1957.
                                                                    143(1):21–28, Feb. 1996.
          [10] A. Manolakos, M. Chowdhury, and A. J. Goldsmith.  [22] R. Corvaja and A. G. Armada. Phase noise degrada‑
              CSI is not needed for optimal scaling in multiuser    tion in massive MIMO downlink with zero‑forcing
              massive SIMO systems. In 2014 IEEE International      and maximum ratio transmission precoding. IEEE
              Symposium on Information Theory, pages 3117–          Transactions on Vehicular Technology, 65(10):8052–
              3121, June 2014.
                                                                    8059, Oct. 2016.
          [11] M. Chowdhury, A. Manolakos, and A. Goldsmith.   [23] H. Ghozlan and G. Kramer. Models and information
              Scaling laws for noncoherent energy‑based commu‑      rates for wiener phase noise channels. IEEE Trans‑
              nications in the simo mac. IEEE Transactions on In‑   actions on Information Theory, 63(4):2376–2393,
              formation Theory, 62(4):1980–1992, April 2016.
                                                                    April 2017.
          [12] A. G. Armada and L. Hanzo.   A non‑coherent     [24] E. Costa, M. Midrio, and S. Pupolin.  Impact of
              multi‑user large scale SIMO system relaying on M‑     ampli ier nonlinearities on ofdm transmission sys‑
              ary DPSK. In 2015 IEEE International Conference       tem performance.  IEEE Communications Letters,
              on Communications (ICC), pages 2517–2522, June        3(2):37–39, Feb. 1999.
              2015.
                                                               [25] L. Lampe, R. Schober, and M. Jain.  Noncoherent
          [13] V. M. Baeza, A. G. Armada, M. El‑Hajjar, and L. Hanzo.  sequence detection receiver for Bluetooth systems.
              Performance of a non‑coherent massive SIMO M‑         IEEE Journal on Selected Areas in Communications,
              DPSK system. In 2017 IEEE 86th Vehicular Technol‑     23(9):1718–1727, Sep. 2005.
              ogy Conference (VTC‑Fall), pages 1–5, Sep. 2017.
                                                               [26] C. Wang, C. Huang, J. Huang, C. Chang, and C. Li.
          [14] V. M. Baeza, A. G. Armada, W. Zhang, M. El‑Hajjar,   Zigbee 868/915‑mhz modulator/demodulator for
              and L. Hanzo.  A non‑coherent multiuser large‑        wireless personal area network.  IEEE Transac‑
              scale SIMO system relying on M‑ary DPSK and BICM‑     tions on Very Large Scale Integration (VLSI) Systems,
              ID.  IEEE Transactions on Vehicular Technology,       16(7):936–939, July 2008.
              67(2):1809–1814, Feb. 2018.
                                                               [27] J. Cabrejas, S. Roger, D. Calabuig, Y. M. M. Fouad,
          [15] V. M. Baeza and A. G. Armada. Non‑coherent mas‑      R. H. Gohary, J. F. Monserrat, and H. Yanikomeroglu.
              sive SIMO system based on M‑DPSK for Rician chan‑     Non‑coherent open‑loop MIMO communications
              nels.  IEEE Transactions on Vehicular Technology,     over temporally‑correlated channels. IEEE Access,
              68(3):2413–2426, March 2019.                          4:6161–6170, 2016.





          22                                 © International Telecommunication Union, 2020
   37   38   39   40   41   42   43   44   45   46   47